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I. INTRODUCTION

Soon after the Schrödinger equation was introduced in 1926, several works

appeared dealing with the fundamental problem of the nuclear motion in

molecules. Very soon after, the relativistic equations were introduced for one-

and two-electron systems. The experiments on the Lamb shift stimulated
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derivation of the expressions for fine energy corrections related to mass–velocity

effects, radiative effects, and so on. Following this development, questions were

raised whether an ab initio approach, in which only the values of fundamental

constants are taken from experiments, is capable of reproducing experimental

results with the precision which matches that of the experimental techniques. At

first, the questions concerned the accuracy of the calculations, but soon they were

extended to testing the model of the molecular electron structure provided by the

nonrelativistic and relativistic quantum mechanics.

In order to answer these questions, accurate experimental and theoretical

results were needed for representative molecular systems. Theoreticians, for

obvious reasons, have favored very simple systems, such as the hydrogen

molecular ion ðHþ
2 Þ for their calculations. However, with only one electron, this

system did not provide a proper test case for the molecular quantum mechanical

methods due to the absence of the electron correlation. Therefore, the two-

electron hydrogen molecule has served as the system on which the fundamental

laws of quantum mechanics have been first tested.

In an attempt to make the quantum-mechanical calculations on molecular

systems practical and to provide a more intuitive interpretation of the computed

results, it has long been a quest in the electronic structure theory of molecules to

establish a solid base for separating the motion of light electrons from the

motion of heavier nuclei. It is believed that the original work of Born and

Oppenheimer [1] initiated the discussion by the analysis of the diatomic case.

Further works of Cobes and Seiler [2], who managed, with the use of singular

perturbation theory, to resolve the problem of the diverging series, which

appeared in the Born–Oppenheimer (BO) expansion, and particularly of Klein

et al. [3], who extended the formalism to polyatomic systems, have brought the

consideration of the topic to a level of commonly accepted theory.

Apart from the further refinements of the BO approach, there has been a

continuing interest in theoretically describing molecular systems with a method

that treats the motions of both nuclei and electrons equivalently. This type of

methodology has to entirely depart from the PES concept. It is particularly

interesting how this type of approach describes the conventional notions of the

molecular and electronic structures. In particular, the concept of chemical

bonding, which at the BO level is an electronic phenomenon, has to be

described in an approach departing from the BO approximation, as an effect

derived from collective dynamical behavior of both electrons and nuclei.

Another motivation for considering molecular systems without assuming the

BO approximation stems from the realization that in order to reach ‘‘spectro-

scopic’’ accuracy in quantum-mechanical calculations (i.e., error less than

1 microhartree), one needs to account for the coupling between motions of

electrons and nuclei and, in some cases, also for the relativistic effects. Modern

experimental techniques, such as gas-phase ion-beam spectroscopy, reach
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accuracy on the order of 0:001 cm�1 (5 nanohartrees) [4]. In order for the

molecular quantum mechanics to continue providing assistance in resolving and

assigning experimental spectra and in studies of reaction dynamics, work has to

continue on the development of more refined theoretical methodology, which

accounts for nonadiabatic interactions. With such methodology, fundamental

concepts of the molecular quantum mechanics can be explored and the basic

theoretical framework of the high-resolution molecular spectroscopy can be

tested. Recent advances in high-performance computing, especially in the area

of massively parallel systems, has given momentum to proceed with the

development of quantum-mechanical methods that depart from the BO

approximation and describe the motions of the nuclei and electrons with a

single wave function. In the context of the non-BO calculations, it is particularly

interesting to study highly rho-vibrationally and electronically excited

molecules and clusters, where more significant coupling between the two

motions can occur. Essentially, whenever the spacings between electronic

excitation levels become comparable to the spacings between the vibrational or

rotational levels, nonadiabatic effects are likely to be found. Studies of these

effects are relevant to astrophysical phenomena, molecule dynamics, and

molecular behavior at high temperatures.

If one assumes the BO approximation and considers potential energy

surfaces of a molecule, one can usually identify areas where there is a high

density of electronic states and areas where the electronic states are more

separated from each other. A strong nonadiabatic coupling can be expected to

mainly occur in the areas with the high electronic state density. This simple

realization has given rise to a considerable body of recent theoretical research

on nonadiabatic phenomena, done in relation to conical intersections of

molecular PESs [5–14], most notably by Yarkony and his group, among others.

The reason for having large or even infinite nonadiabatic coupling terms in the

conical areas is that fast-moving electrons may create exceptionally large forces

causing the nuclei to strongly accelerate. The terms responsible for this

accelerated motion cannot be ignored even in the first approximation. The

consequences of the conical PES crossings to the dynamics of molecular

reactions have also been considered by a number of groups (see, for example,

the work of Hammes-Schiffer [15–26]). In those works, however, the non-BO

effects are only considered at the conical intersection of two electronic PESs

since the focus there has been more on determining the probability of the

process splitting and following two different electronic PESs and less on very

accurate global representation of coupled electronic–nuclear states, as it has

been in our work.

The nonadiabatic coupling terms can quickly become large or even infinite

(or singular) when two successive adiabatic states become degenarate. Such

singular nonadiabatic coupling may not only lead to the breakdown of the
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Born–Oppenheimer perturbation theory but may also make the application of

the perturbation theory inadequate.

Though infrequent, fully non-Born–Oppenheimer high-accuracy calculations

on atomic and molecular systems have been increasing in number in recent

years. However, besides our group, there are only a few groups doing such

calculations, particularly for molecular systems. One should mention the recent

works of Frolov and Smith [27–29] and of Frolov [30–34] concerning some

exotic systems involving muons and positrons, as well as one electron H2

isotopomers. Our works, reviewed here, have concerned both atomic and

molecular systems. Although for molecules most of our non-BO calculations

concerned ground and excited states of diatomic systems, we have also recently

extended the non-BO approach beyond molecules with two nuclei. The system

with the largest number of particles we have calculated so far had two nuclei

and five electrons (the LiH� anion).

There are several elements in non-BO calculations that distinguish them

from the conventional BO calculations. The first one concerns the Hamiltonian.

If one neglects the relativistic effects and places the considered system in a

laboratory Cartesian coordinate frame, the Hamiltonian has a simple form of

a sum of one-particle kinetic energy operators for all particles involved in

the system plus a sum representing all pair Coulombic interactions between the

particles. It is convenient to separate the center-of-mass kinetic energy from the

Hamiltonian. This is usually done by a coordinate transformation that involves

choosing a new coordinate system whose first three coordinates are the

Cartesian coordinates of the center of mass in the laboratory coordinate system

and the remaining 3N � 3 coordinates are internal coordinates. There are a

number of ways to select the internal coordinates. In some works, these have

been the Jacobi coordinates, the spherical coordinates, or the coordinates

defined with respect with the center of mass of the system. In our approach we

have used a cartesian coordinate system with the coordinate origin placed at one

of the particles (usually the heaviest one). This will be described later in this

chapter.

An important difference between the BO and non-BO internal Hamiltonians

is that the former describes only the motion of electrons in the stationary field of

nuclei positioned in fixed points in space (represented by point charges) while

the latter describes the coupled motion of both nuclei and electrons. In the

conventional molecular BO calculations, one typically uses atom-centered basis

functions (in most calculations one-electron atomic orbitals) to expand the

electronic wave function. The fermionic nature of the electrons dictates that

such a function has to be antisymmetric with respect to the permutation of

the labels of the electrons. In some high-precision BO calculations the wave

function is expanded in terms of basis functions that explicitly depend on

the interelectronic distances (so-called explicitly correlated functions). Such
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functions usually very effectively describe the electron correlation effects,

which need to be included in any high-level BO calculation. An alternative to

the explicitly correlated functions is to use expansions in terms of Slater

determinants constructed using one electron functions (molecular orbitals).

Such an approach is called the configuration interaction (CI) method, and it

usually converges much slower than the approach using explicitly correlated

basis functions.

Non-BO calculations usually need to be performed to very high precision

since only then the non-BO effects, which are usually very small, can be

adequately determined. This requires that not only the electron–electron

correlation effects are described very accurately, but also the correlation effects

due to the nucleus–nucleus interaction and due to the nucleus–electron

interaction are accurately represented in the wave function. Since the electrons

are light particles, their individual wave functions can strongly overlap, and the

probability of finding two electrons (with opposite spins) simultaneously in the

same point in space is much higher than for two nuclei, which are much heavier

and avoid each other to a much higher degree. One can say that the nuclear

correlation effects are much stronger than the electronic ones. Also, the

correlation effects associated with the coupled motion of electrons and nuclei

are significant because the electrons, particularly the core electrons, follow the

nuclei very closely. In order to describe the three types of correlation effects

simultaneously with high precision in the non-BO wave function, one needs to

use basis functions, which not only depend on the interelectron distances, but

also explicitly depend on electron–nucleus and nucleus–nucleus distances.

The functions of this type that we have used in our non-BO calculations will be

shown later in this chapter. We should mention that the basis set selection is the

central point in the non-BO calculation.

After the separation of the kinetic energy operator due to the center-of-mass

motion from the Hamiltonian, the Hamiltonian describes the internal motions of

electrons and nuclei in the system. These in the BO approximation can be

separated into the vibrational and rotational motions of the nuclear frame of

the molecule and the electronic motion that only parametrically depends on the

instantenous positions of the nuclei. When the BO approximation is removed,

the electronic and nuclear motions become coupled and the only good quantum

numbers, which can be used to quantize the stationary states of the system, are

the principle quantum number, the quantum number quantizing the square of the

total (nuclear and electronic) squared angular momentum, and the quantum

number quantizing the projection of the total angular momentum vector on a

selected direction (usually the z axis). The separation of different rotational

states is an important feature that can considerably simplify the calculations.

If in the non-BO calculation one chooses a basis set of eigenfunctions of the

operator representing the square of the total angular momentum and the
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operator representing the projection of the angular momentum on the selected

axis, one can separate the calculation for different rotational states and perform

them independently of each other. However, if one uses basis functions that are

not rotational eigenfunctions, then the manifold of states that one gets includes

all types of internal excitations (i.e., rotational, vibrational, and electronic).

Since the rotational state spacing is usually much smaller in comparison with

the spacings between the vibrational and electronic levels, the different

vibrational and electronic levels (or, as we should more correctly call them, the

vibro-electronic levels, because the vibrational and electronic motions are

coupled in the non-BO calculation) are separated by a large number of

rotational levels. This creates a problem if the calculations are done with the use

of the variational method, because in order to determine, say, the vibrational

spectrum of the molecule corresponding to the zero angular momentum, one

needs to ‘‘fish’’ them out from the very high density spectrum of all internal

states. There are two ways to overcome this obvious difficulty in the calculation.

One, as mentioned, is to use in the calculation the basis functions of rotational

eigenstates. The second is based on including in the Hamiltonian an operator

that artificially shifts up the energies of states with the rotational quantum

numbers different from the quantum number of the states targeted by the

calculation. The first approach is what we have used in the calculations shown in

this chapter. The second approach is currently being developed for calculating

rotationally excited states using explicitly correlated basis functions that

incorporate centers displaced away from the origin of the coordinate systems

(due to this displacement, these functions are not rotational eigenfunctions).

We start this chapter by showing the coordinate transformation that allows us

to separate the operator representing the kinetic energy of the center-of-mass

motion from the total Hamiltonian expressed in terms of the Cartesian

laboratory coordinates. Next we discuss the symmetry of the internal

Hamiltonian and the spatial and permutational symmetry of the wave functions.

In the following section we describe the algorithms involved in calculating

Hamiltonian matrix elements and their derivatives with respect to the nonlinear

parameters involved in the basis functions. We start the discussion of the

numerical results by showing some atomic calculations. Next, we present some

of our recent calculations on diatomic systems and we discuss their accuracy

and the nonadiabatic effects they describe. In the following section we consider

the interaction of a molecular system described without assuming the Born–

Oppenheimer approximation with an external stationary electric field. In that

section we also review some of our calculations concerning electrical properties

of some small diatomic molecules. The field-dependent calculations have been

done using basis functions whose centers are allowed to ‘‘float’’ away from the

origin of the coordinate system to describe the polarization of the molecule

along the direction of the field. In the following section we describe the use of
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the ‘‘floating’’ basis functions in field-independent non-BO calculations. The

chapter is concluded with (a) a description of directions for our future works

on the non-BO approach and (b) outstanding problems that, in our view, need to

be addressed in further advancing the development and the implementation of

the non-BO molecular quantum mechanics.

II. HAMILTONIAN, SEPARATION OF THE CENTER OF MASS,

INTERACTION WITH ELECTRIC FIELD

A. Nonrelativistic Hamiltonian

A system of n þ 1 particles of masses Mi and charges Qi may be described at any

point in time by the n þ 1 vectors, Ri, describing the positions of the particles:

Ri ¼
xi

yi

zi

0
@

1
A ð1Þ

and the n þ 1 vectors, Pi, describing the momenta of the particles:

Pi ¼
Px;i

Py;i

Pz;i

0
@

1
A ð2Þ

For convenience we collect the Ri vectors together:

R ¼

R1

R2

..

.

Rnþ1

0
BBB@

1
CCCA ð3Þ

and similarly collect the momenta together:

P ¼

P1

P2

..

.

Pnþ1

0
BBB@

1
CCCA ð4Þ

The kinetic energy of this system is given by

T ¼
Xnþ1

i¼1

P2
i

2Mi

ð5Þ
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If we assume only Coulombic interactions between the particles, the

potential energy is given by

V ¼
Xnþ1

i¼1

Xnþ1

j> i

QiQj

rij

ð6Þ

where rij is the magnitude of the distance vector between particles i and j.

The total Hamiltonian for this system is thus

H ¼
Xnþ1

i¼1

P2
i

2Mi

þ
Xnþ1

i¼1

Xnþ1

j> i

1

4pEo

QiQj

rij

ð7Þ

We may transform this to the quantum-mechanical Hamiltonian operator by

substitution of the configuration space operators

x̂x ! x ð8Þ

P̂Px !
1

i

q
qx

ð9Þ

and we get

H ¼
Xnþ1

i¼1

�1

2Mi

r2
i þ

Xnþ1

i¼1

Xnþ1

j> i

QiQj

rij

ð10Þ

B. The Dipole Approximation

The interaction of matter particles and light calls for treating the light quantum-

mechanically. It is often sufficient, though, to treat the matter quantum

mechanically and the light classically via the semiclassical approach. The light,

then, is treated as perpendicular oscillating electric and magnetic fields. The

effect of the magnetic portion on matter is usually less than the effect of the

electric portion, and so for the work presented here we may neglect the magnetic

portion. If we further assume a static field, then we may express the interaction as

the scalar product of the total dipole moment of the system and the field:

E ¼ m � e ð11Þ

For a derivation of the above Hamiltonian, please see, for example, the book by

Schatz and Ratner [71]. We may also express the total quantum-mechanical
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operator as

m � e ¼
Xnþ1

i¼1

e � RiQi

where each term in the sum is the interaction of each particle with the electric

field.

The Hamiltonian for the system in an electric field is thus

H ¼
Xnþ1

i¼1

P2
i

2Mi

þ
Xnþ1

i¼1

Xnþ1

j> i

QiQj

rij

�
Xnþ1

i¼1

e � RiQi ð12Þ

C. Transformation to Center-of-Mass Coordinates

The number of internal degrees of freedom for any system may be reduced by a

transformation to center-of-mass coordinates. For example, the system of n þ 1

particles with 3ðn þ 1Þ degrees of freedom is reduced n pseudoparticles with 3n

degrees of freedom, with the 3 leftover degrees of freedom describing the motion

of the center of mass.

For the R vector described above, it may be shown that the appropriate

transformation is

T ¼

M1

MT

M2

MT

M3

MT

M4

MT
� � � Mnþ1

MT

�1 1 0 0 0 � � �
�1 0 1 0 0 � � �
�1 0 0 1 0 � � �
�1 0 0 0 1 � � �
� � � � � � � � � � � � � � � � � �

0
BBBBBB@

1
CCCCCCA

	 I3 ð13Þ

in the sense that T transforms R, the set of all 3ðn þ 1Þ coordinates, into r0, the

set of coordinates describing the position of the center of mass, and r, the set of

3n coordinates describing the positions of the n pseudoparticles:

TR ¼

r0

r1

..

.

rn

0
BBB@

1
CCCA ð14Þ

or

TR ¼ r0

r

� 	
ð15Þ
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where r is defined as

r ¼

r1

r2

..

.

rn

0
BBB@

1
CCCA ð16Þ

In the above, MT is the sum of all n þ 1 masses in the original system.

The momenta are transformed by the inverse transformation:

T�1P ¼

p0

p1

..

.

pn

0
BBB@

1
CCCA ð17Þ

or

T�1P ¼ p0

p

� 	
ð18Þ

where p0 describes the momentum of the center of mass and p, the vector of

momenta of the pseudoparticles, is defined as

p ¼

p1

p2

..

.

pn

0
BBB@

1
CCCA ð19Þ

The inverse transformation T�1 is given by

1 � M2

MT
� M3

MT
� M4

MT
� � � � Mnþ1

MT

1 MT�M2

MT
� M3

MT
� M4

MT
� M5

MT
� � �

1 � M2

MT

MT�M3

MT
� M4

MT
� M5

MT
� � �

1 � M2

MT
� M3

MT

MT�M4

MT
� M5

MT
� � �

1 � M2

MT
� M3

MT
� M4

MT

MT�M5

MT
� � �

� � � � � � � � � � � � � � � � � �

0
BBBBBBBBB@

1
CCCCCCCCCA

	 I3 ð20Þ

The charges map directly Qi ! qi�1, with the change on the particle at the center

of mass mapping to a central potential.
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These transformations result in the internal Hamiltonian (in atomic units):

ĤH ¼ � 1

2

Xn

i

1

mi

r2
i þ

Xn

i 6¼j

1

M0

r0
irj

 !
þ
Xn

i¼1

q0qi

ri

þ
Xn

i< j

qiqj

rij

�
Xn

i¼1

e � riqi

ð21Þ

which may be written as

ĤH ¼ �r0
r
�MMrr þ

Xn

i¼1

q0qi

ri

þ
Xn

i< j

qiqj

rij

�
Xn

i¼1

e � riqi

The mass matrix M enters the Hamiltonian for convenience of expression and

is an n � n matrix with 1
2mi

on the diagonal elements and 1
2M0

on all of the off-

diagonal elements; the �MM notation for any matrix will mean a Kronecker product

with the 3 � 3 identity matrix, �MM ¼ M 	 I3.

