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HIGHLIGHTS

® High-accuracy calculations for the 12 2S Rydberg states of Li.
® Finite-nuclear-mass approach is used.

® Isotope shifts of the transition energies are calculated.

® All-electron explicitly correlated Gaussian functions are used.
® The non-linear parameters of the Gaussians are optimized.

® Analytical energy gradient is used in the optimization.

® For the 10s, 11s, 12s, and 13s states the present calculations are the first ever.

ABSTRACT

In this work we report very accurate variational calculations of the twelve lowest 2S Rydberg states of the lithium atom performed with the finite-nuclear-mass (FNM)
approach and with all-electron explicitly correlated Gaussian functions. The FNM non-relativistic variational energies of the states are augmented with the leading
relativistic and QED corrections. The calculated transition energies are compared with the previous works (only eight states of the series were calculated before) and
with the available experimental results. Density distributions of the electrons and the nucleus in the center-of-mass frame are also shown.

1. Introduction

One of the major challenges of the quantum theory of atoms is to
determine the energy levels corresponding to bound ground and excited
states and the frequencies of the transitions between these levels with
the spectroscopic accuracy (i.e. below 1 cm™!). As such determination
involves the calculation of the corresponding wave functions re-
presenting the computed states, various properties of the states can also
be determined. That involves, for example, the transition intensities,
the average distances of the electrons to the nucleus and between the
electrons, etc. As the amount of computations required grows very ra-
pidly with the number of electrons (this growth is proportional to the
factorial of the number of electrons) even for atoms with a few electrons
this becomes a computationally very demanding task. Thus, in under-
taking such calculations the accuracy one aims to achieve needs to be
balanced with the computational resources the calculations are

* Corresponding author.

expected to use.

One of the many challenges involved in atomic calculations is to
target not only a few lowest lying states but to extend the calculations
to a wider spectrum of states. For the lithium atom calculations exist
where excited-state energies and the corresponding wave functions
were determined with high accuracy using various approaches such as:
multi-reference self-consistent-field, full configuration interaction,
Hylleraas-configuration-interaction, etc. [1-8]. Particularly relevant to
the present work are the most recent calculations performed by Drake
and Yan, Wang et al., and Puchalski et al. [2,7,8]. For the beryllium
atoms only the lowest five !S states [9] and one 'P state [10] were
calculated. Recently, very accurate calculations were also performed for
the lowest four 2S states of the boron atom [11]. Capabilities now exist
to extend the calculations of Rydberg states of small atoms to ten states
and beyond. In this work such calculations are reported for two iso-
topologues of the lithium atom (°Li and ’Li). The 25 Rydberg series is
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being considered.

Very accurate calculations of atomic spectra, especially when highly
excited Rydberg states are being considered, is a challenging under-
taking. Electron correlation, the effect originating from strong
Coulombic interaction between the electrons, needs to be very accu-
rately described. Moreover, there are some subtle effects due to re-
lativism, QED, and finite nuclear mass and size that need to be also
accounted for in the calculation. The most accurate description of the
correlated motion of the electrons can be achieved if the basis functions
used for expanding the spatial part of the wave function explicitly de-
pends on the distances between the electrons (the so-called explicitly
correlated basis functions). The explicitly correlated Gaussian functions
(ECG) used in the present calculations are such functions. They were
introduced to the field of atomic and molecular quantum-mechanical
calculations by Boys [12]. An example of ECG atomic calculations is the
work on the determination of the 3'S — 21S transition energy of the
beryllium atom [13] where the calculated value agreed with the ex-
perimental results of Johansson [14,15] within the experimental error
bar. ECGs were also used to calculate the lowest S — P transitions of
beryllium [10].

The standard approach to calculate atomic spectra involves in the
first step a calculation of the total non-relativistic energies of the con-
sidered states of the system with an infinite nuclear mass (INM).
Subsequently, in the following steps the perturbation theory is used to
account for energy corrections (adiabatic and non-adiabatic) due to the
finite nuclear mass (FNM), as well as for relativistic and quantum-
electrodynamics (QED) effects and effects due to the finite size of the
nucleus. The leading corrections are calculated as expectation values of
the corresponding quantum mechanical operators representing the ef-
fects. In the present work the non-relativistic calculations in the first
step are performed using the FNM approach. Thus, the resulting en-
ergies and the corresponding wave functions depend on the nuclear
mass of the considered isotopologue. Most of the adiabatic and non-
adiabatic effects are already explicitly included at this stage of the
calculation. In the approach used, the Hamiltonian representing the
atom is first written in terms of Cartesian laboratory coordinates and
then it is transformed to a new Cartesian coordinate system, whose first
three coordinates are the laboratory-frame coordinates of the center of
mass and the remaining coordinates are internal coordinates. In cal-
culating the energy corrections due to relativistic and QED effects, the
quantum mechanical operators representing these effects are also first
transformed from the laboratory coordinate system to the new co-
ordinate system and then they are used to calculate the corrections. As
the leading corrections are expectation values of the operators calcu-
lated using the FNM wave functions, they are also specific to the par-
ticular istopologues. This means that the so-called recoil effects are
explicitly included in the corrections and do not need to be calculated
using an approach based on the double perturbation theory.