III. PERMUTATIONAL SYMMETRY

Determination of a wave function for a system that obeys the correct

permutational symmetry may be ensured by projection onto the irreducible

representations of the symmetry groups to which the systems in question belong.

For each subset of identical particles i, we can implement the desired

permutational symmetry into the basis functions by projection onto the

irreducible representation of the permutation group, Sni , for total spin Si using

the appropriate projection operator ŶiYi. The total projection operator would then

be a product:

ŶY ¼
Y

i

ŶiYi ð22Þ

For fermions, the projection operators are simply Young operators, derived from

the appropriate Young tableau, as will be shown below.

A. Projection onto the Irreducible Representations of

the nth-Order Symmetric Group

The energy of a quantum system is invariant to permutations of identical

particles in the system. Thus, the Hamiltonian for a system with n identical

particles can be said to commute with the elements of the nth-order symmetric

group:

½ĤH; Sn� ¼ 0 ð23Þ
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This requires that the eigenfunctions of the Hamiltonian are simultaneously

eigenfunctions of both the Hamiltonian and the symmetric group. This may be

accomplished by taking the basis functions used in the calculations, which may

be called primitive basis functions, and projecting them onto the appropriate

irreducible representation of the symmetric group. After this treatment, we may

call the basis functions symmetry-projected basis functions.

The projection operator takes the form of a sum of all of the possible

permutations of the identical particles, P̂Pi, each multiplied by an appropriate

constant, ai:

ŶY ¼
Xn!

i¼1

aiP̂Pi ð24Þ

The format we will use to indicate the permutations is ðabc . . .Þ. For example, the

permutation of particles 1 and 2 is ð12Þ. The permutation of particles 1, 3, and 4

is ð134Þ. The material below concerns how to obtain the coefficients, ai.

The Pauli antisymmetry principle tells us that the wave function (including

spin degrees of freedom), and thus the basis functions, for a system of identical

particles must transform like the totally antisymmetric irreducible representa-

tion in the case of fermions, or spin 1
2

k (for odd k) particles, and like the totally

symmetric irreducible representation in the case of bosons, or spin k particles

(where k may take on only integer values).

Projection operators for irreducible representations of the symmetric group

are obtained easily from their corresponding Young tableaux. A Young tableau

is created from a Young frame. A Young frame is a series of connected boxes

such as

and

The shape of the Young frame corresponding to the desired irreducible

representation of the symmetric group is obtained from the physics of the

system. For example, for the totally antisymmetric representation of a group Sn

we use a frame that is completely horizontal with n boxes. For example, for four

particles we have

We then have to determine the dimension of the representation. This is done by

filling in the boxes in the Young frame with the integers 1 . . . n according to the

following rules:

� Numbers must increase to the right.

� Numbers must increase down.
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Obviously for the above frame, we can only fill in the numbers 1, 2, 3, and 4

according to the rules in one way:

1 2 3 4

Thus this corresponds to a one-dimensional representation. The totally

symmetric representation is created in a similar fashion, but with all of the

boxes arranged vertically:

1

2

3

4

This is also a one-dimensional representation.

The above operators apply only to primitive basis functions that have the spin

degree of freedom included. In the current work we follow the work of Matsen

and use a spin-free Hamiltonian and spin-free basis functions. This approach is

valid for systems wherein spin–orbit type perturbations are not considered. In

this case we must come up with a different way of obtaining the Young

tableaux, and thus the correct projection operators.

We explain here how to obtain the needed tableaux for fermions. We begin

with the number of identical particles under consideration, n, and their total spin

quantum number, s. We then calculate the symmetry quantum number,

p ¼ n
2
� s. We then define a partition, m, as

m ¼ ½2p1n�2p� ð25Þ

This partition tells us to build a Young frame with

� 2 boxes in the first p rows

� 1 box in the remaining n � 2p rows

We then fill in the numbers according to the above rules.

For example, for a system of four identical fermions (such as the four

electrons in LiH) with all spins paired (i.e., s ¼ 0), we have

m ¼ ½2210� ð26Þ

and the Young frame:
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Filling this in according to the rules, we have

1 2

3 4
and

1 3

2 4

Since we have two ways of filling in the Young frame (i.e., we have two

tableaux), we have a two-dimensional representation.

B. Projection Operators Obtained by the Operator Method

Now that we have established how to create the Young tableaux, we must outline

a method of obtaining the desired projection operators from them. Please note that

some of the following material has been adapted from Pauncz [73]. A simple way

to do this for small n is described as follows. We define an operator A to be the

antisymmetrizer for rows of the Young tableaux:

A ¼
YrowsXn!

i¼1

dP̂Pi; ð27Þ

where d is positive for odd permutations and negative for even permutations.

We also define an operator S to be the symmetrizer for columns of the Young

tableaux:

S ¼
YcolumnsXn!

i¼1

P̂Pi: ð28Þ

The Young operator, or simply the projection operator, is then the product

ŶY ¼ AS.

For example, for the four-electron case mentioned above, we take the first

Young tableau

1 2

3 4

and generate the following operators:

A ¼ f½E � ð12Þ�½E � ð34Þ�g
S ¼ f½E þ ð13Þ�½E þ ð24Þ�g ð29Þ

where we have used E to mean the identity operator. We can then simply build

the projection operator using the rules of multiplication of permutations.

non-born–oppenheimer variational calculations of atoms 391



C. Projection Operators Obtained by the Representation Method

Another method that may be used to generate the projection operator involves the

use a matrix representation of the operator. In particular, we will use the

orthogonal representation. First we must assign a Yamanouchi symbol to each

tableau we have created. This is done by going through the numbers from 1 to n

in each tableau and writing down in which row the number occurs. Thus if we

assign names to the above tableaux:

TðaÞ ¼ 1 2

3 4
and TðbÞ ¼ 1 3

2 4

we have the Yamanouchi symbols: YS½TðaÞ� ¼ 1122 and YS½TðbÞ� ¼ 1212. We

may use these Yamanouchi symbols to order the tableaux. We start with the last

number in the symbol and see which tableau has the highest number. This will

the be first tableau. If two or more Tableaux have the last numbers equal, then we

go to the second to last numbers and use these as the criteria. This procedure is

done recursively until all of the tableaux are assigned numbers. In the case of the

tableaux we are using for examples, we must go the second to last numbers to

find the ordering. Thus we have

T1 ¼ 1 2

3 4
and T2 ¼ 1 3

2 4

Now for each tableaux i, we may define the axial distance between two

adjacent numbers p and p þ 1, di
p;pþ1 (for 1 � p < n) to be the number of boxes

that must be traversed to reach the box containing p þ 1 starting from the box

containing p. The sign assigned to the axial distance will be positive if one had

to go left and down, and negative if one had to go right and up.

Now we may find the matrix representation, U, of the operators. The

dimensions of the matrices will be the same as the dimensions of the irreducible

representation used. The matrix representation of the identity operator, UðÊEÞ,
will of course be the identity matrix. If it is noted that any permutation may be

written as a product of transpositions (permutations of order 2), and any

transposition may be written as a product of elementary transpositions

ð p p þ 1Þ [74], then it is only nessesary to find matrix representations of the

elementary transpositions. The diagonal elements of the elementary transposi-

tion ð p p þ 1Þ are given by

U½ð p p þ 1Þ�ii ¼
�1

di
p;pþ1

¼ Dði; kÞ ð30Þ
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Thus one needs to know all of the i Young tableaux, as well as all of the

axial distances in order to construct the matrix. The off-diagonal element is

given by

U½ð p p þ 1Þ�ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Dði; kÞ2

q
ð31Þ

if the tableaux i and j differ only by the transposition of p and p þ 1. Otherwise

the off-diagonal elements are zero. The nonelementary transpositions may be

obtained from the elementary transpositions with the use of the identity:

ði j þ 1Þ ¼ ð j j þ 1Þði jÞð j j þ 1Þ ð32Þ

For the above tableaux and the associated symmetric group S4, we only need

the matrices U½ð12Þ�;U½ð23Þ�, and U½ð34Þ�. Thus for the two tableaux, we have

only six axial distances: d1
ð12Þ ¼ �1; d1

ð23Þ ¼ 2; d1
ð34Þ ¼ �1; d2

ð12Þ ¼ 1; d2
ð23Þ ¼ �2,

and d2
ð34Þ ¼ 1. Using these, one can find all of the representation matrices.

In the operator method described above, one may obtain a projection

operator for each tableaux, so in the representation method, the same must be

true. The projection operators are thus

ŶYpp ¼
Xn!

i¼1

U½P̂Pi�ppP̂Pi ð33Þ

where the sum is over the permutations, and 1 � p � dimension of the

representation.

D. Decomposition of Sn in Cosets of Sn�1

The process of obtaining all of the representation matrices can become quite

tedious as n increases, since the number of permutations increases as n!. This

may be simplified by the decomposition of larger groups in cosets of smaller

groups.

If we have a group, G of order jgj, and a subgroup, H of order jhj, where

jhj < jgj, there is some set of elements gi such that gi 2 G, but gi =2H. For the

elements of H, hj, it can be shown that pk ¼ gi � hj is not an element of H. Thus

if we chose some gi and multiply it by all of the elements of H, giH, this

generates another subgroup, H0 of order jhj, whose elements h
0

j are not in H. If

all of the elements of G are used up in H and H0—that is, if jgj = 2 jhj—then we

are done. If, for example, jgj/jhj = 3, then we can choose some other element gk,

where gk =2H and gk =2H0 and form another subgroup gkH ¼ H00. We may

continue this procedure until all of the elements of G are used up.
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These subgroups of G generated by multiplication of some element of G by

the subgroup H are called cosets of H in G. If the multiplication is carried out

on the left, they are called left cosets, and vice versa for right multiplication.

If we wanted to generate the representation matrices of S4, we would find the

three elementary transpositions and the identity and then generate the other

20 matrices. On the other hand, we could find the representations of the group

S2 in S4. This consists of two matrices, U½ðEÞ� and U½ð12Þ�. We could then use

U½ð23Þ� and U½ð13Þ� to generate all of the six elements in S3. We could then use

U½ð34Þ�;U½ð14Þ�; and U½ð24Þ� to generate the rest of S4. While this may seem at

first more time-consuming, it is much more easily automated than the brute

force approach.

E. Effects of Permutations on Basis Functions

The permutations discussed above act on the particle coordinates. In a less

symbolic, more mathematical footing, we can consider the permutations as

transformation matrices, P̂P, which act on the coordinate vector, R, turning them

into the permuted coordinates. For example, if we consider the Hþ
2 molecule with

the coordinate vector

R ¼
RH1

RH2

Re1

0
@

1
A ð34Þ

then the transformation matrix permuting the two protons would be

P̂P ¼
0 1 0

1 0 0

0 0 1

0
@

1
A	 I3 ð35Þ

so that we have

P̂PR ¼
RH2

RH1

Re1

0
@

1
A ð36Þ

Other permutations are done in a similar manner. When a transformation to the

center of mass (T̂T) is performed, this also affects the permutations: �PP ¼ T̂T�1P̂PT̂T .

After this transformation, the new permutation acts on r: P̂PR ¼ �PPr. From now on

we will refer to all permutations as P̂P, and center-of-mass transformation will

have to be inferred from the context.
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These permutations on coordinates are equivalent to operations on the basis

functions. We will use shifted spherical Gaussians for this example (these

functions will be discussed in a detailed way below in this chapter):

Pg ¼ expf�ðPR � sÞ0�AAðPR � sÞg
¼ expf�ðPR � PP�1sÞ0�AAðPR � PP�1sÞg
¼ expf�½PðR � P�1sÞ�0�AAPðR � P�1sÞg
¼ expf�ðR � P�1sÞ0P0�AAPðR � P�1sÞg ð37Þ

Here we dropped the hat on the P for convenience. So in general we need not

only the permutations, but also their inverses. The inverses are easy to obtain,

however.

In the case of transpositions, such as that described above, it is obvious that

P ¼ P�1 ¼ P0. Also, for products of transpositions, Pa and Pb, where

½Pa;Pb� ¼ 0, we also have P ¼ P�1. Furthermore, still for transpositions,
�PP ¼ �PP�1, since

PP ¼ 1

PTT�1P ¼ 1

T�1PTT�1PT ¼ T�1T

�PP�PP ¼ 1 ð38Þ

and thus �PP ¼ �PP�1.

Going from transpositions to permutations of higher order, we make use of

the fact that any permutation of order n may be written as a product of n � 1

transpositions. For the permutation of order 3, we have P ¼ PaPb where Pa and

Pb are transpositions that do not necessarily commute. We find the inverse

easily:

P ¼ PaPb

P�1 ¼ ðPaPbÞ�1

P�1 ¼ P�1
b P�1

a

but since Pa and Pb are transpositions,

P�1 ¼ PbPa

P�1 ¼ P0
bP0

a

P�1 ¼ P0 ð39Þ

The same can be shown to be true for higher-order permutations as well.
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IV. ATOMIC NON-BO CALCULATIONS

The symmetry requirements and the need to very effectively describe the

correlation effects have been the main motivations that have turned our attention

to explicitly correlated Gaussian functions as the choice for the basis set in the

atomic and molecular non-BO calculations. These functions have been used

previously in Born–Oppenheimer calculations to describe the electron correla-

tion in molecular systems using the perturbation theory approach [35–42]. While

in those calculations, Gaussian pair functions (geminals), each dependent only

on a single interelectron distance in the exponential factor, expð�br2
ijÞ, were

used, in the non-BO calculations each basis function needs to depend on

distances between all pairs of particles forming the system.

In our non-BO calculations performed so far, we have considered atomic

systems with only s-electrons and molecular systems with only s-electrons. The

atomic non-BO calculations are much less complicated than the molecular

calculations. After separation of the center-of-mass motion from the Hamiltonian

and placing the atom nucleus in the center of the coordinate system, the internal

Hamiltonian describes the motion of light pseudoelectrons in the central field on

a positive charge (the charge of the nucleus) located in the origin of the internal

coordinate system. Thus the basis functions in this case have to be able to

accurately describe only the electronic correlation effect and the spherically

symmetric distribution of the electrons around the central positive charge.

In our atomic calculations, the s-type explicitly correlated Gaussian functions

have the following form:

fk ¼ exp �r0ðAk 	 I3Þr½ � ð40Þ

The above function is a one-center correlated Gaussian with exponential

coefficients forming the symmetric matrix Ak. fk are rotationally invariant

functions as required by the symmetry of the problem—that is, invariant with

respect to any orthogonal transformation. To show the invariance, let U be any

3 � 3 orthogonal matrix (any proper or improper rotation in 3-space) that is

applied to rotate the r vector in the 3–D space. Prove the invariance:

In 	 Uð Þrð Þ0ðAk 	 I3Þ In 	 Uð Þr ¼ r0 In 	 U0ð ÞðAk 	 I3Þ In 	 Uð Þr ð41Þ
¼ r0ðAk 	 U0UÞr ð42Þ
¼ r0ðAk 	 I3Þr ð43Þ

The n-particle one-center correlated Gaussians, fk, can also be expressed in

the more conventional form used in the electronic structure calculations as

fk ¼ exp �a1kr2
1 � a2kr2

2 � � � � � ankr2
n

�
�b12;kr2

12 � b13;kr2
13 � � � � � bnn�1;kr2

nn�1

�
ð44Þ
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In this form, the n-particle correlated Gaussian is a product of n orbital Gaussians

centered at the origin of the coordinate system and nðn � 1Þ=2 Gaussian pair

functions (geminals).

To describe bound stationary states of the system, the fk’s have to be square-

normalizable functions. The square-integrability of these functions may be

achieved using the following general form of an n-particle correlated Gaussian

with the negative exponential of a positive definite quadratic form in 3n

variables:

fk ¼ exp �r0 LkL0
k 	 I3

� �
r

� �
ð45Þ

Here r is a 3n � 1 vector of Cartesian coordinates for the n pseudoelectrons, and

Lk is an n � n lower triangular matrix of rank n whose elements may vary in the

range ½�1;1�.
As mentioned, most calculations we have done so far have concerned

molecular systems. However, prior to development of the non-BO method for

the diatomic systems, we performed some very accurate non-BO calculations of

the electron affinities of H, D, and T [43]. The difference in the electron

affinities of the three systems is a purely nonadiabatic effect resulting from

different reduce masses of the pseudoelectron. The pseudoelectrons are the

heaviest in the T/T� system and the lightest in the H/H� system. The calculated

results and their comparison with the experimental results of Lineberger and co-

workers [44] are shown in Table I. The calculated results include the relativistic,

relativistic recoil, Lamb shift, and finite nuclear size corrections labeled �Ecorr

calculated by Drake [45]. The agreement with the experiment for H and D is

excellent. The 3.7-cm�1 increase of the electron affinity in going from H to D is

very well reproduced by the calculations. No experimental EA value is available

for T.

TABLE I

Electron Affinity of Hydrogen, Deuterium, and Tritium Atoms Obtained with 300 Explicitly

Correlated Gaussian Functionsa

Hydrogen Deuterium Tritium

EH � EH� 6083:4058 cm�1 6087:0201 cm�1 6088:2233 cm�1

�Ecorr
b 0:307505 cm�1 0:307589 cm�1 0:307616 cm�1

EA 6083:0983 cm�1 6086:7126 cm�1 6087:9157 cm�1

Lykke et al. (experiment)c 6082:99 � 0:15 cm�1 6086:2 � 0:6 cm�1

aThe term �Ecorr contains relativistic, relativistic recoil, Lamb shift, and finite nuclear size

corrections [43].
bReference 45.
cReference 44.
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The H/H�, D/D�, and T/T� calculations were done using the variational

method and 300 Gaussian functions per system. While these many functions

ensure adequate convergence of the calculation for small atoms, it is usually far

from adequate for even the smallest diatomic molecules. Later in this chapter,

we will show calculations for HDþ and H2 systems where 2000 and even more

basis functions were required.