Various types of ECG basis functions have been used by our research
group in high-accuracy accurate atomic and molecular calculations
performed with an approach where the Born-Oppenheimer (BO) ap-
proximation has not been assumed and an approach based on the BO
approximation [16,18,19]. High accuracy in those calculations have
been achieved by performing extensive optimization of the non-linear
parameters of the Gaussians by the variational minimization of the total
energy of the system. To expedite the minimization, we have developed
and implemented algorithms for calculating analytical derivatives of
the total energy with respect to the non-linear parameters of the ECGs
(i.e. the energy gradient) [16,17]. The implementation of the energy
gradient, which is supplied to the optimization procedure to guide the
process of changing the values of the non-linear parameters to lower the
energy, has been key to generate very accurate results in the calcula-
tions. Thus, even though the Gaussians less accurately describe the
cusps and the long-range behavior of the wave function in comparison
with, for example, explicitly-correlated Slater functions, this deficiency
can be effectively remediated with the use of sufficiently large ECG
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basis sets and by optimizing them with a gradient-based optimization
procedure.

If a FNM approach is employed in an atomic calculation, it is ex-
pected to reveal that the internal motion of the electrons and the nu-
cleus occurs around the center of mass. When the electrons are excited
to higher electronic states the motion of the particles forming the atom
becomes more complex. In this work we use plots of the electronic and
nuclear densities to describe this motion. The densities are calculated
with respect to the center of mass of the atom. In Rydberg states, which
are subject of the present study, when one of the electrons moves away
from the nucleus as it occupies states with a higher energy and with a
larger average radius, the nucleus also starts to orbit around the center
of mass with a larger radius. Also, in the process of Rydberg excitation,
the electronic wave function acquires more radial nodes which the
electronic density plot should reveal. Corresponding nodes should also
appear in the nuclear density. A part of the present work is devoted to
the analysis of the electronic and nuclear densities of the two major
isotoplogues, °Li and ”Li, of lithium.

As mentioned, the lowest eight 2S Rydberg states of lithium were
subject of previous high accuracy calculations (i.e. states 2s, 3s, ..., 95).
Apart from recalculating these eight states, in the calculations perform
in this work, we also consider four more states (i.e. states 10s, 11s, 12s,
and 13s) and transitions involving these states.

2. Method used in the calculations

The total non-relativistic Hamiltonian of an n-electron atom is first
expressed in terms of laboratory Cartesian coordinates {R;}. The BO
approximation is not assumed and, thus, the Hamiltonian describes a
(n + 1)-particle system consisting of a nucleus and n electrons. It de-
pends on 3(n + 1) coordinates, R;, i =1, ..,n + 1. Next separation of
the motion of the center of mass [18] is performed. It effectively re-
duces the (n + 1)-particle problem to an n-particle problem. To perform
the separation a new Cartesian coordinate system is introduced whose
first three coordinates are the laboratory coordinates of the center of
mass, Ry, and the remaining 3n coordinates are internal coordinates.
The internal coordinates are the position coordinates of the electrons
relative to the position of the nucleus. The vector with length 3n of the
internal coordinate is denoted by r. It consists of single-electron posi-
tion vectors r;, i = 1, ...,n. When the total Hamiltonian is transformed
from the laboratory coordinate system to the new system of co-
ordinates, it separates into the Hamiltonian representing the kinetic
energy of the center-of-mass motion (dependent only on the center-of-
mass coordinates) and the so-called internal Hamiltonian (dependent
only on the internal coordinates). The separation is rigorous. The in-
ternal Hamiltonian, H,,, has the following form (in a.u.):
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where g, is the nuclear charge, g, = —1, i = 1, ...,n, are charges of the
electrons, m, is the mass of the nucleus (10961.89865m, for °Li and
12786.39228m, for 7Li, where m, is the electron mass),
m;=me, i=1, are the electron masses, and
u; = mom;/(mo + my), i = 1, ...,n, are the reduced masses of the elec-
trons. ”T” denotes the transposition. The finite-nuclear- mass effects are
represented by the mass-polarization term, Y| > i o Vf‘ V> and by
the reduced masses, u;.

The standard procedure to account for the leading relativistic and
QED effects is to expand the total energy in powers of the fine structure
constant [20,21]:

E(O) + aZE(2) + 0{3E(3) + C(4E(4) .

Eot = )

E®

where E( is an eigenvalue of the nonrelativistic Hamiltonian (1), ol
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2s, 3s, ..., and 10s2S states of the lithium atom. The basis-set convergence of the total nonrelativistic energies, E,;, the mass-velocity and orbit-orbite relativistic
corrections, (ﬁMV) and (ﬁoo), the expectation values of the one-electron and two electron Dirac delta functions, (4 (r;)) and (5 (r;)), and the Araki-Sucher QED term,
(7] rif)). The convergence is only shown for the “Li isotopologue. The results for the °Li isotopologue and for “Li are only shown for the largest basis sets (the *Li

results are obtained using a simple polynomial-based extrapolation procedure). All values are in atomic units.

State Isotope Basis Size Enr (Amv) (83(r)) (83(xy)) (Hoo) (7@ /r§)>
2s 7Li 8500 —7.477451930724 —78.53115335 4.61310856426 0.181401118401 —0.445491034 0.091267
“Li 9500 —7.477451930726 —78.53115335 461310856428 0.181401118406 —0.445491034 0.091268
“Li 10500 —7.477451930728 —78.53115342 4.61310856430 0.181401118409 —0.445491034 0.091267
7Li ) —7.477451930731(1) —78.53115329(5) 4.61310856432(1) 0.181401118412(2) —0.445491034(1) 0.091271(5)
°Li 10500 —7.477350681408 —78.52699808 461292633953 0.181394391273 —0.447137156 0.091300
L 10500 —7.478060323906 —78.55612563 461420361871 0.181441544285 —0.435597832 0.091068
3s 7Li 9000 —7.353500488176 —77.8326780 457774746474 0.178682923795 —0.439699432 0.065939
7Li 10000 —7.353500488181 —77.8326785 4.57774746485 0.178682923806 —0.439699432 0.065936
7Li 11000 —7.353500488185 —77.8326786 4.57774746492 0.178682923812 —0.439699432 0.065936
7Li =) —7.353500488193(2) —77.8326791(4) 4.57774746509(6) 0.178682923827(6) —0.439699444(5) 0.065936(1)
°Li 11000 —7.353400979505 —77. 8285605 4.57756660642 0.178676287169 —0.441328521 0.065970
®Lj 11000 —7.354098421437 —77.8574270 4.57883430865 0.178722805865 —0.429908606 0.065733
4s 7Li 9500 —7.317935842537 —77.696396 4.5710163190 0.17817468483 —0.4384984 0.06159
7Li 10500 —7.317935842546 —77.696396 45710163191 0.17817468484 —0.4384984 0.06160
“Li 11500 —7.317935842552 —77.696393 45710163193 0.17817468487 —0.4384984 0.06168
7Li ) —7.317935842564(4) —77.696391(4) 4.5710163199(4) 0.17817468495(5) —0.4384983(2) 0.06184(7)
°Li 11500 —7.317836821409 —77.692282 4.5708357170 0.17816806483 —0.4401242 0.06172
L 11500 —7.318530845984 —77.721098 45721016234 0.17821446717 —0.4287278 0.06148
55 7Li 10000 —7.30295779418 —77.65284 4.5688887225 0.17801492772 —0.4381114 0.06014
7Li 11000 —7.30295779422 —77.65283 4.5688887226 0.17801492786 —0.4381114 0.06041
7Li 12000 —7.30295779423 —77.65283 45688887230 0.17801492791 —0.4381114 0.06050
7Li ) —7.30295779429(2) —77.65281(1) 4.5688887236(4) 0.17801492804(7) —0.4381102(5) 0.06057(7)
°Li 12000 —7.30285897585 —77.64872 4.5687082011 0.17800831304 —0.4397361 0.06053
®Lj 12000 -7.30355157919 —77.67752 4.5699735440 0.17805467913 —0.4283472 0.06030
6s 7Li 10500 —7.29526634660 —77.63485 4.568013398 0.1779493626 —0.4379510 0.05861
Li 11000 —7.29526634664 —77.63485 4568013399 0.1779493628 —0.4379510 0.05876
7Li 12500 —7.29526634670 —77.63485 4568013401 0.1779493630 —0.4379510 0.05883
7Li =) —7.29526634680(8) —77.63484(2) 4.568013403(2) 0.1779493638(9) —0.4379506(5) 0.05886(1)
°Li 12500 —7.29516763164 —77.63074 4.567832912 0.1779427502 —0.4395752 0.05886
L 12500 -7.29585951074 —77.65953 4.569098024 0.1779891016 —0.4281895 0.05862
7s “Li 11000 —7.29079946806 —77.62623 4.567589139 0.177917617 —0.43787307 0.0553
7Li 12000 —7.29079946836 —77.62620 4.567589155 0.177917621 —0.43787304 0.0559
Li 13000 —7.29079946853 —77.62612 4567589158 0.177917626 —0.43787298 0.0574
7Li ) —7.29079946858(4) —77.62594(10) 4.567589161(1) 0.177917635(5) —0.43787291(4) 0.0592(6)
°Li 13000 —7.29070081316 —77.62202 4.567408685 0.177911015 —0.43949698 0.0574
®Lj 13000 -7.29139227383 —77.65081 4.568673685 0.177957359 —0.42811278 0.0572
8s 7Li 11500 —7.2879772464 —77.62149 4.56735880 0.177900396 —0.4378309 0.0537
7Li 12500 —7.2879772505 —77.62147 4.56735899 0.177900412 —0.4378308 0.0543
“Li 13500 —7.2879772518 —77.62145 4.56735905 0.177900420 —0.4378307 0.0550
7Li =) —7.2879772527(8) —77.62138(9) 4.56735910(4) 0.177900426(3) —0.4378305(4) 0.0557(3)
°Li 13500 —7.2878786340 -77.61735 4.56717859 0.177893809 —0.4394546 0.0550
L 13500 —7.2885698313 —77.64613 4.56844352 0.177940149 —0.4280712 0.0548
9s “Li 12000 —7.2860811502 —77.61882 4.56722344 0.177890259 —0.4378061 0.051
7Li 13000 —7.2860811531 —77.61863 4.56722358 0.177890299 —0.4378058 0.054
7Li 14000 —7.2860811547 —77.61858 456722364 0.177890310 —0.4378057 0.056
7Li ) —7.2860811556(7) —77.61855(3) 4.56722368(2) 0.177890319(7) —0.4378051(8) 0.058(7)
°Li 14000 —7.2859825621 —77.61448 4.56704318 0.177883700 —0.4394295 0.056
®Lj 14000 —7.2866735829 —77.64326 4.56830808 0.177930037 —0.4280466 0.056
10s Li 12500 —7.284746119 —77.61769 45671373 0.17788369 —0.4377923 0.041
7Li 13500 —7.284746140 —77.61759 45671381 0.17788374 —0.4377921 0.043
7Li 14500 —7.284746147 -77.61723 4.5671381 0.17788381 —0.4377914 0.047
Li = —7.284746150(25) —77.61700(50) 4.5671380(3) 0.17788380(5) —0.4377915(5) 0.048(5)
°Li 14500 —7.284647573 -77.61313 4.5669576 0.17787720 —0.4394152 0.047
L 14500 —7.285338469 —77.64191 4.5682225 0.17792354 —0.4280325 0.047
represents the leading relativistic corrections, represents the denotes Eé‘e%.