V. DIATOMIC NON-BO CALCULATIONS

A. Correlated Gaussian Basis Set

The general form of an n-pseudoparticle correlated Gaussian function is given by

fk ¼ exp �r0Akr½ � ð46Þ

Here, r is a n � 1 vector of Cartesian coordinates of pseudoparticles, such that

r0 � ðr01; r02; . . . ; r0nÞ ð47Þ

and Ak is a symmetric n � n matrix of nonlinear variational parameters,

Ak �

ðAkÞ1;1 ðAkÞ1;2 � � � ðAkÞ1;n

ðAkÞ2;1 ðAkÞ2;2 � � � ðAkÞ2;n

..

. ..
. . .

. ..
.

ðAkÞn;1 ðAkÞn;2 � � � ðAkÞn;n

0
BBB@

1
CCCA

Effectively, vector r has 3 � n � 1 components since each ri in (47) is itself a

three-dimensional vector. Technically speaking, in place of Ak in (46), one

should write the Kronecker product Ak 	 I3 with I3 being the 3 � 3 identity

matrix. However, to simplify notations and avoid writing routinely this obvious

Kronecker product, below in this section we will be using the following

convention for matrix–vector multiplications involving such vectors:

r0Akr ¼ ðr01; r02; . . . ; r0nÞ

ðAkÞ1;1r1 þ ðAkÞ1;2r2 þ � � � þ ðAkÞ1;nrn

ðAkÞ2;1r1 þ ðAkÞ2;2r2 þ � � � þ ðAkÞ2;nrn

..

.

ðAkÞn;1r1 þ ðAkÞn;2r2 þ � � � þ ðAkÞn;nrn

0
BBBBB@

1
CCCCCA

¼ ðAkÞ1;1r01r1 þ ðAkÞ1;2r01r2 þ � � � þ ðAkÞn;nr0nrn

where r0irj ¼ xixj þ yiyj þ zizj. Thus, we first carry out all matrix–vector

multiplications treating ri as numbers and then, at the end, we replace each
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product rirj with a dot product. In other words, everywhere a product of two

quantities denoting three-dimensional vectors appears, it should be considered as

a dot product if no special notice is made.

A set of nonlinear parameters Ak, in general case, is unique for each function

fk. To satisfy the requirement of square integrability of the wave function, each

matrix Ak must be positively defined. It imposes certain restrictions on the

values that the elements of matrix Ak may take. To ensure the positive

definiteness and to simplify some calclations, it is very convenient to represent

matrix Ak in a Cholesky factored form,

Ak ¼ LkL0
k ð48Þ

where the elements of lower triangular matrix Lk may take any real values.

Functions (46) have been succesfully used in numerous quantum-mechanical

variational calculations of atomic and exotic systems where there is, at most,

one particle (nuclei), which is substantially heavier than other constituents.

However, as is well known, simple correlated Gaussian functions centered at the

origin cannot provide a satisfactory convergence rate for nearly adiabatic

systems, such as molecules, containing two or more heavy particles. In the

diatomic case, which we we will mainly be concerned with in this section, one may

introduce in basis functions (46) additional factors of powers of the internuclear

distance. Such factors shift the peaks of Gaussians to some distance from the

origin. This allows us to adequately describe the localization of nuclei around

their equilibrium position.

If we label the two heavy particles as one and two, then the distance between

these particles is given by r1 ¼ jR1 � R2j and the basis functions have the

following form:

jk ¼ rmk

1 exp �r0Akr½ � ð49Þ

rmk

1 can be conveniently written as the square root of a quadratic form in r using

the matrix J11, which is defined as an n � n matrix with 1 in the 1; 1 position and

with 0’s elsewhere:

rm
1 ¼ r0J11r½ �m=2 ð50Þ

Similarly, any preudoparticle coordinate ri or interpseudoparticle distance rij can

be represented as

rij ¼ r0Jijr
� �1=2 ð51Þ

Jij ¼
Eii if i ¼ j

Eii þ Ejj � Eij � Eji if i 6¼ j

�
ð52Þ

where Eij is a matrix with a 1 in the i; jth position and with 0’s elsewhere.
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B. Implementation of the Permutational Symmetry

Permutations of real particles induce transformations on internal coordinates. Let

P be a permutation of real particles; then P transforms basis functions (49) as

Pjk ¼ rmk

1 exp �r0 t0PAktP

� �
r

� �
ð53Þ

Here, the n � n matrix tP is not an elementary permutation matrix. In case when

P is a transposition corresponding to the interchange of 1st and jth particle

(P � P1j), the matrix tP1j
is the identitity matrix with all elements in ð j � 1Þth

column replaced with �1. If P is a transposition corresponding to the interchange

of ith and jth particle (i 6¼ 1 and i 6¼ 1), then tPij
is the identity matrix whose

ði � 1Þ; ði � 1Þth and ð j � 1Þ; ð j � 1Þth elements are replaced with 0’s and

ði � 1Þ; ð j � 1Þth and ð j � 1Þ; ði � 1Þth elements are 1’s. All transformation

matrices tP for permutations that are not transpositions can be represented as

products of tP corresponding to a certain sequence of transpositions. The latter is

due to the fact that any permutation can be represented as a product of certain

transpositions.

Note that the factor rmk

1 is invariant under any permutation on systems of

particles for which jk is a valid basis.

A symmetry projector, P, for an irreducible representation of the

permutational symmetry group of a system is given by

P ¼
X

P

wPP 7!
X

P

wPtP ð54Þ

Hence, P acts on jk as

Pjk ¼
X

P

wP rmk

1 exp �r0 t0PAktP

� �
r

� �
ð55Þ

The coefficients wP are from the matrix elements of the irreducible representation

for the desired state.

Computational effort for computing matrix elements with symmetry-

projected basis functions can be reduced by a factor equal to the order of the

group by exploiting commutation of the symmetry projectors with the

Hamiltonian and identity operators. In general,

Pjkh jH Pjlj i ¼ jkh jH PyPjl

�� �
ð56Þ

Thus, symmetry projection need only be performed on the ket. Typically,

projection operators are Hermitian and essentially idempotent: PyP / P in any

case, and we will simply write P for ket projector.
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The matrix elements needed in calculations are of the form

Okl ¼ jkh jO Pjlj i ¼
X

P

wP rmk

1 exp �r0Akr½ �
� ��O rml

1 exp �r0 t0PAltP

� �
r

� ��� �

where O is some operator that commutes with all the permutations from the

symmetry group of the system under consideration. We will not write the

summation over terms in the symmetry projector in the formulas that follow

and simply note that these terms are accounted for by making the following

substitution in the integral formulae:

Al 7! t0PAltP ¼ t0PLl t0PLl

� �0 ð57Þ

No other modification to the integral formulae need be made.

C. Integrals and Energy Derivatives

The evaluation of matrix elements for explicitly correlated Gaussians (46) and

(49) can be done in a very elegant and relatively simple way using matrix

differential calculus. A systematic description of this very powerful mathema-

tical tool is given in the book by Magnus and Neudecker [105]. The use of matrix

differential calculus allows one to obtain compact expressions for matrix

elements in the matrix form, which is very suitable for numerical computations

[116, 118] and perhaps facilitates a new theoretical insight. The present section is

written in the spirit of Refs. 116 and 118, following most of the notation

conventions therein. Thus, the reader can look for information about some basic

ideas presented in these references if needed.

1. Some Notations

The vec operator transforms a matrix into a vector by stacking the columns of

the matrix one underneath the other. Let B be an m � n matrix and let bj be its jth

column; then vec B is the mn � 1 vector

vec B ¼

b1

b2

..

.

bn

2
6664

3
7775 ð58Þ

An operator similar to vec is the vech, ‘‘vector half,’’ operator. Let B be a square

n � n matrix . Then vech B is the n n þ 1ð Þ=2 � 1 vector obtained by stacking the
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lower triangular elements of B. For example, if n ¼ 3, then

vech B ¼

B11

B21

B31

B22

B32

B33

2
6666664

3
7777775

ð59Þ

For symmetric B, vech B contains the independent elements of B.

Other notation used: diag B is the diagonal n � n matrix consisting of the

diagonal elements of the square matrix B. The trace of B is denoted tr B, and the

determinant of B is denoted jBj. The Kronecker product of two matrices is

denoted by symbol 	. Other notation will be introduced as needed.

2. Overlap Matrix Elements

The following well-known integral is used in the derivations below:ð1
�1

exp½�x0Ax þ b0x�dx1dx2 . . . dxn ¼ pn=2

jAj1=2
exp

1

4
b0A�1b

� �
ð60Þ

Here, A is a positive definite n � n matrix, A�1 is the inverse of A, b is n � 1

vector, and x is an n � 1 vector variable.

The overlap of simple Gaussians (46) follows directly from (60). If

Akl ¼ Ak þ Al,

fkjflh i ¼ p3n=2

jAklj3=2
ð61Þ

For further derivations we will need the matrix element of the Dirac delta

function, dðrij � nÞ. Using the following representation of the delta function,

dðrij � nÞ ¼ lim
a!1

a
p

 !3=2

exp �aðrij � nÞ2
h i

we can obtain

fk dðrij�nÞ
�� ��fl

� �
¼ lim

a!1

a3=2

p3=2
fk exp �ar2

ij þ2arijn�ax2
h i��� ���fl

D E

¼ lim
a!1

a3=2

p3=2
fk exp �ar0Jijrþ2að j0ir� j0jrÞn�ax2

h i��� ���fl

D E

¼ lim
a!1

a3=2

p3=2

p3n=2

jAkl þaJijj3=2
exp a2x2ð j0i� j0jÞðAklþaJijÞ�1ð ji� jjÞ�ax2
h i

ð62Þ
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In the second line we introduced an n � 1 vector ji whose ith component is 1 and

all others are zeros. Since Jij is a rank 1 matrix, we can rewrite the determinant in

the last formula in the following form:

jAkl þ aJijj ¼ jAkljjI þ aA�1
kl Jijj ¼ jAkljð1 þ atr½A�1

kl Jij�Þ

where I is n � n identity matrix. Because the limit of the preexponential part of

(62) is a finite number, the limit of the exponent must be �bx2, with b being

some finite number:

fk dðrij � nÞ
�� ��fl

� �
¼ p3ðn�1Þ=2

jAklj3=2

1

tr½A�1
kl Jij�3=2

exp½�bx2�

¼ fkjflh i 1

p3=2

1

tr½A�1
kl Jij�3=2

exp½�bx2� ð63Þ

Using the normalization condition,

ð
fk dðrij � nÞ
�� ��fl

� �
dn ¼ fkjflh i

We can easily see that b ¼ tr½A�1
kl Jij��1

. Thus,

fk dðrij � nÞ
�� ��fl

� �
¼ fkjflh i 1

p3=2

1

tr½A�1
kl Jij�3=2

exp � x2

tr½A�1
kl Jij�

� �
ð64Þ

The last relationship allows one to evaluate the matrix element of an arbitrary

function f ðrijÞ, which depends on a single pseudoparticle coordinate or a single

interpseudoparticle coordinate,

fk f ðrijÞ
�� ��fl

� �
¼
ð

f ðrijÞ fk dðrij � nÞ
�� ��fl

� �
dn

¼ fkjflh i 1

p3=2

ð
f

n

tr½A�1
kl Jij�1=2

 !
e�x2

dn ð65Þ

In the most important case, when f depends only on the absolute value of the

interpseudoparticle distance, this formula becomes

fk f ðrijÞ
�� ��fl

� �
¼ fkjflh i 4ffiffiffi

p
p
ð1

0

f tr½A�1
kl Jij�1=2x

 !
x2e�x2

dx ð66Þ
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Having this general expression we now can obtain the overlap matrix

element for basis functions with premultipliers (49):

jkjjlh i ¼ fk rmkþml

1

�� ��fl

� �
¼ 2ffiffiffi

p
p �

mkl þ 3

2

� 	
tr½A�1

kl J11�mkl=2 fkjflh i

¼ 2ffiffiffi
p

p �
mkl þ 3

2

� 	
ðA�1

kl Þ
mkl=2
11 fkjflh i ð67Þ

Here, �ðxÞ is the Euler gamma function and mkl ¼ mk þ ml.

In real calculations, it is advisable to use normalized basis functions in order

to avoid problems with numerical instabilities. Therefore, the overlap matrix

elements, Skl, are defined using normalized basis functions. After simplification,

we obtain

Skl ¼
jkjjlh i

jkjjkh i jljjlh ið Þ1=2

¼ g1ðmk;mlÞ23n=2 ðA�1
kl Þ11

ðA�1
k Þ11

� 	mk ðA�1
kl Þ11

ðA�1
l Þ11

� 	ml jjLkjj jjLkjj
jAklj

� 	3
" #1=2

ð68Þ

where jjLkjj denotes the absolute value of the determinant of the Cholesky factor

of Ak, and

g1ðmk;mlÞ ¼ 2
mkl

2
� mklþ3

2

� �
� mk þ 3

2

� �
� ml þ 3

2

� �� �1=2
ð69Þ

is a constant that can be precomputed for a range of mk and ml values to speed up

matrix element calculations.

3. Kinetic Energy Matrix Elements

To evaluate the integral

jk �r0
rMrr

�� ��jl

� �
¼ r0

rrmk

1 fk Mj jrrrml

1 fl

� �
a few preliminary results will be needed. Recalling (50), we first evaluate the

gradient of jk with respect to vector r:

rrfk ¼ �2fkAkr

rrjk ¼ rr r0J11r½ �mk=2fk ¼ r0J11r½ �mk=2fk

mk

r2
1

J11r � 2Akr

� 	
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Hence,

jk �r0
rMrr

�� ��jl

� �
¼ fk r0J11r½ �mk=2 mk

r2
1

J11r � 2Akr

� 	
M r0J11r½ �ml=2 ml

r2
1

J11r � 2Alr

� 	����
����fl

( )

¼ fk r0J11r½ �mkl=2 mkml

r4
1

r0J11MJ11r

����
����fl

( )
� 2 fk r0J11r½ �mkl=2 mk

r2
1

r0J11MAlr

����
����fl

( )

� 2 fk r0J11r½ �mkl=2 ml

r2
1

r0AkMJ11r

����
����fl

( )
þ 4 fk r0J11r½ �mkl=2

r0AkMAlr
��� ���fl

D E

Making use of the fact that for an arbitrary matrix B,

r0Br ¼ tr½Brr0� ¼ ðvec B0Þ0vecðrr0Þ

and replacing r0J11MJ11r with r2
1M11, we now have

jk �r0
rMrr

�� ��jl

� �
¼ mkmlM11 jk

1

r2
1

����
����jl

( )
� 2mkðvecðAl MJ11ÞÞ0 jk

vecðrr0Þ
r2

1

����
����jl

( )

� 2mlðvecðJ11MAkÞÞ0 jk

vecðrr0Þ
r2

1

����
����jl

( )
þ 4ðvecðAlMAkÞÞ0 jk vecðrr0Þj jjlh i

¼ mkmlM11 jk

1

r2
1

����
����jl

( )
þ 2mkðvecðAlMJ11ÞÞ0

q
qvecAkl

jk

1

r2
1

����
����jl

( )

þ 2mlðvecðJ11MAkÞÞ0
q

qvecAkl

jk

1

r2
1

����
����jl

( )
� 4ðvecðAlMAkÞÞ0

q
qvecAkl

jkjjlh i

In the last formula we used the relation jk vecðrr0Þj jjlh i ¼ � q
qvecAkl

jkjjlh i.
The gradient of the overlap with respect to ðvecAklÞ0 is

q

qðvecAklÞ0
jkjjlh i¼2pð3n�1Þ=2�

mklþ3

2

� 	

� tr½A�1
kl J11�mkl=2 q

qðvecAklÞ0
1

jAklj3=2
þ 1

jAklj3=2

q

qðvecAklÞ0
tr½A�1

kl J11�mkl=2

( )
ð70Þ

It is known from matrix differential calculus that for a matrix variable X and

a constant matrix C the following is true:

djXj ¼ jXjtr½X�1dX� ¼ jXjðvecðX�1Þ0Þ0dvecðXÞ
qjXj

qðvecXÞ0
¼ jXjðvecðX�1Þ0Þ0
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and

dtr½CX�1� ¼ ðvecC0Þ0vecðX�1Þ ¼ ðvecC0Þ0 �ðX0Þ�1 	 X�1
h i

dvecX;

qtr½CX�1�
qvecðXÞ0

¼ �ðvecC0Þ0 ðX0Þ�1 	 X�1
h i

Applying these differentiation rules to the expression (70), one obtains

q

qðvecAklÞ0
jkjjlh i¼ jkjjlh i �3

2
ðvecðA�1

kl ÞÞ
0 �mkl

2

1

tr½A�1
kl J11�

ðvecJ11Þ0 A�1
kl 	A�1

kl

� �� ,

or

q
qvecAkl

jkjjlh i ¼ jkjjlh i � 3

2
vecðA�1

kl Þ �
mkl

2

1

ðA�1
kl Þ11

A�1
kl 	 A�1

kl

� �
vecJ11

� ,

Hence, the matrix elements appearing in the kinetic energy are

jk

1

r2
1

����
����jl

( )
¼ 2

mkl þ 1

1

ðA�1
kl Þ11

jkjjlh i

q
qvecAkl

jkjjlh i ¼ � 3

2
vecðA�1

kl Þ �
mkl

2

1

ðA�1
kl Þ11

vecðA�1
kl J11A�1

kl Þ
� ,

jkjjlh i

q
qvecAkl

jk

1

r2
1

����
����jl

( )
¼ � 3

2
vecðA�1

kl Þ �
mkl � 2

2

1

ðA�1
kl Þ11

vecðA�1
kl J11A�1

kl Þ
� ,

� 2

mkl þ 1

jkjjlh i
ðA�1

kl Þ11

where we used the fact that X0 	 Y½ �vecðZÞ ¼ vecðYZXÞ. The kinetic energy

matrix element is then

jk �r0
rMrr

�� ��jl

� �
¼ mkmlM11

2

mkl þ 1

1

ðA�1
kl Þ11

jkjjlh i

� mkðvecðAlMJ11ÞÞ0 3vecðA�1
kl Þ þ

mkl � 2

ðA�1
kl Þ11

vecðA�1
kl J11A�1

kl Þ
� ,

2

mkl þ 1

jkjjlh i
ðA�1

kl Þ11

� mlðvecðJ11MAkÞÞ0 3vecðA�1
kl Þ þ

mkl � 2

ðA�1
kl Þ11

vecðA�1
kl J11A�1

kl Þ
� ,

2

mkl þ 1

jkjjlh i
ðA�1

kl Þ11

þ 2ðvecðAlMAkÞÞ0 3vecðA�1
kl Þ þ

mkl

ðA�1
kl Þ11

vecðA�1
kl J11A�1

kl Þ
� ,

jkjjlh i ð71Þ
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After simplification and rearrangement the final expression for the kinetic

energy takes the following form:

Tkl ¼ 6tr½AkMAlA
�1
kl �Skl

þ 2

ðA�1
kl Þ11

mkmlM11

mkl þ 1
� mkðA�1

kl AlMAlA
�1
kl Þ11 � mlðA�1

kl AkMAkA�1
kl Þ11

� �
Skl

ð72Þ

4. Potential Energy Matrix Elements

We will derive the potential energy components by finding the integral

R
ij
kl ¼ 1=rij

� �
. There are two cases, mkl even and mkl odd.