leading QED corrections, and Eé;‘?j represents higher-order QED cor-

As mentioned the E? corrections are evaluated in this work in the

€

framework of the perturbation theory using the non-BO non-relativistic
wave function corresponding to zero-order energy E?. These correc-
tions are expectation values of the respective effective Dirac—Breit

rections. « is the fine structure parameter; o = 7.2973525698 1073[22].
In the tables, where the results of the present calculations are reported,

term “rel” denotes E, term "QED” denotes E), and term “HQED”
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11s, 12s, and 13s2S states of the lithium atom. The basis-set convergence of the total nonrelativistic energies, E,,, the mass-velocity and orbit-orbite relativistic
corrections, (ﬁMV) and (ﬁoo), the expectation values of the one-electron and two electron Dirac delta functions, (4 (r;)) and (5 (r;)), and the Araki-Sucher QED term,
(7] rif)). The convergence is only shown for the “Li isotopologue. The results for the °Li isotopologue and for “Li are only shown for the largest basis sets (the *Li

results are obtained using a simple polynomial-based extrapolation procedure). All values are in atomic units.

State Isotope Basis Size Enr <ﬁMV) <ﬁ00> (83(x)) (53(r1j)) <J’(1/r§’))

11s Li 14000 —7.28377022 —77.6172 4.567064 0.1778780 —0.437792 0.024
7Li 15000 —7.28377070 —77.6171 4.567071 0.1778786 —0.437789 0.028
7Li 16000 —7.28377074 —77.6168 4.567076 0.1778790 —0.437786 0.033
7Li N —7.28377075(50) —77.6170(2) 4.567075(5) 0.1778790(5) —0.437785(5) 0.030(5)
°Li 16000 —7.28367218 —77.6127 4.566896 0.1778724 —0.439410 0.034
©Li 16000 —7.28436299 —77.6415 4.568160 0.1779187 —0.428027 0.033

12s 7Li 14000 —7.28303614 —77.6153 4.567032 0.1778761 —0.437776 0.040
7Li 15000 —7.28303638 —77.6153 4.567035 0.1778764 —0.437775 0.042
Li 16000 —7.28303645 —77.6154 4.567036 0.1778764 —0.437775 0.042
7Li © —7.28303650(50) —77.6155(2) 4.567040(5) 0.1778765(5) —0.437775(5) 0.045(5)
OLi 16000 —7.28293790 —77.6113 4.566856 0.1779187 —0.439399 0.042
©Li 16000 —7.28362864 —77.6400 4.568121 0.1779162 —0.428016 0.042

13s "Li 14000 —7.28246797 —77.6155 4.566976 0.1778722 —0.437776 0.021
7Li 15000 —7.28246883 —77.6155 4.566987 0.1778727 —0.437778 0.024
7Li 16000 —7.28246913 —77.6156 4.566993 0.1778729 —0.437778 0.025
7Li oo —7.28246900(100) —77.6155(2) 4.566995(10) 0.1778730(5) —0.437780(5) 0.025(5)
OLi 16000 —7.28237059 —77.6115 4.566813 0.1778663 —0.439402 0.025
®Li 16000 —7.28306127 —77.6403 4.568078 0.1779126 —0.428018 0.025

Hamiltonians in the Pauli approximation [23,24] expressed in terms of
the internal coordinates. For the 2S Rydberg states of lithium con-
sidered in this work the relativistic Hamiltonian contains the following
terms:

Hre = Awy + Ap + Hoo + Hs. 3

The terms represent the mass-velocity (MV), Darwin (D), orbit—orbit
(00), and spin-spin (SS) interactions (the spin-orbit interaction does
not appear as it is zero for S states). The explicit form of the effective
Dirac-Breit operators in the internal coordinates can be found in Ref.
[18].

ESZ] according to the Eq. (11) in Ref. [8] that has the following form:

e

E® %0 [E

qed™ 3 | 30

+ In(@?) — lnko] Z (83(1))
i=1

164
+ [F

+ %na| 3 (@)

i>j
7 P!
-+2 ()
7T YU
i<j

where Ink, is the so-called Bethe logarithm [8] and <ﬂ(:—3)> is the
y

Araki-Sucher term [8]. (6°(r;)) and (63 (r;)) are expectation values of the
one-electron and two-electron three-dimensional Dirac delta functions.
In our calculations, we do not include the term proportional to Bethe
logarithm, Ink,.

The spatial parts of the wave functions of the twelve lowest 2S states
of lithium considered in this work are expanded in terms of following
ECGs:

C)

¢ = exp[—rTAr], &)

where Ay is 3n X 3n symmetric matrix. Basis functions (5) need to be
square integrable in order to be used in expanding wave functions of
bound states. This only happens if the A, matrix is positive definite. To
make A, positive definite it is represented in the Cholesky-factored
form as A, = (L LF) ® L, where L; is a n x n lower triangular matrix,
L is a 3 unit matrix, and ®denotes the Kronecker product. With the L,
matrix elements being any real numbers, Ay is positive definite. In the
variational optimization performed in this work for the ECG basis set of
each considered state the matrix elements of L, are the variational

500

parameters. Due to the above mentioned property of the Cholesky
factorization they can be varied without any restrictions in the range
form — oo to + oo.

The spin-free formalism [25,26] is used to enforce the proper per-
mutational symmetry of the wave function. In this formalism, a pro-
jector, which introduces the desired symmetry properties, is con-
structed using the standard procedure involving Young operators [27].
For the 2S states of the lithium atom the symmetry projector can be
chosen as: Y=(1 + P12)(1-P23), where Pij permutes the labels of the
spatial coordinates of the i-th and j-th electrons. In the calculations of
the Hamiltonian and overlap matrix elements, as well as in the opera-
tors representing the relativistic corrections, the projector Y is moved
from the “bra” to the “ket” and appears as P=Y'Y in the “ket” part of
the integrals (I¢) = PIg)).

In the approach used in this work the variational calculation for
each state is performed separately and independently from other states.
For each state a different basis set is generated by the minimization of
the total energy of that state with respect to the L, matrix elements. The
linear expansion coefficients, c, of the wave function in terms of basis
functions are obtained in the standard way by solving the secular
equation.

The variational minimization of the second or a higher root of the
nonrelativistic Hamiltonian requires the corresponding eigenfunction
to be kept orthogonal to the eigenfunctions of the lower roots
(MacDonald-Hylleraas-Undheim theorem). Even though the optimiza-
tion of the ECG basis set and the generation of the wave function for
each state is carried out in a separate calculation, the procedure used
makes the calculated wave function orthogonal to the wave functions of
all lower states expressed in terms of the basis set used in the calcula-
tion. Thus, all total energies obtained in this work are strict upper
bounds to the corresponding exact energy values. However, the final
wave functions obtained for different states are not, strictly speaking,
exactly orthogonal to each other, as they are obtained in different basis
sets. They would be exactly orthogonal if the basis sets are complete. As
the total energies of the twelve considered states are uniformly very
well converged, the deviation from the exact orthogonality of the final
wave functions should be very small.

Growing the basis set is a multistep process. It involves choosing a
small starting set of ECGs (for the lowest state this set is generated using
an orbital guess obtained using a standard AO basis set; for a higher
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Computed ns — 2s, n = 2, ...,9, transition frequencies (in cm™?) for the lithium atom in comparison with the previously calculate values (Theo) and experimental
results (Exp). The subscripts (nr, rel, rel + QED, and rel + HQED) indicate the inclusion of relativistic and QED corrections in the calculations. Tthe *Li results are
obtained using a simple polynomial-based extrapolation procedure.

Transition Isotope Basis Size AEq, AEyq AErel+QED AEe] +QED+HQED

35— 28 7Li 9000 27204.1971611 27206.286186 27205.917911 27205.912196

7Li 10000 27204.1971604 27206.286179 27205.917904 27205.912189

7Li 11000 27204.1971600 27206.286178 27205.917904 27205.912188

7Li o0 27204.1971590(5) 27206.286170(5) 27205.917896(5) 27205.912181(5)

7Li Theo [7] 27206.0937(6)

7Li Exp [28] 27206.094072(3)

SLi 11000 27203.8151337 27205.904152 27205.535891 27205.530176

°Li Theo [7] 27205.7166(6)

OLi Exp [28] 27205.712008(6)
45 > 28 7Li 9500 35009.7346525 35012.26234 35011.82389 35011.81709

7Li 10500 35009.7346510 35012.26235 35011.82390 35011.81709

7Li 11500 35009.7346500 35012.26238 35011.82392 35011.81711

7Li o0 35009.7346480(8) 35012.26240(5) 35011.82392(5) 35011.81712(5)

7Li Theo [8] 35012.0336(8)

7Li Exp [29] 35012.03358(3)

SLi 11500 35009.2456218 35011.77335 35011.33490 35011.32810

OLi Theo [8] 35011.5445(8)

°Li Exp [29] 35011.54450(3)
55 — 25 7Li 10000 38297.036292 38299.70838 38299.24776 38299.24061

7Li 11000 38297.036287 38299.70850 38299.24785 38299.24070

7Li 12000 38297.036283 38299.70854 38299.24787 38299.24073

7Li o 38297.036272(4) 38299.70871(15) 38299.24804(15) 38299.24090(15)

7Li Theo [8] 38299.4688(8)

7Li Exp [30] 38299.4627(10)

SLi 12000 38296.502755 38299.17498 38298.71434 38298.70719

°Li Theo [8] 38298.9353(8)

°Li Exp [30] 38298.9283(10)
65 > 25 7Li 10500 39985.113916 39987.8463 39987.3766 39987.3693