Let us first introduce some simplifying definitions:

a ¼ tr J11A�1
kl

� �
ð73Þ

b ¼ tr JijA
�1
kl

� �
ð74Þ

c ¼ tr J11A�1
kl JijA

�1
kl

� �
ð75Þ

which for implementation purposes can be written as

a ¼ A�1
kl

� �
11

ð76Þ

b ¼
A�1

kl

� �
ii
; i ¼ j

A�1
kl

� �
ii
þ A�1

kl

� �
jj
�2 A�1

kl

� �
ij
; i 6¼ j

(
ð77Þ

and

c ¼
A�1

kl

� �2

1i
; i ¼ j

A�1
kl

� �
1i
� A�1

kl

� �
j1

 !2

; i 6¼ j

8<
: ð78Þ

Let mkl be even. If p ¼ mkl=2 with p ¼ 0; 1; 2; . . . , then

jkh j1=rij jlj i ¼ fkh jr2p
1 =rij flj i ð79Þ

Using an integral transformation for 1=rij,

jkh j1=rij jlj i ¼ 2ffiffiffi
p

p
ð1

0

jkh j exp �v2r0Jijr
� �

jlj idv ð80Þ
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followed by a differential transformation for r
2p
1 and then integration over r, we

have

jkh j1=rij jlj i

¼ 2ffiffiffi
p

p �1ð Þp

ð1
0

fkh j q
p

qu p
exp �ur0J11r½ � exp �v2r0Jijr

� �
flj idv

����
u¼0

¼ 2ffiffiffi
p

p �1ð Þp q p

qu p

ð1
0

ð1
�1

exp �r0 Akl þ uJ11 þ v2Jij

� �
r

� �
dr dv

����
u¼0

¼ 2ffiffiffi
p

p �1ð Þp q p

qu p

ð1
0

p3n=2

Akl þ u J11 þ v2Jij

�� ��3=2
dv

�����
u¼0

¼ 2ffiffiffi
p

p fkh jfli �1ð Þp q p

qu p

ð1
0

1

In þ u J11 A�1
kl þ v2Jij A�1

kl

�� ��3=2
dv

�����
u¼0

ð81Þ

Now, since J11 and Jij are rank-one matrices, we can write the determinant in the

integral above as a polynomial in the traces we defined in Refs. 73–75 and then

integrate over v, yielding

jkh j1=rij jlj i

¼ 2ffiffiffi
p

p fkh jfli �1ð Þp q
p

qup

ð1
0

1

1 þ ua þ v2b þ uv2ðab � cÞð Þ3=2
dv

�����
u¼0

¼ 2ffiffiffi
p

p fkh jfli �1ð Þp q
p

qup

1

1 þ auð Þ b þ uðab � cÞð Þ1=2

�����
u¼0

ð82Þ

Then, differentiating p times with respect to u, setting u to zero, and

simplifying gives the final result,

R
ij
kl ¼ Skl

g2 pð Þffiffiffi
b

p
Xp

q¼0

g3 qð Þ 1 � c

ab

 !q

ð83Þ

where

g2 pð Þ ¼ � p þ 1ð Þ
� p þ 3=2ð Þ ð84Þ

and

g3 qð Þ ¼ � q þ 1=2ð Þ
� q þ 1ð Þ� 1=2ð Þ ð85Þ
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The case when mkl is odd involves an additional integral transformation,

which unfortunately makes these terms somewhat more complicated. The

integral evaluation is similar to that for the even case and proceeds as follows.

Let ðmkl þ 1Þ=2 ¼ p with p ¼ 1; 2; 3; . . . , then

jkh j1=rij jlj i ¼ fkh jr2p�1
1 =rij flj i ¼ fk

r
2p
1

r1rij

�����
�����fl

* +
ð86Þ

Making transformations as for the even case, but with the addition of an extra

integral transformation for 1=r1, we obtain

jkh j1=rij jlj i

¼ 2ffiffiffi
p

p
� 	2

�1ð Þp

ð1
0

ð1
0

fkh j q
p

qup
exp �ur0J11r½ �exp �w2r0J11r

� �
exp �v2r0Jijr
� �

flj idwdv
��
u¼0

¼ 4

p
�1ð Þp q

p

qup

ð1
0

ð1
0

ð1
�1

exp �r0 Akl þuJ11þw2J11þv2Jij

� �
r

� �
dr dw dv

��
u¼0

¼ 4

p
fkh jfli �1ð Þp q

p

qup

ð1
0

ð1
0

1

Inþ uþw2ð ÞJ11A�1
kl þv2JijA

�
kl1

�� ��3=2
dw dv

�����
u¼0

ð87Þ

Again, reducing the determinant to a polynomial in traces and integrating gives

jkh j1=rij jlj i

¼ 4

p
fkh jfli �1ð Þp q

p

qup

ð1
0

ð1
0

1

1 þ u þ w2ð Þa þ v2b þ uv2 ab � cð Þð Þ3=2
dw dv

�����
u¼0

¼ 4

p
fkh jfli �1ð Þp q

p

qup

ð1
0

1

1 þ a u þ w2ð Þð Þ b þ u þ w2ð Þ ab � cð Þð Þ1=2
dw

�����
u¼0

¼ 4

p
fkh jfli �1ð Þp q

p

qup

1

c 1 þ auð Þð Þ1=2
arcsin

c

a b þ u ab � cð Þð Þ

� 	1=2
" #�����

u¼0

ð88Þ

Differentiating and simplifying gives the final result for odd mk values:

R
ij
kl ¼

2ffiffiffi
p

p Skl

ffiffiffi
a

p
g3 pð Þ

arcsin
ffiffiffiffi
c

ab

ph i
ffiffiffi
c

p þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ab�c

p
Xp

q¼1

Xq�1

t¼0

1

q
g3 p�qð Þg3 tð Þ 1� c

ab

 !q�t

2
4

3
5

ð89Þ
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The inclusion of the arcsin and the double summation in this formula

unfortunately complicates these odd power terms compared to the even power

case. The implementation of odd powers mk requires significantly more

computer time due to the complexity of this formula. Furthermore, we found

that variation of near optimal mk by plus or minus one had negligeable effect on

energy convergence. Therefore, in our calculations utilizing gradient formulas

for energy optimization, we excluded the odd power case.

5. Some Other Matrix Elements

The matrix elements of r1 and r2
1, which in the case of a diatomic molecule

are the internuclear distance and its square, can easily be obtained using

relationship (66):

jkh jr1 jlj i ¼ fk rmklþ1
1

�� ��fl

� �
¼ fkjflh i 2ffiffiffi

p
p tr J11A�1

kl

� �ðmklþ1Þ=2
�

mkl þ 4

2

� 	

¼ jkjjlh imkl þ 2

2
g2

mkl

2

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�1

kl

� �
11

q
ð90Þ

jkh jr2
1 jlj i ¼ fk rmklþ2

1

�� ��fl

� �
¼ jkjjlh imkl þ 3

2
A�1

kl

� �
11

ð91Þ

The evaluation of the expectation values of other than r1 distances and their

squares can be done by differentiating expressions (83) and (67), respectively.

We will restrict ourselves to the case when mk’s are even, so that p ¼ mkl=2 with

p ¼ 0; 1; 2; . . . . Let us first consider the simpler case of r2
ij:

jkh jr2
ij jlj i ¼ � q

qu
jkh j exp �u r0Jijr

� �
jlj i
����
u¼0

¼ � q
qu

2ffiffiffi
p

p � p þ 3

2

� 	
tr½ðAkl þ uJijÞ�1

J11�p
p3n=2

Akl þ uJij

�� ��3=2

�����
u¼0

ð92Þ

Here, we will need some simple facts from matrix differential calculus. If X

is a matrix variable and b is a parameter that X depends on, then

qjXj
qb

¼ jXjtr X�1 qX

qb

� �
ð93Þ

qtr½X�
qb

¼ tr
qX

qb

� �
ð94Þ

qðX�1Þ
qb

¼ �X�1 qX

qb
X�1 ð95Þ
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Using these formulae, one can show that

q
qu

tr½ðAkl þ uJijÞ�1
J11� ¼ �tr½ðAkl þ uJijÞ�1

JijðAkl þ uJijÞ�1
J11� ð96Þ

and

jkh jr2
ij jlj i ¼ jkjjlh i p

c

a
þ b

 !
ð97Þ

In the same manner for the first power of rij, one obtains

jkh jrij jlj i

¼ � q
qu

fk

exp �ur0Jijr
� �

rij

����
����fl

( )����
u¼0

¼� q
qu

2ffiffiffi
p

p � pþ 3

2

� 	
tr½ðAkl þ uJijÞ�1

J11�p
p3n=2

Akl þ uJij

�� ��3=2

g2 pð Þ
tr½ðAkl þ uJijÞ�1

Jij�1=2

�
Xp

q¼0

g3 qð Þ 1� tr½ðAkl þ uJijÞ�1
JijðAkl þ uJijÞ�1

J11�
tr½ðAkl þ uJijÞ�1

J11�tr½ðAkl þ uJijÞ�1
Jij�

 !q�����
u¼0

¼ jkh j1=rij jlj i �p
c

a
� 3

2
b þ 1

2

c

b
þ 2t

ab
� c2

a2b
� ch

ab2

� 	Xp

q¼1

g3 qð Þ q 1� c

ab

 !q�1

( )

ð98Þ

where

h ¼ tr½A�1
kl JijA

�1
kl Jij�

t ¼ tr½A�1
kl JijA

�1
kl JijA

�1
kl J11�

The last two traces are equal to

h¼
A�1

kl

� �2

ii
; i¼j

A�1
kl

� �
ii
þ A�1

kl

� �
jj
� 2 A�1

kl

� �
ij

h i2

; i 6¼j

8><
>: ð99Þ

t¼

0; i 6¼1 and j 6¼1

A�1
kl

� �
11
� A�1

kl

� �
1j

h i2

A�1
kl

� �
11
þ A�1

kl

� �
jj
�2 A�1

kl

� �
1j

h i
; i¼1 and i 6¼j

A�1
kl

� �3

11
; i¼j¼1

8>>><
>>>:

ð100Þ
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In order to perform calculations of the correlation function of particles 1 and

2 (which is the same quantity as the density of the 1st pseudoparticle, g1ðnÞ)
using basis (49), we need the matrix elements of the delta function, dðr1 � nÞ.
They can be evaluated by replacing Akl ! Akl þ uJ11 in expression (64) and

then differentiating p times with respect to u.

jk dðr1 � nÞj jjlh i

¼ ð�1Þp q p

qu p

p3n=2

jAkl þ uJ11j3=2

1

p3=2

1

tr½ðAkl þ uJ11Þ�1
J11�3=2

� exp � x2

tr½ðAkl þ uJ11Þ�1
J11�

" #�����
u¼0

Applying formula (96) and using the fact that tr½XJiiXJii� ¼ tr½XJii�2 for an

arbitrary matrix X reduces the final result to

jk dðr1 � nÞj jjlh i

¼ jkjjlh i 1

2p
1

� p þ 3
2

� � 1

ðA�1
kl Þ

3=2
11

x2

ðA�1
kl Þ11

� 	p

exp � x2

ðA�1
kl Þ11

� �
ð101Þ

The matrix elements of dðrijÞ can be easily obtained by straightforward

integration. The procedure is very similar to the evaluation of the overlap

integral and yields

jk dðrijÞ
�� ��jl

� �
¼ 2ffiffiffi

p
p � p þ 3

2

� 	
ðD�1

kl Þ
p
11

p3ðn�1Þ=2

Dklj j3=2

¼ jkjjlh i 1

p3=2

Aklj j
Dklj j

� 	3=2 ðD�1
kl Þ11

ðA�1
kl Þ11

� 	p

ð102Þ

where Dkl is an ðn � 1Þ � ðn � 1Þ matrix formed from Akl by adding the jth row

to the ith one, then adding and jth column to the ith column, and then crossing out

the jth column and row.

6. Energy Gradient

The integral formulas above are sufficient for performing energy calculations and

evaluating some expectation values. However, optimization of the many non-

linear parameters contained in the exponent matrices Lk demands excessive

computational resources if an approximate numerical energy gradient is used.

Several orders of magnitude of computational effort can be saved by utilizing

analytic gradients. Additionally, more thorough optimization can be achieved
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due to increased accuracy of analytic gradients compared with numerical

approximations. We feel that analytic gradient formulas are essential in many

practical situations. To this end, the energy gradient formulas are now presented.

We begin with the derivative of the secular equation with respect to energy

eigenvalues. For some background on matrix differential calculus, see the

Refs. 116 and 117.

The secular equation,

H � ESð Þc ¼ 0 ð103Þ

defines the energy E as an implicit function of the N � N matrices H and S, where

N is the number of basis functions. H and S are themselves functions of the

Nn n þ 1ð Þ=2 � 1 vector L ¼ vech L1ð Þ0; � � � ; vech LNð Þ0
� �

of nonlinear expo-

nential parameters contained in the matrices Lk; recall that Ak ¼ LkL0
k. The

energy gradient with respect to L is then

g ¼ rLE ¼
1

c0Sc

qvech H

qL0 � E
qvech S

qL0

� 	0
vech 2cc0 � diag cc0½ �ð Þ ð104Þ

The matrix qvech H=qL0 � E qvech S=qL0ð Þ ¼ qvech H � ESð Þ=qL0 in the

gradient above is sparse and has dimension N N þ 1ð Þ=2 � Nn n þ 1ð Þ=2. This

sparse matrix together with the eigenvector c can be collapsed to a dense

partitioned form with dimension N � Nn n þ 1ð Þ=2,

G ¼

c2
1
q H�ESð Þ11

q vech L1ð Þ0 2c1c2
q H�ESð Þ12

q vech L2ð Þ0 � � � 2c1cN
q H�ESð Þ1N

q vech LNð Þ0

2c2c1
q H�ESð Þ21

q vech L1ð Þ0 c2
2
q H�ESð Þ22

q vech L2ð Þ0 � � � 2c2cN
q H�ESð Þ2N

q vech LNð Þ0

..

. ..
. . .

. ..
.

2cNc1
q H�ESð ÞN1

q vech L1ð Þ0 2cNc2
q H�ESð ÞN2

q vech L2ð Þ0 � � � c2
N

q H�ESð ÞNN

q vech LNð Þ0

0
BBBBBBB@

1
CCCCCCCA

ð105Þ

With G defined as above, the gradient can be computed by summing over the

rows of G. That is

gi ¼
1

c0Sc

X
j

Gji

The nonzero terms in the matrices qvech H=qa0 and qvech S=qa0 are

contained in the 1 � n n þ 1ð Þ=2 vectors qHkl=q vech Lkð Þ0 and q Skl=q vech Lkð Þ0
and also in qHkl=q vech Llð Þ0 and qSkl=q vech Llð Þ0. Matrix derivatives depend on

the arrangement of elements in a matrix variable; therefore, since symmetry
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projection on kets effectively reorders elements of the exponent matrix Ll, the

formulas for derivatives with respect to the exponent matrices in the ket,

vech Ll½ �, are different from those with respect to the exponent matrices in the

bra; vech Lk½ �. We assume that under particle permutations, Al transforms as

t0PAltP ¼ t0PLlL
0
ltP ¼ t0PLl t0PLl

� �0
where tP are some transformation matrices. Also, the matrix derivatives for the

diagonal blocks of G are complicated somewhat by the symmetry projection on

the kets. However, they can be computed using the following relationship, for

example:

qHkk

q vech Lkð Þ0
¼ qHkl

q vech Lkð Þ0
����
l¼k

þ qHkl

q vech Llð Þ0
����
l¼k

ð106Þ

Thus, only two sets of formulas for the derivatives need be computed.

Matrix elements are scalar-valued matrix functions of the exponent matrices

Lk. Therefore, the appropriate mathematical tool for finding derivatives is the

matrix differential calculus [116, 118]. Using this, the derivations are nontrivial

but straightforward. We will only present the final results of the derivations. The

reader wishing to derive these formulas, or other matrix derivatives, is referred

to the Ref. 116 and references therein.

We want to note that only one term in the symmetry projection will be

represented. As was the case for the integral formulas, the symmetry terms

require the substitution Al 7!t0PAltP ¼ t0PLl t0PLl

� �0
or, more generally, Ll 7!t0PLl.

This is required for derivatives with respect to both vech Lk½ � and vech Ll½ �. The

derivatives with respect to vech Ll½ � will require further modification, and this

will be noted in the formulas below.

Using the normalized overlap formula, Eq. (68), the derivative with respect

to the nonzero terms of the lower triangular matrix Lk is

qSkl

q vech Lkð Þ0
¼ 3

2
Skl vech L�1

k

� �0�2A�1
kl Lk

h i0
þ Skl

mk

A�1
k

� �
11

vech A�1
k J11A�1

k Lk

� �0
� Skl

mkl

A�1
kl

� �
11

vech A�1
kl J11A�1

kl Lk

� �0 ð107Þ

For the derivative, with respect to the elements vech Ll, we account for the

symmetry terms by making a multiplication by tP in addition to the substitutions
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described above. Thus,

qSkl

q vech Llð Þ0
¼ 3

2
Skl vech tP L�1

l

� �0�2tPA�1
kl Ll

h i0
þ Skl

ml

A�1
l

� �
11

vech tPA�1
l J11A�1

l Ll

� �0
� Skl

mkl

A�1
kl

� �
11

vech tPA�1
kl J11A�1

kl Ll

� �0 ð108Þ

The kinetic energy gradient components are obtained by differentiating

Eq. (72) with respect to vech Lk and vech Ll:

qTkl

q vech Lkð Þ0

¼ qSkl

q vech Lkð Þ0
Tkl

Skl

þ 2Skl

�
6 vech A�1

kl AlMAlA
�1
kl Lk

� �0
þ 2 A�1

kl

� ��2

11

mkmlM11

mkl þ 1
�mk A�1

kl AlM AlA
�1
kl

� �
11
�ml A�1

kl AkM AkA�1
kl

� �
11

� 	

� vech A�1
kl J11A�1

kl Lk

� �0
� 2 A�1

kl

� ��1

11
ml vech½A�1

kl J11A�1
kl AkMAlA

�1
kl Lk þA�1

kl AlMAkA�1
kl J11A�1

kl Lk�

þ 2 A�1
kl

� ��1

11
mk vech½A�1

kl J11A�1
kl AlMAlA

�1
kl Lk þA�1

kl AlMAlA
�1
kl J11A�1

kl Lk�
�

ð109Þ

and the derivative with respect to vech Ll including the symmetry projector term

tP is given by

qTkl

q vech Llð Þ0

¼ qSkl

q vech Llð Þ0
Tkl

Skl

þ 2Skl

�
6 vech tPA�1

kl AkMAkA�1
kl Ll

�
�0

þ 2 A�1
kl

� ��2

11

mkmlM11

mkl þ 1
� mk A�1

kl AlMAlA
�1
kl

� �
11
�ml A�1

kl AkMAkA�1
kl

� �
11

� 	

� vech tPA�1
kl J11A�1

kl Ll

� �0
� 2 A�1

kl

� ��1

11
mk vech½tPA�1

kl J11A�1
kl AlMAkA�1

kl Ll þ tPA�1
kl AkMAlA

�1
kl J11A�1

kl Ll�

þ 2 A�1
kl

� ��1

11
ml vech½tPA�1

kl J11A�1
kl AkMAkA�1

kl Ll þ tPA�1
kl AkMAkA�1

kl J11A�1
kl Ll�

�
ð110Þ

non-born–oppenheimer variational calculations of atoms 415



The purpose of the gradient formulas is to enhance optimization efforts, and

we have found that well-optimized wave functions utilizing a mixture of even

and odd powers, mk, did not produce results any better than using even powers

only. Hence, for this reason, along with reasons that were stated at the end of the

section describing the potential energy matrix elements, we will not derive the

gradient terms for the potential energy matrix elements that utilize odd mk.

Using the even mk potential energy integral formula, Eq. (83), the definitions

for a, b, and c given in Eqs. (73)–(75), and the definitions for g2 and g3 given

in Eqs. (84 and 85), the gradient terms for the potential, with mkl ¼ 2p, are

given by

qR
ij
kl

q vech Lkð Þ0

¼ qSkl

q vech Lkð Þ0
R

ij
kl

Skl

� qb

q vech Lkð Þ0
R

ij
kl

2b
þ g2 pð ÞSklb

�1=2 ð111Þ

�
Xp

q¼1

g3 qð Þq 1� c

ab

 !q�1 c

abð Þ2

qa

q vech Lkð Þ0
bþa

qb

q vech Lkð Þ0
�ab

c

qc

q vech Lkð Þ0
� 	" #

where

qa

q vech Lkð Þ0
¼ �2 vech A�1

kl J11A�1
kl Lk

� �
ð112Þ

qb

q vech Lkð Þ0
¼ �2 vech A�1

kl JijA
�1
kl Lk

� �
ð113Þ

and

qc

q vech Lkð Þ0
¼ �2 vech A�1

kl J11A�1
kl JijA

�1
kl Lk

� �
� 2 vech A�1

kl JijA
�1
kl J11A�1

kl Lk

� �
ð114Þ

The derivative with respect to vech Ll has the same form as the above but with Lk

replaced by t0PLl and each of the expressions vech A�1
kl � � �

� �
replaced by

vech tPA�1
kl � � �

� �
.

D. Variational Method and Minimization of the Energy Functional

The energy in variational calculations is obtained by minimizing the Rayleigh

quotient. In the case of basis set (49), this quotient has the following form:

E ckf g; mkf g; Lkf gð Þ ¼ min
ckf g; mkf g; Lkf gf g

c0Hð mkf g; Lkf gÞc
c0Sð mkf g; Lkf gÞc ð115Þ
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where the minimization takes place with respect to the linear coefficients, ckf g of

the wave function expansion in terms of the basis functions, and with respect

to the nonlinear exponential parameters, Lkf g, and preexponential powers,

mkf g, of the basis functions. H and S are the Hamiltonian and overlap matrices of

size N � N (N is the number of basis functions). The finding of the linear

coefficients, ckf g, is usually done by solving secular equation (103). However, in

ground-state calculations one may minimize the above quotient directly, without

diagonalization. In some cases such a procedure, when ckf g and Lkf g are

considered to be independent, may have certain advantages. But in many

situations we do reduce the minimization with respect to ckf g to the generalized

symmetric eigenvalue problem. In our calculations we used the inverse iteration

method to solve this problem. The idea of the method consists in performing the

iterations,

ðH � EapprSÞckþ1 ¼ Sck ð116Þ

where Eappr is an approximate value of the exact solution of the generalized

symmetric eigenvalue problem. The starting vector c0 can be chosen randomly.

As long as the exact eigenvalue we need to obtain is closer to Eappr than any other

eigenvalue, the iterations (116) will converge. Typically, just a few iterations are

needed to find E with sufficient accuracy. Each iteration in (116) is performed in a

few steps:

H � EapprS ¼ LDL0 ð117Þ
Lx ¼ Sck ð118Þ
Dy ¼ x ð119Þ

L0ckþ1 ¼ y ð120Þ

Here, L is a lower triangular matrix (not to be confused with Lk, the Cholesky

factor of the matrix of nonlinear parameters Ak), and D is a diagonal matrix. The

scheme of the solution of the generalized symmetric eigenvalue problem above

has proven to be very efficient and accurate in numerous calculations. But

the main advantage of this scheme is revealed when one has to routinely solve

the secular equation with only one row and one column of matrices H and S

changed. In this case, the update of factorization (117) requires only / N2

arithmetic operations while, in general, the solution ‘‘from scratch’’ needs / N3

operations.

It is well known that the convergence of variational expansions in terms of

correlated Gaussians, both the simple ones and those with premultipliers,

strongly depends on how one selects the nonlinear parameters in the Gaussian
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exponentials. In order to get high-accuracy results in the calculations, one needs

to perform optimizations of those parameters at some level. Due to a usually

large number of basis functions in non-BO calculations and, consequently, a

larger number of the exponential parameters, this task represents a serious

computational problem. The two most commonly applied approaches to the

parameter optimization are (a) a full optimization, which is very effective when

the analytical gradient of the variational energy functional with respect to the

parameters is available, and (b) the method based on a stochastic selection of

the parameters.

We found that in many practical situations a hybrid method that combines the

gradient-driven optimization with the stochastic selection method turns out to be

very efficient. In this approach, we first generate a relatively small basis set for

each of the studied systems using the full gradient optimization. This generates

a good starting point for each system for the next step of the procedure. In this

next step we apply the following strategy. We incrementally increase the size of

the basis set by including additional basis functions, one by one, with randomly

selected values of the nonlinear parameters and values of the pre-exponential

powers. After including a function into the basis set, we first optimize the power

of its preexponential factor using the finite difference approach and then

optimize the nonlinear parameters in its exponent using the analytical gradient

approach. After adding several new basis functions using this approach (the

number varies depending on the desired degree of optimization), the whole basis

is reoptimized by means of the gradient approach applied in sequence to each

basis functions, one function at a time. This continues until the number of basis

functions reached a certain limit or until the necessary accuracy is achieved.

Although this procedure has been proven to be quite efficient in optimizations of

large basis sets of correlated Gaussians, it still requires a lot of computational

resources, especially for systems with a large number of particles and a large

number of particle permutations in the Young symmetry operator. In addition to

that, as we found from our experience, a full (simultaneous) optimization of all

nonlinear parameters may still be very desirable for highly vibrationally excited

states where the Gaussians tend to be very strongly coupled. The way to

partially overcome this problem of high computational demands is extensive

parallelization of the computer code for use on multinode computational

systems. For this purpose we used the message passing interface (MPI), a

widely used tool in the world of parallel computations, and were able to achieve

a sufficient parallelization level of the code for runs with several processors.

This development enabled us to significanly extend our capabilities of

optimizing large basis sets.

To illustrate the capabilities of the variational method, we will present later

the results and discuss the details of some diatomic non-BO calculations on

small molecules, which were carried out by our group.
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E. The Ground and Excited States of H2

Due to a small number of electrons and nuclei, the H2 molecule often serves as

the first target for testing different methods in quantum chemistry. Despite the

fact that this system has been very well studied since the early days of quantum

mechanics and the pioneering work of Heitler and London [106], very few

studies did not invoke Born–Oppenheimer approximation. Moreover, all of the

non-BO calculations usually deal with the ground or few low-lying states only. In

this part we present highly accurate, nonrelativistic, variational, non-BO

calculations of the ‘‘vibrational spectrum’’ of the H2 molecule [121]. Although

we use the traditional term ‘‘vibrational spectrum,’’ the states we have calculated

can be better characterized as states with zero total angular momentum, which is

the sum of the angular momenta of the electrons and the nuclei.

The non-BO wave functions of different excited states have to differ from

each other by the number of nodes along the internuclear distance, which in the

case of basis (49) is r1. To accurately describe the nodal structure in all 15 states

considered in our calculations, a wide range of powers, mk, had to be used.

While in the calculations of the H2 ground state [119], the power range was

0–40, in the present calculations it was extended to 0–250 in order to allow

pseudoparticle 1 density (i.e., nuclear density) peaks to be more localized and

sharp if needed. We should notice that if one aims for highly accurate results for

the energy, then the wave function of each of the excited states must be obtained

in a separate calculation. Thus, the optimization of nonlinear parameters is done

independently for each state considered.

Table II contains total variational energies of the lowest 15 states

corresponding to the rotational ground state ðJ ¼ 0Þ calculated with 3000 basis

functions each. We also show the expectation values of the internuclear distance

and its square calculated as average values using the optimized wave function of

each state (hr1i and hr2
1i). The energy for the ground state of �1.1640250300

hartree is noticeably lower than the previously reported upper bound [119] of

�1.1640250232 hartree. We are certain that for at least a few lowest excited

states, the quality of the results is very similar to that for the ground state.

However, for the highest states, where the number of nodes in the wave function

is much higher, the quality of the calculations decreases, but we believe that it

still allows determination of the transition energies, with the accuracy similar to

the experimental uncertainty, if not higher.

In Table II we also compare our total variational energies with the energies

obtained by Wolniewicz. In his calculations Wolniewicz employed an approach

wherein the zeroth order the adiabatic approximation for the wave function was

used (i.e., the wave function is a product of the ground-state electronic wave

function and a vibrational wave function) and he calculated the nonadiabatic

effects as corrections [107, 108]. In general the agreement between our results
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and the results of Wolniewicz is very good. However, one notices that the

agreement is much better for the lower energies than for the higher ones. While

for the two lowest states our energies are lower than those obtained by

Wolniewicz, the energies for the higher states are progressively higher.

Included in Table III is the comparison of the transition frequencies

calculated from the energies obtained in our calculations with the experimental

transition frequencies of Dabrowski [125]. To convert theoretical frequencies

into wavenumbers, we used the factor of 1 hartree ¼ 219474.63137 cm�1. For

all the frequencies our results are either within or very close to the experimental

error bracket of 0.1 cm�1. We hope that the advances in high-resolution

spectroscopy will inspire remeasurements of the vibrational spectrum of H2

with the accuracy lower than 0.1 cm�1. With such high-precision results, it

would be possible to verify whether the larger differences between the

calculated and the experimental frequencies for higher excitation levels, which

now appear, are due to the relativistic and radiative effects.

Finally, in Table III we also compare our results for the transition energies

with the results obtained by Wolniewicz [107,108]. Wolniewicz also calculated

TABLE II

Nonadiabatic Variational Energies for 15 States of the H2 Molecule with Zero Total Angular

Momentum (the Ground Rotational States) Obtained with 3000 Basis Functions for Each

State and Expectation Values of the Internuclear Distance and the Square of the Internuclear

Distance, hrH--Hi hr2
H--Hi

a

v E hrH--Hi hr2
H--Hi E, Wolniewicz [107]

0 �1.1640250300 1.4487380 2.1270459 �1.1640250185

1 �1.1450653676 1.5453495 2.4739967 �1.1450653629

2 �1.1271779152 1.6460579 2.8568172 �1.1271779324

3 �1.1103404429 1.7517082 3.2814143 �1.1103404855

4 �1.0945391187 1.8634245 3.7556995 �1.0945391940

5 �1.0797693217 1.9827332 4.2905417 �1.0797694803

6 �1.0660370737 2.1117587 4.9013207 �1.0660372849

7 �1.0533604890 2.2535349 5.6105163 �1.0533608258

8 �1.0417726950 2.4125952 6.4525567 �1.0417731139

9 �1.0313249454 2.5958940 7.4823876 �1.0313254708

10 �1.0220917849 2.8149490 8.7946796 �1.0220924876

11 �1.0141782601 3.0901798 10.566922 �1.0141791536

12 �1.0077301951 3.4627010 13.181814 �1.0077311979

13 �1.0029493758 4.0342373 17.680148 �1.0029504633

14 �1.0001150482 5.2110181 28.919890 �1.0001159762

—b �0.9994556794

aAlso, the nonrelativistic energies of Wolniewicz are presented for comparison. All quantities in

atomic units.
bNonrelativistic dissociation threshold.
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transition energies corrected for the relativistic effects, and these results are also

shown in Table III. Upon comparing the results, one notices that our transition

energies are, in general, very similar to Wolniewicz’s nonrelativistic results.

Both sets of results show higher positive discrepancies in comparison with the

experimental values for the higher excitation levels. These discrepancies

decrease somewhat when the relativistic effects are included. However, the

insufficient accuracy of the experiment, as well as perhaps that of some of

the theoretical results, does not allow us to carry out a more detail analysis of the

remaining discrepancies.

F. Charge Asymmetry in HDþ Molecular Ion

The lack of a center of symmetry in HDþ, due to the difference in nuclear

masses, creates a particularly interesting situation that requires a theoretical

approach that may differ from those used to describe the parent cation, Hþ
2 , and

its symmetric isotopomer, Dþ
2 . The asymmetry of the HDþ system has been

investigated both experimentally [109,110] and theoretically [111–114]. In

recent work, Ben-Itzhak et al. [109] studied the dissociation of the electronic

ground state of HDþ following ionization of HD by fast proton impact and found

the Hþ þ Dð1sÞ dissociation channel is more likely than the Hð1sÞ þ Dþ

dissociation channel by about 7%. They attributed this asymmetry breakdown to

TABLE III

Comparison of Vibrational Frequencies Evþ1 � Ev (in cm�1) of H2 Calculated from Non-Born–

Oppenheimer Energies [121] with the Experimental Values of Dabrowski [125] and with the results

of Wolniewicz, Obtained Using the Conventional Approach Based on the Potential Energy Curvea

v Dabrowski Work [121] Wolniewiczb (Diff.) Wolniewiczc (Diff.)

0 4161.14 4161.165 (þ0.025) 4161.163 (þ0.023) 4161.167 (þ0.027)

1 3925.79 3925.842 (þ0.052) 3925.837 (þ0.047) 3925.836 (þ0.046)

2 3695.43 3695.398 (�0.032) 3695.392 (�0.038) 3695.389 (�0.041)

3 3467.95 3467.990 (þ0.040) 3467.983 (þ0.033) 3467.976 (þ0.026)

4 3241.61 3241.596 (�0.014) 3241.577 (�0.033) 3241.564 (�0.046)

5 3013.86 3013.880 (þ0.020) 3013.869 (þ0.009) 3013.851 (�0.009)

6 2782.13 2782.189 (þ0.059) 2782.161 (þ0.031) 2782.136 (þ0.006)

7 2543.25 2543.227 (�0.023) 2543.209 (�0.041) 2543.175 (�0.075)

8 2292.93 2293.016 (þ0.086) 2292.993 (þ0.063) 2292.950 (þ0.020)

9 2026.38 2026.445 (þ0.064) 2026.406 (þ0.026) 2026.351 (�0.029)

10 1736.66 1736.818 (þ0.158) 1736.776 (þ0.116) 1736.707 (þ0.047)

11 1415.07 1415.187 (þ0.117) 1415.163 (þ0.093) 1415.076 (þ0.006)

12 1049.16 1049.269 (þ0.109) 1049.250 (þ0.090) 1049.139 (�0.021)

13 622.02 622.063 (þ0.043) 622.098 (þ0.078) 621.956 (�0.064)

aDifferences between the calculated and the experimental results are shown in parentheses.
bPrivate communications (nonrelativistic values).
cFrom Ref. 108 (includes relativistic and radiative corrections).
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the finite nuclear mass correction to the Born–Oppenheimer (BO) approxima-

tion, which makes the 1ss state 3.7 meV lower than the 2ps state at the

dissociation limit.

Near the dissociation threshold the density of bound states in the HDþ

spectrum increases. If we remain in the ground rotational state manifold (i.e.,

consider only states with total angular momentum equal to zero), there is a place

in the spectrum where the spacing between the consecutive levels becomes

comparable to the difference between the binding energies of the H and D atoms

(equal to 29.84 cm�1). The D atom is energetically more stable because it

has slightly larger reduced mass than H, which makes the electron slightly closer

(on average) approach the nucleus, resulting in stronger Coulombic attraction

and a lower binding energy. According to the previous calculations based on the

adiabatic approximation [113], the H/D energy gap is approximately matched

by the energy difference between the v ¼ 20 and v ¼ 21 levels. In this region

the vibrational wave function that corresponds to, say, v ¼ 20 level, combined

with the ground-state electronic wave function that places the electron at the

proton, has energy similar to that of the wave function, with the vibrational

component corresponding to v ¼ 21 and with the electronic component

localizing the electron at d. Since such two-wave functions have the same

symmetry, their mixing can occur. This nonadiabatic coupling must be included

in the calculation of the dissociation of HDþ that yields a proton plus a

deuterium atom since the electron favors the heavier nucleus.