7Li 11500 39985.113903 39987.8464 39987.3767 39987.3694

7Li 12500 39985.113895 39987.8464 39987.3767 39987.3694

7Li o0 39985.113874(17) 39987.8464(2) 39987.3768(2) 39987.3695(2)

7Li Theo [8] 39987.6015(8)

7Li Exp [30] 39987.586(3)

°Li 12500 39984.557690 39987.2902 39986.8205 39986.8132

°Li Theo [8] 39987.0452(8)

°Li Exp [30] 39987.027(4)
78 > 28 7Li 11000 40965.480437 40968.2409 40967.7671 40967.7598

7Li 12000 40965.480373 40968.2412 40967.7674 40967.7600

7Li 13000 40965.480335 40968.2421 40967.7681 40967.7607

7Li o0 40965.480325(8) 40968.2442(13) 40967.7698(16) 40967.7624(16)

7Li Theo [8] 40967.9944(8)

Li 13000 40964.911029 40967.6726 40967.1986 40967.1913

SLi Theo [8] 40967.4250(8)
85 — 25 7Li 11500 41584.88651 41587.6630 41587.1869 41587.1795

7Li 12500 41584.88561 41587.6623 41587.1861 41587.1787

7Li 13500 41584.88531 41587.6622 41587.1860 41587.1786

7Li oo 41584.88511(17) 41587.6629(10) 41587.1866(11) 41587.1792(11)

7Li Theo [8] 41587.4098(8)

OLi 13500 41584.30776 41587.0847 41586.6086 41586.6012

OLi Theo [8] 41586.8322(8)
95 — 25 7Li 12000 42001.03151 42003.8159 42003.3386 42003.3312

7Li 13000 42001.03088 42003.8176 42003.3400 42003.3326

7Li 14000 42001.03053 42003.8178 42003.3401 42003.3327

7Li oo 42001.03034(15) 42003.8180(4) 42003.3401(11) 42003.3327(11)

7Li Theo [8] 42003.5462(8)

°Li 14000 42000.44745 42003.2349 42002.7572 42002.7498

°Li Theo [8] 42002.9631(8)

state a basis set generated for the next lower state is used as the initial
guess). Next small groups of functions are added to the basis set and,
after each group is optimized, the whole basis set is reoptimized. The
reoptimization involves cycling over all functions, one by one, several
times and reoptimizing their nonlinear parameters. All optimizations
are carried out using this one-function-at-the time approach. The initial
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guess for an added function is generated by selecting a set of most
contributing functions already included in the basis set, randomly
perturbing their non-linear parameters, and choosing the functions
which lower the energy the most. The use of the analytic gradient is
crucial in making the optimization efficient.

The above described strategy is found efficient and numerically
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Computed ns — 2s, n = 10, ..., 13, transition frequencies (in cm ™) for the lithium atomi. The subscripts (nr, rel, rel + QED, and rel + HQED) indicate the inclusion
of relativistic and QED corrections in the calculations. The *Li results are obtained using a simple polynomial-based extrapolation procedure.

Transition Isotope Basis Size AEn, AEre] AErel +QED AEel+QED+HQED
10s — 2s 7Li 12500 42294.364 42297.147 42296.119 42296.111
7Li 13500 42294.360 42297.144 42296.115 42296.108
7Li 14500 42294.358 42297.146 42296.117 42296.109
7Li oo 42294.357(5) 42297.148(8) 42296.119(8) 42296.111(8)
OLi 14500 42293.771 42296.559 42295.530 42295.522
11s — 2s 7Li 14000 42508.55 42511.33 42510.30 42510.29
7Li 15000 42508.45 42511.22 42510.20 42510.19
Li 16000 42508.44 42511.22 42510.19 42510.18
7Li © 42508.43(10) 42511.21(11) 42510.19(11) 42510.18(11)
SLi 16000 42507.85 42510.63 42509.60 42509.59
125 - 2s 7Li 14000 42669.66 42672.46 42671.43 42671.42
7Li 15000 42669.61 42672.40 42671.37 42671.37
7Li 16000 42669.60 42672.39 42671.36 42671.35
Li 0 42669.59(10) 42672.38(11) 42671.35(11) 42671.34(11)
OLi 16000 42669.00 42671.80 42670.77 42670.76
135 —> 25 7Li 14000 42794.36 42797.14 42796.12 42796.11
7Li 15000 42794.18 42796.96 42795.93 42795.92
7Li 16000 42794.11 42796.89 42795.86 42795.86
7Li oo 42794.14(20) 42796.92(22) 42795.89(22) 42795.89(22)
°Li 16000 42793.52 42796.30 42795.27 42795.26

stable. It allows at all stages of the basis growing and optimizing process
to control and, if necessary, eliminate any linear dependency that may
occur between the basis functions. As such dependencies may lead to
numerical inaccuracies and may destabilize the calculation, they have
to be eliminated.

In this work the variational optimization of the non-linear para-
meters of the Gaussians is carried out using the FNM approach and
performed only for the “Li isotopologue. The “Li basis sets for all con-
sidered states are used in the calculations for the SLi isotopologue, as
well as the INM energy calculations (for *Li) without reoptimization of
the ECG non-linear parameters. As our previous calculations of atomic
isotopologues have shown [19], no reoptimization of the nonlinear
variational parameters is needed when states of different isotopes are
calculated. The adjustment of the linear coefficients, ¢k, through re-
diagonalization of the Hamiltonian matrix suffices to describe relatively
small changes in the wave function and the energy caused by a change
of the nuclear mass.