In nearly all theoretical calculations of Hþ
2 and its isotopes’ spectra reported

in the literature, a body-fixed coordinate system with the origin at the geometric

center of the nuclei has been used. For example, in the recent work of Esry and

Sadeghpour [113], as well as the works of Moss [111, 112, 114], the starting

point was the Hþ
2 BO Hamiltonian in prolate spheroidal coordinates (PSC); and

electronic wave functions and energies were first obtained as a function of the

internuclear distance. Here we demonstrate the capability of the variational

method to treat such systems fully nonadiabatically [124]. The very high powers

mk in the preexponential multipliers, which, as in case of H2 molecule

calculations, ranged from 0 to 250, allow one to describe very sharp peaks in the

‘‘vibrational’’ part of the wave function.

The effort in the first stage of the calculations has been focused on generating

very accurate variational wave functions and energies for the rotationless

vibrational states of the HDþ ion. As mentioned, this system has been studied

by many researchers and very accurate, virtually exact nonrelativistic energies

have been published in the literature [112]. This includes the energy for the

highest vibrational v ¼ 22 state, which is only about 0.4309 cm�1 below the

D þ Hþ dissociation limit.

The basis set for each vibrational state was generated in a separate

calculation. To achieve a similar level of accuracy as obtained in the best
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previous calculations [112], we used 2000 basis functions for each state—except

the ground and first excited states, where we limited ourselves to 1000-term

expansions because the energies for those states were essentially converged with

this number of functions.

In Table IV we compare our variational energies with the best literature

values of Moss [112]. As one can see, the values agree very well. The agreement

is consistently very good for all the states calculated.

After the wave functions for all 23 ðv ¼ 0; . . . ; 22Þ states were generated,

we calculated the expectation values of the internuclear d–p distance, hr1i, the

deuteron–electron (d–e) distance, hr2i, and the proton–electron (p–e) distance,

hr12i, for each state. The expectation values of the squares of the distances were

also computed.

TABLE IV

Comparison of the Total Nonrelativistic Nonadiabatic Variational Energies, E (in a.u.), and

Dissociation Energies, D (in cm�1), of HDþ Vibrational States with Zero Total Angular Momentum,

Obtained in Work [124] and the Corresponding Quantities Obtained by Moss [111]a

v E, Work [124] D, Work [124] E, Moss D, Moss

0 �0.5978979685 21516.0096 �0.5978979686 21516.0096

1 �0.5891818291 19603.0382 �0.5891818295 19603.0382

2 �0.5809037001 17786.1989 �0.5809037006 17786.1989

3 �0.5730505464 16062.6308 �0.5730505469 16062.6309

4 �0.5656110418 14429.8483 �0.5656110424 14429.8484

5 �0.5585755200 12885.7298 �0.5585755213 12885.7300

6 �0.5519359482 11428.5122 �0.5519359493 11428.5124

7 �0.5456859137 10056.7882 �0.5456859158 10056.7886

8 �0.5398206394 8769.5092 �0.5398206420 8769.5098

9 �0.5343370110 7565.9919 �0.5343370137 7565.9925

10 �0.5292336317 6445.9296 �0.5292336357 6445.9305

11 �0.5245109059 5409.4111 �0.5245109104 5409.4121

12 �0.5201711374 4456.9421 �0.5201711482 4456.9444

13 �0.5162186988 3589.4820 �0.5162187105 3589.4846

14 �0.5126601767 2808.4767 �0.5126601926 2808.4802

15 �0.5095046270 2115.9136 �0.5095046516 2115.9190

16 �0.5067638344 1514.3792 �0.5067638779 1514.3887

17 �0.5044526466 1007.1321 �0.5044526992 1007.1436

18 �0.5025891815 598.1488 �0.5025892341 598.1603

19 �0.5011947323 292.1025 �0.5011947991 292.1172

20 �0.5002924017 94.0638 �0.5002924543 94.0754

21 �0.4999103339 10.2097 �0.4999103614 10.2157

22 �0.4998657692 0.4288 �0.4998657786 0.4309

D þ Hþ �0.4998638152

aTotal energies were calculated using dissociation energies, mass values, and hartree to cm�1

conversion factor from Ref. 111.
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The results are shown in Table V. As can be expected, the average

internuclear distance increases with the rising level of excitation. This increase

becomes more prominent at the levels near the dissociation threshold. For

example, in going from v ¼ 21 to v ¼ 22 the average internuclear distance

increases more than twofold from 12.95 a.u. to 28.53 a.u. In the v ¼ 22 state the

HDþ ion is almost dissociated. However, the most striking feature that becomes

apparent upon examining the results is a sudden increase of the asymmetry

between the deuteron–electron and proton–electron average distances above the

v ¼ 20 excitation level. In levels up to v ¼ 20, there is some asymmetry of the

electron distribution with the p–e distance being slightly longer than the d–e

distance. For example, in the v ¼ 20 state the d–e average distance is 4.569 a.u.

and the p–e distance is 5.516 a.u. The situation becomes completely different

for the v ¼ 21 state. Here the p–e distance of 12.19 a.u. is almost equal to the

TABLE V

Expectation Values of the Deuteron–Proton Distance, rd�p, the Deuteron–Electron

Distance, rd�e, and the Proton–Electron Distance, rp�e, and Their Squares for the

Vibrational Levels of HDþ in the Rotational Ground Statea

v rd--p

� �
rd--eh i rp--e

� �
r2

d--p

D E
r2

d--e

� �
r2

p--e

D E
0 2.055 1.688 1.688 4.268 3.534 3.537

1 2.171 1.750 1.750 4.855 3.839 3.843

2 2.292 1.813 1.814 5.492 4.169 4.173

3 2.417 1.880 1.881 6.185 4.526 4.531

4 2.547 1.948 1.950 6.942 4.915 4.921

5 2.683 2.020 2.022 7.771 5.339 5.346

6 2.825 2.095 2.097 8.682 5.804 5.813

7 2.975 2.175 2.177 9.689 6.318 6.329

8 3.135 2.259 2.261 10.81 6.888 6.902

9 3.305 2.348 2.351 12.06 7.527 7.545

10 3.489 2.445 2.448 13.48 8.250 8.272

11 3.689 2.549 2.554 15.09 9.074 9.105

12 3.909 2.664 2.670 16.96 10.03 10.07

13 4.154 2.791 2.799 19.16 11.15 11.21

14 4.432 2.934 2.946 21.79 12.49 12.57

15 4.754 3.099 3.116 25.01 14.13 14.26

16 5.138 3.292 3.319 29.11 16.20 16.41

17 5.611 3.527 3.572 34.55 18.92 19.30

18 6.227 3.821 3.910 42.25 22.66 23.47

19 7.099 4.198 4.421 54.35 28.13 30.38

20 8.550 4.569 5.516 77.74 35.66 46.64

21 12.95 2.306 12.19 176.0 12.94 168.2

22 28.53 1.600 28.46 900.4 4.261 901.8

D atomb 1.500 3.002

aAll quantities are in atomic units.
bIn the ground state.
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average value of the internuclear distance, but the d–e distance becomes much

smaller and equals only 2.306 a.u. It is apparent that in this state the electron is

essentially localized at the deuteron and the ion becomes highly polarized. An

analogous situation also occurs for the v ¼ 22 state. Here, again, the p–e

average distance is very close to the internuclear distance while the d–e distance

is close to what it is in an isolated D atom.

As has been mentioned above, the inclusion of basis functions (49) with high

power values, mk, is very essential for the calculations of molecular systems. It

is especially important for highly vibrationally excited states where there are

many highly localized peaks in the nuclear correlation function. To illustrate

this point, we calculated this correlation function (it corresponds to the

internuclear distance, rd�p ¼ r1), which is the same as the probability density of

pseudoparticle 1. The definition of this quantity is as follows:

g1ðnÞ ¼ dðr1 � nÞh i

In essence, it is the probability density of the two nuclei to have relative

separation n. Since the orientation of the molecule is not fixed (nuclei are not

fixed any more if we deal with an non-BO approach), g1ðnÞ is a spherically

symmetric function. The plots of g1ðnÞ are presented in Figs. 1–4. It should be

noted that all the correlation functions shown are normalized in such a way that

4p
ð1

0

g1ðxÞx2 dx ¼ 1

Figure 1. The correlation function g1ðxÞ for v ¼ 0 vibrational state of HDþ. All quantities are

in a.u.
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Upon looking at the graphs, one can clearly see how strongly localized the

peaks of g1ðxÞ are—in particular, for the case of the v ¼ 22 state. It even

surprises us, to some degree, how well a basis set consisting of just 2000 basis

functions (49) is capable of fitting the wave function, so that it reproduces seven

decimal figures in the total energy.

Figure 2. The correlation function g1ðxÞ for v ¼ 2 vibrational state of HDþ. All quantities are

in a.u.

Figure 3. The correlation function g1ðxÞ for v ¼ 10 vibrational state of HDþ. All quantities are

in a.u.
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G. LiH and LiD Electron Affinity

The determination of electron affinities (EAs) is one of the most serious

problems in quantum chemistry. While the Hartree–Fock electron affinity can be

easily evaluated, most anions turn out to be unbound at this level of theory. Thus,

the correlation effects are extremely crucial in evaluating EAs. At this point,

lithium hydride and lithium hydride anion make up a very good benchmark

system because they are still small enough yet exhibit features of more

complicated systems. Four and five electrons, respectively, give rise to higher-

order correlation effects that are not possible in H2.

The theoretical interest in the LiH� has increased since the electron affinity

of LiH and its deuterated counterpart, LiD, were measured with the use of the

photoelectron spectroscopy by Bowen and co-workers [126]. The adiabatic

electron affinities of 7LiH and 7LiD determined in that experiment were

0:342 � 0:012 eV for the former and 0:337 � 0:012 eV for the latter system.

The appearance of these data posed a challenge for theory to reproduce those

values in rigorous calculations based on the first principles. Since the two

systems are small, it has been particularly interesting to see if the experimental

EAs can be reproduced in calculations where the BO approximation is not

assumed [123].

Since the time that Bowen’s and co-workers’ article was published, the

theory based on the BO approximation, except for one very recent multi-

reference configuration interaction (MRCI) calculation by Chang et al. [127],

has been unable to produce a value of the LiH adiabatic electron affinity that

Figure 4. The correlation function g1ðxÞ for v ¼ 22 vibrational state of HDþ. All quantities are

in a.u.
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falls within the experimental uncertainty bracket. More than that, in many

works where authors managed to obtain an EA that was relatively close to the

experimentally determined one, the success was often due to fortuitous

cancellation of errors in the total energies of LiH and LiH� rather than the

accuracy achieved in calculations. This inability seems somewhat odd, since

there is nothing particularly unusual about and fundamentally difficult to

describe in the LiH�/LiH system. Since the LiH molecule is a polar system

(Lidþ–Hd�), an excess electron in the process of attachment localizes on the

electropositive alkali atom in a nonbonding orbital of the neutral molecule.

We would like to mention that one should not expect the nonadiabatic effects

to play a noticeable role in the LiH and LiD electron affinity calculations.

However, by applying the non-BO approach, we can directly determine the total

energies of the anion and the neutral system in one-step calculations, and we do

not need to resort to calculating the electronic potential energy curves for the

anion and the neutral first and using them for calculating their nuclear vibration

energies in the next step, as is done in the BO approach. Thus, using the non-BO

method, we not only make the calculation free of any artifacts that may result

from the two-step procedure used in the BO approximation, but we also obtain

total and relative energies that, if the basis sets become more complete,

approach the true nonrelativistic limits of those quantities, free of any

approximations.

In comparison with H2 and HDþ, LiH and LiH� represent a significantly

more challenging case from the point of view of computational demands, even

if we restrict ourselves to the consideration of the ground state only. The total

number of particles is six in the case of LiH and seven in the case of LiH�,

which means that effectively we deal with a 15- and an 18-dimensional

problem, respectively. Considering that the number of permutations in the

Young operator also increases as the number of identical particles increases (this

number is 24 LiH and 120 for LiH�), the amount of computational work

required for performing sound calculations rises by a factor of several orders of

magnitude. To attempt such calculations at the present time, one has to gain

access to large-scale parallel computer systems. However, with advances in

computer hardware, this kind of calculation may soon become quite ordinary

and even routine.

The results of our calculations for the energy are shown in Table VI. In

Table VII we show the values of the LiH and LiD electron affinities calculated

as the difference of the energies of the anion and the neutral system for all

lengths of the basis set for which the total energies are reported. A question can

be raised whether it is appropriate to use the total energies obtained with the

same length of the basis set for LiH� and LiH (or LiD� and LiD) in the electron

affinity calculation. Since LiH� has one more electron than LiH, it should

require more basis functions for LiH� than for LiH to achieve a similar level of
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TABLE VI

Nonadiabatic Variational Ground-State Energies of the LiH�, LiH, LiD�, and LiD

Molecules Obtained with Different Basis Set Sizes [123]a

Basis Size LiH LiD LiH� LiD�

1000 �8.06632055 �8.06725433 �8.07778128 �8.07859843

1200 �8.06634454 �8.06728273 �8.07794715 �8.07875507

1400 �8.06636491 �8.06730593 �8.07807991 �8.07888651

1600 �8.06638295 �8.06732805 �8.07822084 �8.07903483

1800 �8.06639498 �8.06734216 �8.07830536 �8.07912238

2000 �8.06640408 �8.06735333 �8.07837566 �8.07919877

2200 �8.06641099 �8.06736128 �8.07842711 �8.07925549

2400 �8.06641554 �8.06736613 �8.07846014 �8.07929081

2600 �8.06642068 �8.06737208 �8.07848753 �8.07931985

2800 �8.06642353 �8.06737514 �8.07851089 �8.07934370

3000 �8.06642581 �8.06737749 �8.07852933 �8.07936248

3200 �8.06642787 �8.06737962 �8.07854406 �8.07937759

3400 �8.06642941 �8.06738123 �8.07855805 �8.07939162

3600 �8.06643070 �8.06738251 �8.07856887 �8.07940445

aAll energies are in atomic units.

TABLE VII

Convergence of the Electron Affinities of LiH and LiD (in eV)

in Terms of the Number of the Basis Functions [123] and the

Corresponding Experimental Values of Sarkas et al.

Basis Size LiH LiD

1000 0.31186 0.30869

1200 0.31572 0.31218

1400 0.31878 0.31512

1600 0.32213 0.31856

1800 0.32410 0.32056

2000 0.32576 0.32233

2200 0.32698 0.32366

2400 0.32775 0.32449

2600 0.32836 0.32512

2800 0.32891 0.32568

3000 0.32935 0.32613

3200 0.32970 0.32648

3400 0.33004 0.32682

3600 0.33030 0.32713

Experiment [126] 0:342 � 0:012 0:337 � 0:012
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accuracy of the results. This is indeed showing in the convergence of the results

presented in Table VI. Certainly the 3600-term energy for LiH is better

converged than the 3600-term energy for LiH�. It should be mentioned that the

LiH and LiD variational energies obtained in work [123] are the lowest non-BO

ground-state energies ever obtained for these systems. It is significantly lower

than the previous non-BO value of �8.06615576 hartree, which was also

obtained in our group [120]. The same is true about the LiH� and LiD�

energies, though in this case the final values are not as tightly converged as the

energies for LiH and LiD. Also, work [123], to date, is the only one where a

variational, non-BO calculation of the ground state of a five-electron system

such as LiH� or LiD� has been attempted.

Since the variational approach has been used in this work and the LiH (LiD)

energy at a particular basis set size is better converged than the LiH� (LiD�)

energy, the calculated electron affinity is always lower than the result would be

in the limit of the complete basis set. Thus, by calculating the EA at the basis set

with the same size for the anion and for neutral system and by incrementally

increasing the size of the basis, we could monitor the EA convergence and be

sure that all the EA values we calculated including the final value (this being the

3600-term result) are lower bounds to the true EA.

As shown in Table VII, our best results for LiH and LiD electron affinities

obtained with the 3600-term expansions of the wave functions for LiH�/LiH

and LiD�/LiD are 0.33030 and 0.32713 eV, respectively. Even though, as stated,

both values represent lower bounds to the true EAs, they both are within the

uncertainty brackets of the experimental results of 0:342 � 0:012 eV (LiH) and

0:337 � 0:012 eV (LiD) obtained by Bowen and co-workers [126].

In the calculations, the powers, mk, in the preexponential factors in the basis

functions (49) were allowed to vary in the interval of 0–200. The obtained

distributions of mk ’s have the mean values of 70:0, 74:1, 67:6, and 67:9, along

with the standard deviations of 49:7, 50:4, 49:3, and 49:7, for LiH, LiD, LiH�,

and LiD�, respectively. A slightly higher mean power for LiD than for LiH can

be explained by a more localized vibrational component of the wave function

for the former than for the latter system. Lower mean powers for the anions

than for the neutral systems result from two opposing effects. First, the bond

lengths for the anions are slightly longer than for the neutral counterparts (see

the next paragraph), which should require larger powers. Second, due the

weakening of the bonds in the anions, the vibrational components of their

wave functions become more delocalized, resulting in lowering of the powers.

Apparently the second effect dominates over the first one.

Finally, Table VIII shows the expectation values of the internuclear distance

and its square for LiH, LiD, LiH�, and LiD�. Here we see trends that can be

easily understood considering that the attachment of an excess electron weakens

slightly the Li–H bond and that increasing the mass of H by switching to D
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results in making the vibrational component of the total wave function more

localized, resulting in a slight contraction of the average length of the bond.

This contraction is very similar in going from LiH and LiD and from LiH� to

LiD�.

H. Molecules Containing Positron: eþLiH

During the last several years, much advance has been made concerning the study

of bound states of the positron with small systems. The ability of various atoms,

ions, and molecules to bind a positron is now well established and represent a

popular subject of research. However, most of the calculations performed were

done on atomic systems (or those containing just one particle significanly heavier

than the positron). For example, there has been considerable interest to the

positronium hydride, HPs ( pþeþe�e�), and its isotopomers (see Refs. 128–130

and references therein). Molecular systems containing a positron have been

mainly treated with the use of the Quantum Monte Carlo [131, 132] or variational

method [133–135] assuming BO approximation. An attempt of calculating

eþLiH was made in Ref. 136, where the authors used simple Gaussians (without

premultipliers). However, the convergence of the total energy turned out to be

very slow while the basis size was not large, which resulted in relatively low

accuracy of the calculations.

In Ref. 122 we raised the question of whether one can use basis functions

(49) in non-BO quantum mechanical calculations of molecular diatomic

systems containing positrons and whether those functions are capable of

providing a proper representation for the positron–nucleus and positron–

electron correlation effects in a diatomic system. eþLiH was chosen as a target

system. Along with eþLiH, we also performed the calculations of HPs and

Liþ because the total energies of these systems are needed for determining the

dissotiation energy.

The convergence of the energy values for HPs, LiH, and eþLiH in terms of

the number of the basis functions is shown in Table IX. In the case of eþLiH, as

TABLE VIII

Expectation Values of the Internuclear Distance, r1 � rLiH, and Its

Square (in a.u.) for LiH, LiD, LiH�, and LiD�, Calculated with

the 3600-Term Basis Sets [123]

System hr1i hr2
1i

LiH� 3.214708 10.39391

LiH 3.061047 9.419733

LiD� 3.199737 10.28362

LiD 3.049131 9.334349
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well as for LiH case, the powers mk in (49) were selected from the interval

0–200. Although the positronium hydride wave function can be obtained with

very high precision even without using powers of the hydrogen–positron

distance in the preexponential factors in the basis functions, we did include

some functions with small preexponential powers ranging from 0 to 10 to ensure

better numerical stability in the calculations.

From the lowest energy values shown in Table IX, one can determine that the

positron detachment energy of eþLiH, PDE ¼ EðeþLiHÞ � EðLiHÞ, is

0:038312 hartree. The lowest-energy fragmentation of eþLiH corresponds to

dissociation of the system into HPs + Liþ. To calculate the dissociation energy,

DE ¼ EðeþLiHÞ � EðiþÞ � EðHPsÞ, one needs to determine the total energy of

the Liþ ion. Since the non-BO calculation of this quantity is very simple, rather

than taking it from the literature, we recalculated it using our method. A

400-term expansion was sufficient to obtain a highly accurate result of

�7:279321518 hartree, where, we believe, all the significant figures shown are

exact.

Given the values of the HPs and Liþ energies calculated in this work in

addition to that of eþLiH, our dissociation energy is 0:036548 hartree. This

value qualitatively agrees with the value of 0.0382(2) hartree obtained in the

Born–Oppenheimer calculations by Mella and et al. [131] using the Quantum

Monte Carlo method. It also agrees with the Born–Oppenheimer result of

0:036936 obtained by Strasburger [135] with the use of explicitly correlated

Gaussians and the variational method.

TABLE IX

Total Non-Born–Oppenheimer Energies (in a.u.) of HPs, LiH, and eþLiH

as a Function of Basis Size [122]

Basis Size HPs LiH eþLiH

800 �0.7888705040 �8.066278419 �8.103075429

1000 �0.7888705983 �8.066320545 �8.103572816

1200 �0.7888706398 �8.066344535 �8.103905788

1400 �0.7888706611 �8.066364905 �8.104113213

1600 �0.7888706790 �8.066382950 �8.104256550

1800 �0.7888706877 �8.066394978 �8.104372009

2000 �0.7888706940 �8.066404077 �8.104478249

2200 �0.7888706984 �8.066410987 �8.104543434

2400 �0.7888707014 �8.066415542 �8.104598552

2600 �0.7888707036 �8.066420678 �8.104645276

2800 �0.7888707057 �8.066423527 �8.104683502

3000 �0.7888707062 �8.066425806 �8.104713922

3200 �0.7888707066 �8.066427866 �8.104739913
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The lowest variational energy upper-bound for the Born–Oppenheimer LiH

ground-state energy to date is �8:070538 hartree [137]. Assuming that the

energies of Li and H with infinitely heavy nuclei are �7:4780603 [138] and

�0:5 hartree, respectively, one obtains the infinite-mass dissociation energy of

LiH of �0:0924777 hartree. The finite-mass energy of LiH can be estimated by

subtracting this number from the sum of the finite-mass energies of Li and H

atoms and by adding to the result the zero-point LiH energy. Using the finite-

mass energy of Li of �7:4774519 hartree which one can calculate by using the

expansion from the article of Yan and Drake [138], the corresponding value for

the H atom of �0:4997278 hartree, and the zero-point LiH energy of 0:0031981

hartree (see Ref. 139), we obtain the LiH ground-state energy corrected for the

finite nuclear masses equal to �8:066459 hartree. The use of experimentally

determined zero-point energy of �0:0031799 [140] shifts this value to

�8:066478 hartree. The difference between this value and our non-BO result

of �8:066427866 hartree is larger than the estimated sum of their inaccuracies.

Although, perhaps, this may partially be attributed to relatively low accuracy of

the zero-point energy, it is clear that the nonadiabatic effect of the coupled

electron–nuclear motion must play a role in the difference.

In Table X we present expectation values of the internuclear distance and its

square for LiH and eþLiH as well as the electron–positron contact densities for

HPs and eþLiH evaluated with the largest basis set of 3200 basis functions

obtained in the calculations. It should be noted that the mean internuclear

distance of LiH calculated here is slightly higher than the known value,

3.015 bohr, of the equilibrium nuclear distance—that is, the distance where the

potential energy curve reaches its minimum. This is, obviously, an expected

result since larger distances contribute more to the mean distance when one

averages the internuclear distance over the ‘‘vibrational’’ part of the wave

function, even if a purely Born–Oppenheimer calculation is carried out, and,

hence, the mean distance is always larger than the distance corresponding

the peak of the vibrational component of the wave function (minimum of the

potential energy curve). Thus the discrepancy becomes more and more

TABLE X

Expectation Values of the Li–H Internuclear Distance, Its

Square, and Electron–Positron Contact Densities Evaluated at

3200-Function Basis Size [122]a

System hrLiHi hr2
LiHi hdðre�eþ Þi

HPs — — 2:44855 � 10�2

LiH 3.06105 9.41977 —

eþLiH 3.44470 11.9397 7:08879 � 10�3

aAll quantities are in atomic units.
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noticeable as the nuclear masses decrease. For eþLiH, our riHð� r1Þ mean

distance of 3.445 bohr agrees well with the the equilibrium internuclear separa-

tion of 3:348 bohr obtained by Strasburger [135] in the Born–Oppenheimer

calculations.

An important characteristic of positronic systems relevant to the experiment

is their lifetimes. The expectation value of the electron–positron contact density

allows us to evaluate the two-photon annihilation rate for a positronic system

using the expression

�2g ¼ n
pa4c

a0

hdðre�eþÞi

where a is the fine structure constant, a0 is the Bohr radius, c is the velocity of

light, and n denotes the number of electron–positron pairs in the system (2 and 4

in the case of HPs and eþLiH, respectively). The two-photon annihilation rates

we obtained with 3200 basis functions are 2:4716 � 109 s�1 for HPs and

1:4311 � 109 s�1 for eþLiH. This indicates that a positron attached to LiH

survives much longer than in the HPs system. The HPs annihilation rate can be

compared with the result of Yan and Ho obtained in a finite-mass calculation

using Hylleraas coordinates [141] (HPs) and with the explicitly correlated

Gaussian calculation [129] performed for 1HPs (HPs with infinetely heavy

proton), both of which yielded the value of 2:4722 � 109 s�1. In the case of

eþLiH, we can make a comparison with the Born–Oppenheimer Quantum Monte

Carlo result of Mella et al. [132], which yielded 1:49 � 109 s�1 (the vibrationally

averaged result), and with the Born–Oppenheimer explicitly correlated Gaussian

result of Strasburger [135] where the value of 1:375 � 109 s�1 was obtained at

the eþLiH equilibrium distance of R ¼ 3:348 bohr.

VI. NON-BO CALCULATIONS OF DIATOMIC MOLECULES IN

ELECTRIC FIELD WITH SHIFTED GAUSSIANS

When a diatomic molecule enters an electric field, the rotational symmetry of the

wave function is broken. The wave function is no longer an eigenfunction of

the total angular momentum operator, ĴJ, but, if we assume the electric field to

be directed along the molecular z axis, is only an eigenfunction of ĴzJz. Thus, we

cannot use the above spherically symmetric basis functions to expand the wave

function. We find that expansion of the electric-field-perturbed wave function in

terms of spherical Gaussians with floating centers provides a good description of

the electric field effect.

It can be shown that the basis of spherical explicitly correlated Gaussian

functions with floating centers (FSECG) form a complete set. These functions
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have the form

gkðrÞ ¼
Yn

i¼1

expð�ak
i ðri � Rk

i Þ
2Þ
Yn

j> i

expð�bk
ijðri � rjÞ2Þ ð121Þ

which may equivalently be expressed as

gkðrÞ ¼ expð�ðr � skÞ0ðAk 	 I3Þðr � skÞÞ ð122Þ

The Kronecker product with the identity ensures rotational invariance

(sphericalness); elliptical Gaussians could be obtained by using a full n � n A

matrix. In the former formulation of the basis function, it is difficult to ensure the

square integrability of the functions, but this becomes easy in the latter

formulation. In this format, all that is required is that the matrix, Ak, be positive

definite. This may be achieved by constructing the matrix from a Cholesky

decomposition: Ak ¼ L0
kLk. Later in this work we will use the notation

�AA ¼ A 	 I3 to indicate the Kronecker product with the 3 � 3 identity matrix.

The correct symmetry of the system may be ensured by projection onto the

irreducible representations, as described above. Thus, when taking symmetry

into account, the final form of the basis function is

ŶYgkðrÞ ¼
Y

i

ŶiYi expf�ðr � skÞ0½ðLkL0
kÞ 	 I3�ðr � skÞg ð123Þ

and the spin-free spatial wave function has the form

� ¼
Xm

k¼1

ckŶYgk ð124Þ

where m is the size of the basis.

A. Integrals and Energy Derivatives

1. Born–Oppenheimer Integrals over Correlated Gaussians

Later we will discuss conventional Born–Oppenheimer calculations used in

conjunction with the current work. Thus, for completeness, we will cover here

the integrals needed for these calculations. These integrals are quite similar to the

ones used in the non-Born–Oppenheimer calculaions, as will be shown below.

We show first the integrals over the Born–Oppenheimer Hamiltonian:

ĤH ¼ � 1

2
r0

rrr þ
Xn

j> i

1

rij

�
Xn

i¼1

XN

t¼1

Zt

rit

þ
XN

u> t

ZtZu

rtu

ð125Þ
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where explicit separation of the electronic and nuclear coordinates has been

performed. In this case, n indicates only the number of electrons, rather than

indicating the number of particles, while N indicates the number of nuclei. These

molecular integrals have been published before in several formats [48, 52, 61, 75],

but the format presented here is most useful for deriving the analytical gradients

used in the optimization of the wave function.

Some definitions used in the integral formulas are

�AAkl ¼ �AAk þ �AAl

e ¼ s0k
�AAk þ s0l

�AAl

s ¼ �AA�1
kl e

pkl ¼
jAkj1=2jAlj1=2

jAklj

and

g ¼ �s0k
�AAksk � s0l

�AAlsl þ e0�AA�1
kl e

Also, we will use the Jij matrix given by (52). We define a 3n vector t as

containing the three coordinates of the tth nucleus repeated n times:

t ¼

rt

rt

..

.

rt

0
BBB@

1
CCCA

Repeated use is made of the following formula:ð1
�1

expð�x0Mx þ iz0xÞdx ¼ pn=2jMj�1=2
expð�z0M�1z=4Þ ð126Þ

where M is an n � n matrix, and x and z are vectors of size n.

The overlap integral is the simplest and serves as a basis for the rest of the

integrals. The product of two functions is

gkgl ¼ expð�ðr � skÞ0�AAkðr � skÞ � ðr � slÞ0�AAlðr � slÞÞ
¼ expð�r0ð�AAk þ �AAlÞr þ 2ðs0k�AAk þ s0l

�AAlÞrÞ � expð�s0k
�AAksk � s0l

�AAlslÞ

Using (38), we get the following expression for the overlap integral:

hgkjgli ¼ p3n=2jAklj�3=2
expð�s0k

�AAksk � s0l
�AAlsl þ e0�AA�1

kl eÞ ð127Þ
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Using the same method for the integrals hgkjgki and hgljgli, we find the overlap

integral for the normalized basis functions to be

Skl ¼ 23n jAkj1=2jAlj1=2

jAklj

 !3=2

expðgÞ ð128Þ

The kinetic energy integral follows easily from the overlap integral. We write

the kinetic energy operator

T̂T ¼ � 1

2
rr � rr ð129Þ

where the subscript r denotes the gradient with respect to all 3n coordinates of

the n electrons. The integral is thus

Tkl ¼ hgkjT̂T jgli

¼ � 1

2
hgkjrr � rrjgli

¼ 1

2
hr0

rgkjrrgli

Looking at (2), it is evident that rrgk ¼ �rsk
gk, thus our integral becomes

Tkl ¼
1

2
hr0

sk
gkjrsl

gli

¼ 1

2
hgkjr0

sk
rsl

jgli

¼ 1

2
tr½rsl

r0
sk
hgkjgli�

The two derivatives of the overlap integral are easily evaluated directly from (40)

and the result is

r0
sk
hgkjgli ¼ Sklð�2�AAksk þ 2�AAksÞ

rsl
r0

sk
hgkjgli ¼ Skl½ð2�AAls � 2�AAlslÞ0ð2�AAks � 2�AAkskÞ þ 2�AAk

�AA�1
kl

�AAl�

So the final expression for the kinetic energy integral is

Tkl ¼ Sklð2ðs � skÞ0�AAk
�AAlðs � slÞ þ 3tr½AkA�1

kl Al�Þ ð130Þ
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The two potential energy integrals, electron repulsion and nuclear attraction,

are derived quite similarly. Both involve the Gaussian transformation

1

rij

¼ 2

p1=2

ð1
0

expð�u2r2
ijÞ du ð131Þ

and the identity

ð1
0

ð1 þ au2Þ�3=2
expð� au2

1 þ au2
Þ du ¼ p1=2

2a1=2
erf

a

a

 !1=2
� 	

ð132Þ

The electron repulsion integral is the more straightforward of the two

potential integrals. It should be recognized that r2
ij can be written as r0�JJijr. Thus

the integral, using (43), becomes

ER
ij
kl ¼ hgkj

1

rij

jgli

¼ 2

p1=2
expðgÞ

ð1
�1

dr

ð1
0

du expð�ðr � sÞ0�AAklðr � sÞ � u2r0�JJijrÞ

which can be further rearranged to give

ER
ij
kl ¼

2

p1=2
expðgÞ expð�s0�AAklsÞ

ð1
�1

dr

ð1
0

du expð�r0ð�AAkl þ u2�JJijÞr þ 2s0�AAklrÞ

Applying (38) to the integral over r, we get

ER
ij
kl ¼

2

p1=2
expðgÞp3n=2

ð1
0

duj�AAkl þ u2�JJijj�1=2
exp � u2s0�JJijs

1 þ u2tr½JijAkl�

� 	

Following the approach given in the work of Kinghorn [116], we further get

ER
ij
kl ¼

2

p1=2
Skl

ð1
0

duð1 þ u2tr½JijAkl�Þ�3=2
exp � u2s0�JJijs

1 þ u2tr½JijAkl�

� 	

By applying (44), we get

ER
ij
kl ¼ Skl

1

s0�JJijs

� 	1=2

erf
s0�JJijs

tr½JijAkl�

� 	1=2
 !

ð133Þ

438 sergiy bubin, mauricio cafiero and ludwik adamowicz



In order to solve the nuclear attraction integral, we use the t vector. We recognize

that r2
it ¼ ðr � tÞ0�JJiiðr � tÞ. The integral can thus be written as

NAit
kl ¼ hgkj

1

rit

jgli

¼ 2

p1=2
expðgÞ

ð1
�1

dr

ð1
0

du expð�ðr � sÞ0�AAklðr � sÞ� u2ðr� tÞ0�JJiiðr � tÞÞ

which, with a little rearrangement, can be put into the form

NAit
kl ¼

2

p1=2
expðgÞ expð�ðs � tÞ0�AAklðs � tÞÞ

�
ð1
�1

dr

ð1
0

du expð�ðr � tÞ0ð�AAkl þ u2�JJiiÞðr � tÞ þ 2ðs � tÞ0�AAklðr � tÞÞ

By changing the integration variable from r to ðr � tÞ and applying (38), we get

NAit
kl ¼

2

p1=2
expðgÞp3n=2

ð1
0

duj�AAkl þ u2�JJiij�1=2
exp � u2ðs � tÞ0�JJijðs � tÞ

1 þ u2tr½JiiA
�1
kl �

� 	

the form of which is very similar to the electron repulsion integral. Using the

same steps as in that integral, we get

NAit
kl ¼ Skl

1

ðs � tÞ0�JJiiðs � tÞ

� 	1=2

erf
ðs � tÞ0�JJiiðs � tÞ

tr½JiiA
�1
kl �

� 	1=2
 !

ð134Þ

After converting the error function to the F0 function, both of the potential

energy integrals have the same general form

Vkl ¼
2

p1=2
Skla�1=2F0

r
a

 !
ð135Þ

For Vkl ¼ ER
ij
kl, we have a ¼ tr½JijA

�1
kl � and r ¼ s0�JJijs; for Vkl ¼ NAit

kl, we have

a ¼ tr½JiiA
�1
kl � and r ¼ ðs � tÞ0�JJiiðs � tÞ.

The F0 function is defined as

F0ðxÞ ¼ 1
2

ffiffi
p
x

p
erfð

ffiffiffi
x

p
Þ

2. Non-Born–Oppenheimer Integrals over Correlated Gaussians

Most of the integrals used in the non-BO calculations—the overlap integral and

the potential energy integral—are similar to those presented above and will not

be derived. A slight difference in the kinetic energy integral will be shown. In this

case we find integrals over the operators in the non-BO Hamiltonian:

ĤH ¼ �r0
r
�MMrr þ

Xn

i¼1

q0qi

ri

þ
Xn

i< j

qiqj

rij

ð136Þ
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The kinetic energy integral is given by

Tkl ¼ Sklð4ðs � skÞ0�AAk
�MM�AAlðs � slÞ þ 6tr½MAlA

�1
kl Ak�Þ ð137Þ

This form differs from the Born–Oppenheimer form in that the constant 1
2

(for

electron masses) is replaced by the mass matrix, M (described above), but all

other steps are similar.