As mentioned in the introduction, the FNM approach used in the
present calculations allows to describe the coupled motion of both
electrons and the nuclei using nuclear and electron density plots. The
electron density, p, at point £ relative to the center of mass of the atom,
Ry, is evaluated as the expectation value of the following 3D Dirac
delta function:

pE)=<dR.—Rey — §) >, (6)

where R, is the position vector of one of the electrons in the laboratory
coordinate system. As the FNM ECG wave function is used in the ex-
pectation value calculation, slightly different densities are obtained for
®Li and “Li. The nuclear density, p,, at point £, is evaluated in a similar
way as the expectation value of the following delta function:

0, &) =<5R,—Rey — &) >, 7)

where R, is the position vector of nucleus in the laboratory coordinate
system. Electronic and nuclear density plots for some selected states of
SLi and “Li are compared in the result section.

3. Results

The ECG atomic code for S states written in Fortran90 and em-
ploying the MPI (message passing interface) is used in the present
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calculations. The considered twelve Rydberg 2S states of lithium are
divided into two groups. The first group comprising eight lowest states,
2s, 3s, ..., and 9s was calculated with high accuracy before [8]. The
second group comprising states 10s, 11s, 12s, and 13s has not been cal-
culated yet by others. The purpose of the calculations performed for the
first group of states is to determine the accuracy of the calculations
using ECGs with more accurate calculations performed with products of
Slater-type orbitals multiplied by powers of the distances between the
three electrons and the nucleus, 1, 1, and r;, and by powers of inter-
electron distances, r,, 3, and ;. The results for states 2s-10s are col-
lected in Table 1. The results for states 11s-13s are shown in Table 2.
Both sets of results include the non-relativistic energies, E,, the mass-
velocity and orbit-orbit relativistic corrections, (ﬁMV> and (ﬁoo), the
expectation values of the one-electron and two electron Dirac delta
functions, (§°(r)) and (&°(r;)), and the Araki-Sucher QED term,
(71/ r,»j»’)). The convergence is only shown for the “Li isotopologue. The
results for the °Li isotopologue and for *Li are only given for the best
basis sets. The ®Li results are obtained by setting the mass of the nu-
cleus to infinity in the calculations (in practice, setting it to a large
number).

The number of the basis functions used in the calculations varies
from state to state. It increases with the excitation level of the atom.
This is necessary because, as the excitation level increases, the wave
functions become more oscillatory and this requires more basis func-
tions to be used in the wave-function expansion. For the ground 2s
state, the largest number of the ECGs used is 10500 and the results
obtained with 8500, 9500, and 10,500 ECGs are shown in Table 1. For
state 9s we show the results obtained with 12,000, 13,000, and 14,000
ECGs. For state 10s the largest basis set used comprises 14500 ECGs and
for states 10s, 11s, 12s, and 13s the largest set consists of 16000 ECGs. To
assess the quality of the present results, one can compare, for example,
the *Li non-relativistic energies for the lowest two states with the re-
cent values of Wang et al. [7] obtained with Hylleraas-type functions.
Their energies of —7.478060323910150(5) and
—7.354098421444367(3) hartree are lower than our energies obtained
with ECGs in the 13-th decimal digit by 6 and 7, respectively.

The data from Table 1 and Table 2 are used to calculate the ns — 2s
deexcitation transition frequencies for all twelve states considered in
this work. The calculations are performed for both °Li and 7Li iso-
topologues. The results are shown in Table 3 and Table 4. The results
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Fig. 1. Radial nuclear densities of Rydberg states 2s, 6s, and 11s of 7Li (plots a, ¢, and e), and the corresponding radial electron densities (plots b, d, and f. Both sets of
densities shown with solid lines. Dash lines show densities of a hydrogen-like atom whose nuclear mass is equal to the nuclear mass of “Li and the nuclear charge is
+1. The hydroge-like densities are included to show the Rydberg character of the “Li densities. The densities are calculated using Eqs. (7) and (6). They are
multiplied by 47r? to make them be radial densities, as the considered states are spherically symmetric.

are compared with the previous calculations [2,7,8] and with experi-
mental results [28-30].

In general, our results agree well with the results of the previous
calculations [8]. The agreement is slightly worse for lower states than
for the higher states. We attribute this to not including in the present
calculations some higher order effects, which the previous calculations
accounted for. The novelty of the present work are the predictions of
the transition frequencies involving states 10s, 11s, 12s, and 13s. We
estimate the reliability of these predictions to be by about one order of
magnitude lower than for states 8s, 9s, and 10s.

As predicted by Lorenzen and Niemax [31], the value of the

503

quantum defect effect should be approximately constant for a series of
excitations of a valence electron to Rydberg states with a particular
angular momentum quantum number. For the states considered in this
work, the ns states, quantum defect effect is indeed almost constant and
ranges from 0.41146 for the 2s state to 0.39831 for the 13s state. The
quantum defect effect for the 2S Rydberg series was analyzed by Bubin
and Adamowicz [32] and two models were tested for more accurate
prediction of the transition energies of the states in the series with re-
spect to the ground 251s? 2s state using QDE-like formulas fitted to the
experimental transitions. For states 10s, 11s, 12s, and 13S, the more
sophisticated of the two models (Model 2) predicted the transition
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Fig. 2. Radial nuclear densities of Rydberg state 13s of ®Li (plot a) and “Li (plot b). Dash lines show densities of a hydrogen-like atom whose nuclear mass is equal to
the nuclear mass of °Li in (a) and to the nuclear mass of “Li in (b) and the nuclear charge is +1. The hydroge-like densities are included to show the Rydberg
character of the 7Li densities. The densities are calculated using Egs. (7) and (6). They are multiplied by 47r? to make them be radial densities, as the considered states

are spherically symmetric.

energies to be 42295.82, 42509.73, 42670.72, and 42794.93 cm ™Y,
respectively, for 5Li, and 42296.41, 42510.32, 42671.32, and
42795.52 cm ™!, respectively, for “Li. These values are in good agree-
ments with the transition frequencies calculated in the present work of
42295.522, 42509.59, 42670.76, and 42795.26cm ™' for °Li, and
42296.109, 42510.18, 42671.35, and 42795.85 cm ~ ! for 7Li.

The ns — 2s deexcitation transition frequencies calculated for ’Li
and °Li enable calculation of the isotope shifts of the corresponding
transitions. As these shifts can be measured experimentally, their the-
oretical prediction may provide valuable information for such mea-
surements. In moving from the “Li to ®Li transitions, a down-shift of the
transitions is predicted. The shift is equal to —0.38cm™' for the
3s — 2§ transition, to —0.49cm™! for the 4s — 2s, and to —0.53,
-0.56, -0.57, -0.58, -0.58, -0.59, -—0.59, -0.58, and
—0.60cm ™! for the ns — 2s, n = 5, ..., 13, transitions, respectively.

To illustrate the nature of the twelve 2S Rydberg states calculated in
this work with the FNM approach we show plots of the nuclear and
electronic densities for some selected states (states 2s, 6s, and 11s). The
density plots are shown in Fig. 1. The densities are calculated with the
approach described in the methodology section. As mentioned, the
plots provide a representation of the coupled motion of the electrons
and the nucleus around the center of mass of the atom. This should be
manifested by the number and the character of the maxima of the
electron densities matching the maxima in the nuclear densities.
Naturally, as the mass of the nucleus is much larger than the electronic
mass, the radius of the motion of the nucleus around the center of mass
and, consequently, the distances of the maxima from the center of mass
in the nuclear density should be much smaller than those in the elec-
tronic density (the distance of the maxima in the two densities should
scale as the ratio of the nuclear and electronic masses). Upon analysis of
the plots, this is indeed what one observes. It is also interesting to
compare the densities obtained for the ®Li and “Li isotopologues. One
may expect that the electronic densities of the two isotopologues for a
particular state should be almost identical. However, the peaks in the
nuclear densities of “Li should be shifted closer by about 20% to the
center of mass in comparison to the peaks in the °Li density (the masses
of the two isotopologues differ by about 20%). Indeed, one can notice
such as a shift in the nuclear-density plots for state 13s shown in Fig. 2.
Also, as one can notice, as the electronic density becomes increasingly
more diffuse with the increasing level of the excitation, the nuclear
density also diffuses in space. This is a reflection of the average dis-
tances of both the electrons and the nucleus from the center of mass of
the atom increasing with the excitation level.

504

4. Summary

In summary, explicitly correlate all-electron Gaussian functions are
used to calculate the lowest twelve %S Rydberg states of the lithium
atom. While for states 2s, 3s, ..., and 9s high-accuracy calculations have
been done before [8], the calculations of states 10s, 11s, 12s, and 13s
presented in this work are done for the first time. The total energies of
the twelve states include the leading relativistic and QED corrections.
These energies are used to calculate transition frequencies corre-
sponding to de-exciting the atom from each of the states to the 2s
ground state. These frequencies are compared with the results of the
previous calculations [8] and with the high-resolution experimental
results [28-30]. The comparison shows that the present results are
consistent with the previous results. This lends credence to the pre-
dicted transitions involving states 10s, 11s, 12s, and 13s. These predic-
tions can be used to experimentally measure these frequencies. As the
method employed in the present calculations uses the finite-nuclear-
mass approach, slightly different sets of transitions are obtained for °Li
and “Li. The isotope shifts, which can be derived from the present re-
sults, are also measurable quantities that can be determined experi-
mentally.

The finite-nuclear-mass approach used in the present work enables
an analysis of the coupling to the motions of the electrons and the
nucleus around the center of mass of the atom. In this work the analysis
is performed using the electronic and nuclear densities. These densities
are determined relative to the center of mass of the atom and plotted as
functions of the distance from this center. As expected, as the level of
the Rydberg excitation increases the electronic density becomes in-
creasingly more oscillatory and diffuse. Due to the coupling of the
electronic and nuclear motions similar oscillations appear in the nu-
clear density. For each maximum in the electronic density there is a
matching maximum in the nuclear density. The relative heights of the
maxima in the electronic density are similar to the maxima heights in
the nuclear density. However, the two densities differ in terms of their
radial extent, with the extent of the nuclear density being much more
compressed towards the center of mass than the electronic density. The
compression ratio is equal to the electron/nucleus mass ratio.
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