3. Electric Field Integrals

The electric field term is most easily evaluated with one electric field component

at a time. Taking the z component, we have

FTz
kl ¼ hgkj

Xn

i¼1

mi
zezjgli

FTz
kl ¼ hgkj

Xn

i¼1

qir
3iezjgli

FTz
kl ¼

Xn

i¼1

ezqihgkjr3ijgli ð138Þ

and the integral reduces to an evaluation of hgkjr3ijgli. We will present the

general case of this integral for all components, i:

ri
kl ¼ hgkjrijgli ð139Þ

This integral is solved by examining the expectation value of the operator:

o0Eii
�AA�1

l rr ð140Þ

where o is a vector of ones, and Eii is a 3n � 3n matrix as described above.

The gradient of the basis function is simply:

r0
rgl ¼ glð2�AAlsl � 2�AAlrÞ ð141Þ

so the expectation value of the operator is

ho0Eii
�AA�1

l rri ¼ 2o0EiislSkl � 2ri
kl ð142Þ

Looking at the form of the basis function (2), it is obvious that

r0
rgl ¼ �r0

sl
gl ð143Þ
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so that

ho0Eii
�AA�1

l rri ¼ �ho0Eii
�AA�1

l rsl
i ð144Þ

The right-hand side of the above is easily evaluated by pulling the operator out of

the integral:

ho0Eii
�AA�1

l rsl
i ¼ 2Sklðo0Eiis � o0EiislÞ ð145Þ

Setting one of the operators equal to the negative of the other, we get

ri
kl ¼ Sklo

0Eiis ¼ SklsðiÞ ð146Þ

4. Energy Gradients

The gradients of the molecular integrals with respect to the nonlinear variational

parameters (i.e., the exponential parameters Ak and the orbital centers sk) were

derived using the methods of matrix differential calculus as introduced by

Kinghorn [116]. It was shown there that the energy gradient with respect to all

nonlinear variational parameters can be written as

raE ¼ 1

c0Sc

qvech H

qa0 � E
qvech S

qa0

� 	0
ðvech ½2cc0 � diag cc0�Þ ð147Þ

where a is a mðnðn þ 1Þ=2 þ 3nÞ vector of all the nonlinear parameters. Each

function, gk, contains the lower triangular matrix Lk with nðn þ 1Þ=2 nonzero

elements and the 3n vector sk. The vector a is made by stacking, function by

function, the nonzero elements of Lk followed by the vector sk. The matrices

of derivatives qvech H=qa0 and qvech S=qa0 are sparse, since each row has at

most 2ðnðn þ 1Þ=2 þ 3nÞ nonzero elements. The derivatives of the Hamiltonian

are determined using the derivatives of the molecular integrals (Born–

Oppenheimer):

qvech H

qa0 ¼ qvech T

qa0 þ qvech ER

qa0 þ qvech NR

qa0 � qvech NA

qa0 ð148Þ

where NR stands for the nuclear–nuclear repulsion energy, or (non-

Born–Oppenheimer)

qvech H

qa0 ¼ qvech T

qa0 þ qvech V

qa0 ð149Þ
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The differential of the overlap integral with respect to sk is straightforward,

dsk
Skl ¼ Skldsk

ð�s0k
�AAksk þ e0�AA�1

kl eÞ
¼ Sklð�2s0k

�AAkdsk þ 2e0�AA�1
kl deÞ

¼ Sklð�2s0k
�AAk þ 2s0�AAkÞdsk

¼ 2Sklððs � skÞ0�AAkÞdsk ð150Þ

The kinetic energy differential is only slightly more complicated:

dsk
Tkl ¼

Tkl

Skl

dsk
Skl þ 2Skldsk

ððs � skÞ0�AAk
�AAlðs � slÞÞ

¼ Tkl

Skl

dsk
Skl þ 2Sklððs � skÞ0�AAk

�AAlds þ ðs � slÞ0�AAk
�AAlds � ðs � slÞ0�AAk

�AAldskÞ

¼ Tkl

Skl

dsk
Skl þ 2Sklððs � skÞ�AAk

�AAl
�AA�1

kl
�AAk þ ðs � slÞ�AAk

�AAl
�AA�1

kl
�AAk

� ðs � slÞ�AAk
�AAlÞ0dsk ð151Þ

In the general form of the potential energy integrals, only r has any dependence

on sk. The general differential is

dsk
Vkl ¼

Vkl

Skl

dsk
Skl þ

2

p1=2
Skla�3=2F0

0

r
a

 !
dr ð152Þ

For Vkl ¼ ER
ij
kl:

dr ¼ 2s0�JJij
�AA�1

kl
�AAkdsk ð153Þ

For Vkl ¼ NAit
kl:

dr ¼ 2ðs � tÞ0�JJij
�AA�1

kl
�AAkdsk ð154Þ

As shown in (4), the matrices Ak are actually products of triangular matrices

LkL0
k and the derivatives reflect this. The derivatives we must find are

qOkl

qvech Lk

In doing so, we make frequent use of the construct

v0 �MMv ¼ tr½ðv � vÞM� ð155Þ

to get rid of pesky Kronecker products.

The full differential of the overlap integral with respect to Lk is

dkSkl ¼ 23nðdkðp3=2
kl Þ expðgÞ þ p

3=2
kl expðgÞdkgÞ ð156Þ
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We will examine first the part containing the determinants:

dkðpklÞ3=2 ¼3

2
ðpklÞ1=2

dkðpklÞ

¼3

2
ðpklÞ1=2 1

jAklj2
�

1

2
jAkljjAlj1=2jAkj1=2

tr½A�1
k dkðAkÞ�

�jAkljjAlj1=2jAkj1=2
tr½A�1

kl dkðAkÞ�
	

¼3

2
ðpklÞ3=2ðtr½L0

kA�1
k dLk��2tr½L0

kA�1
kl dLk�Þ

¼3

2
ðpklÞ3=2ðvech ½A�1

k Lk�0 �2 vech½A�1
kl Lk�0Þvech ½dLk�: ð157Þ

Next, we need to find the differential of g,

dkg¼�dkðs0k�AAkskÞþdkðe0�AA�1
kl eÞ

¼�s0kdð�AAkÞsk þ2e0�AA�1
kl dð�AAkÞsk �e0�AA�1

kl dð�AAkÞ�AA�1
kl e

¼�tr½ðsk �skÞdAk�þ2tr½ðsk �sÞdAk�� tr½ðs �sÞdAk�
¼ð2vech ½ðsk �sÞLk�þ2vech ½ðsk �sÞ0Lk�
�2vech ½ðsk �skÞLk��2vech ½ðs �sÞLk�Þ0vech ½dLk� ð158Þ

The differential of the kinetic energy integral is

dkTkl ¼
Tkl

Skl

dkSkl þ Sklð2dkððs � skÞ0�AAk
�AAlðs � slÞÞ þ 3dktr½AkA�1

kl Al�Þ ð159Þ

Let us look at the first term in the parentheses:

dkððs�skÞ0�AAk
�AAlðs�slÞÞ¼dkðs�skÞ0�AAk

�AAlðs�slÞ
þðs�skÞ0dkð�AAkÞ�AAlðs�slÞþðs� skÞ0�AAk

�AAldkðs�slÞ
¼�s0dkð�AAkÞ�AA�1

kl
�AAk
�AAlðs�slÞþs0kdkð�AAkÞ�AA�1

kl
�AAk
�AAlðs�slÞ

þðs�skÞ0dkð�AAkÞ�AAlðs�slÞ�ðs� skÞ0�AAk
�AAl
�AA�1

kl dkð�AAkÞs
þðs�skÞ0�AAk

�AAl
�AA�1

kl dkð�AAkÞsk

¼�tr½A�1
kl AkAlððs�slÞ �sÞdkðAkÞ�þ tr½A�1

kl AkAlððs�slÞ � skÞdkðAkÞ�
þ tr½Alððs� slÞ � ðs�skÞÞdkðAkÞ�� tr½ðs � ðs�skÞÞAkAlA

�1
kl dkðAkÞ�

þ tr½ðsk � ðs�skÞÞAkAlA
�1
kl dkðAkÞ�

¼ð�vech ½A�1
kl AkAlððs�slÞ �sÞLk��vech ½ðA�1

kl AkAlððs�slÞ � sÞÞ0Lk�
þvech ½A�1

kl AkAlððs� slÞ �skÞLk�þvech ½ðA�1
kl AkAlððs�slÞ � skÞÞ0Lk�

þvech ½Alððs�slÞ � ðs�skÞÞLk�þvech ½ðAlððs� slÞ � ðs� skÞÞÞ0Lk�
�vech ½ðs � ðs�skÞÞAkAlA

�1
kl Lk��vech ½ððs � ðs�skÞÞAkAlA

�1
kl Þ

0
Lk�

þvech ½ðsk � ðs�skÞÞAkAlA
�1
kl Lk�

þvech ½ððsk � ðs�skÞÞAkAlA
�1
kl Þ

0
Lk�Þ0vech ½dLk� ð160Þ
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And finally let’s look at the second term in the parentheses:

dktr½AkA�1
kl Al� ¼ tr½dkAkA�1

kl Al� � tr½AkA�1
kl dkAkA�1

kl Al�

¼ tr½A�1
kl AldkAk� � tr½A�1

kl AlAkA�1
kl dkAk�

¼ ðvech½ðA�1
kl Al þ AlA

�1
kl ÞLk�

� vech½ðA�1
kl AlAkA�1

kl þ A�1
kl AkAlA

�1
kl ÞLk�Þ0vech½dLk� ð161Þ

For evaluation of the derivatives of the potential terms, we will refer again to the

general form of the potential energy and the definitions of r and a. The general

form of the differential is

dkVkl ¼
Vkl

Skl

dkSkl �
1

p1=2
Skla�3=2F0

r
a

 !
daþ 2

p1=2
Skla�1=2F0

0

r
a

 ! adkr� rdka
a2

� 	
ð162Þ

So in both cases it is only nessesary to find the derivatives of r and a. For

Vkl ¼ ER
ij
kl we have

dkr ¼ 2s0�JJijdks ¼ 2s0�JJijdkð�AA�1
kl Þe þ 2s0�JJij

�AA�1
kl dkð�AAkÞsk

¼ �2s0�JJij
�AA�1

kl dkð�AAkÞs þ 2s0�JJij
�AA�1

kl dkð�AAkÞsk

¼ �2tr½ðs � sÞJijA
�1
kl dkðAkÞ� þ 2tr½ðsk � sÞJijA

�1
kl dkðAkÞ�

¼ ð2vech ½ðsk � sÞJijA
�1
kl Lk� þ 2vech ½ððsk � sÞJijA

�1
kl Þ

0
Lk�

� 2vech½ððs � sÞJijA
�1
kl þ A�1

kl Jijðs:sÞÞLk�Þ0vech½dLk� ð163Þ

and

dka ¼ dktr½JijA
�1
kl � ¼ �tr½JijA

�1
kl dkðAkÞA�1

kl �
¼ �tr½A�1

kl JijA
�1
kl dkðAkÞ� ¼ �2vech ½A�1

kl JijA
�1
kl Lk�0vech½dLk� ð164Þ

So, for Vkl ¼ NAit
kl we obtain

dkr ¼ 2ðs � tÞ0�JJiidks ¼ 2ðs � tÞ0�JJiidkð�AA�1
kl Þe þ 2ðs � tÞ0�JJii

�AA�1
kl dkð�AAkÞsk

¼ �2ðs � tÞ0�JJii
�AA�1

kl dkð�AAkÞs þ 2ðs � tÞ0�JJii
�AA�1

kl dkð�AAkÞsk

¼ �2tr½ðs � ðs � tÞÞJiiA
�1
kl dkðAkÞ� þ 2tr½ðsk � ðs � tÞÞJiiA

�1
kl dkðAkÞ�

¼ ð2vech ½ðsk � ðs � tÞÞJiiA
�1
kl Lk� þ 2vech ½ððsk � ðs � tÞÞJiiA

�1
kl Þ

0
Lk�

� 2vech ½ðs � ðs � tÞÞJiiA
�1
kl Lk� � 2vech ½ððs � ðs � tÞÞJiiA

�1
kl Þ

0
Lk�Þ0vech½dLk�

ð165Þ
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and

dka ¼ dktr½JiiA
�1
kl � ¼ �tr½JiiA

�1
kl dkðAkÞA�1

kl �
¼ �tr½A�1

kl JiiA
�1
kl dkðAkÞ� ¼ �2vech ½A�1

kl JiiA
�1
kl Lk�0vech ½dLk� ð166Þ

which completes the gradient derivation.

5. Non-Born–Oppenheimer Energy Gradients

Again, these gradients differ only in the kinetic energy differential from the

Born–Oppenheimer form:

dsk
Tkl ¼

Tkl

Skl

dsk
Skl þ 4Sklððs � skÞ�AAk

�MM�AAl
�AA�1

kl
�AAk

þ ðs � slÞ�AAk
�MM�AAl

�AA�1
kl

�AAk � ðs � slÞ�AAk
�MM�AAlÞ0dsk ð167Þ

The Lk differential of the kinetic energy integral, with M instead of 1
2
, is

dkTkl ¼
Tkl

Skl

dkSkl þ Sklð4dkððs � skÞ0�AAk
�MM�AAlðs � slÞÞ þ 6dktr½MAlA

�1
kl Ak�Þ ð168Þ

Let us look at the first term in the parentheses:

dkððs � skÞ0�AAk
�AAlðs � slÞÞ ¼ ð�vech½A�1

kl AkMAlððs � slÞ � sÞLk�

� vech½ðA�1
kl AkMAlððs � slÞ � sÞÞ0Lk�

þ vech½A�1
kl AkMAlððs � slÞ � skÞLk� þ vech½ðA�1

kl AkMAlððs � slÞ � skÞÞ0Lk�

þ vech½MAlððs � slÞ � ðs � skÞÞLk� þ vech½ðMAlððs � slÞ � ðs � skÞÞÞ0Lk�

� vech½ðs � ðs � skÞÞAkMAlA
�1
kl Lk� � vech½ððs � ðs � skÞÞAkMAlA

�1
kl Þ

0
Lk�

þ vech½ðsk � ðs � skÞÞAkMAlA
�1
kl Lk�

þ vech½ððsk � ðs � skÞÞAkMAlA
�1
kl Þ

0
Lk�Þ0vech½dLk� ð169Þ

And finally let’s look at the second term in the parentheses:

dktr½MAlA
�1
kl Ak� ¼ tr½dkAkA�1

kl MAl� � tr½AkA�1
kl dkAkA�1

kl MAl�
¼ tr½A�1

kl MAldkAk� � tr½A�1
kl MAlAkA�1

kl dkAk�
¼ ð2vech½A�1

kl MAlLk� � 2vech½A�1
kl MAlAkA�1

kl Lk�Þ0vech½dLk�
ð170Þ
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6. Energy Gradients for the Electric Field Term

The differential of the electric field term follows easily from the definition of s:

dsk
FTz

kl ¼
FTz

kl

Skl

dsk
Skl þ Sklðo0Eii

�A�1
klA�1
kl

�AkAkdskÞ ð171Þ

For the Lk differential, the general form is

dkFTz
kl ¼

FTz
kl

Skl

dkSkl þ Skldðo0EiisÞ ð172Þ

The only new derivative needed is the leftmost term on the left-hand side:

dðo0EiisÞ ¼ o0Eiids

¼ o0Eiidð�AA�1
kl eÞ

¼ �o0Eiið�AA�1
kl d�AAk

�AA�1
kl e � �AA�1

kl deÞ
¼ �o0Eiið�AA�1

kl d�AAks � �AA�1
kl d�AAkskÞ ð173Þ

At this point it is useful to define two vectors: v1 ¼ Eiio and v2 ¼ sk � s. Using

these, the last equation becomes

dðo0EiisÞ ¼ tr½ðv2 � v1ÞA�1
kl dAk�

¼ tr½ðv2 � v1ÞA�1
kl ðdLkL0

k þ LkdL0
kÞ�

¼ tr½L0
kðv2 � v1ÞA�1

kl dLk� þ tr½ðv2 � v1ÞA�1
kl LkdL0

kÞ�
¼ tr½L0

kðv2 � v1ÞA�1
kl dLk� þ tr½L0

kA�1
kl ðv2 � v1Þ0dLkÞ�

¼ ðvech½A�1
kl ðv2 � v1Þ0Lk� þ vech½ðv2 � v1ÞA�1

kl Lk�Þ0vech½dLk� ð174Þ

7. Geometry Optimization Gradients

When looking at Born-Oppenhiemer calculations, we find that additional

gradients are needed in geometry optimization. The gradient of the energy

with respect to nuclear coordinates is given by

rrN
E ¼ 1

c0Sc

qvechH

qr0N

� 	0
ðvech½2cc0 � diagcc0�Þ: ð175Þ

The derivatives needed are

qvech H

qr0N
¼ qvech NR

qr0N
� qvech NA

qr0N
ð176Þ
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where NA stands for nuclear attraction energy and NR stands for nuclear

repulsion energy. Thus we need to calculate the elements:

qNAkl

qr0N
¼
Xn

i¼1

XN

t¼1

qNAit
kl

qr0N
ð177Þ

and

qNRkl

qr0N
¼
X
u> t

qNRtu
kl

qr0N
ð178Þ

For the NA integral we cannot differentiate directly with respect to rN , so we

must differentiate with respect to t, since

qNAit
kl

qr0Nt

¼ qNAit
kl

qt0
ð179Þ

where rNt
is the three-element partition of rN pertaining to the tth nucleus and it is

understood that we include only the three nonzero elements of the vector

qNAit
kl=qt0 in the equality.

This is then easily differentiated using the chain rule:

dNAit
kl ¼ � 4

p1=2
Sklðtr½JiiAkl�Þ�3=2

F0
0

ðs � tÞ0�JJiiðs � tÞ
tr½JiiAkl�

� 	
ðs � tÞ0�JJii dt ð180Þ

The elements of NR can be easily differentiated directly on rN :

dNRtu
kl ¼

ZtZuSkl

ðr0N�JJturNÞ3=2
r0N�JJtudðrNÞ ð181Þ

8. Expectation Values

For non-Born–Oppenheimer calculations we have no molecular structure, per se,

since all particles including nuclei are treated quantum mechanically. Thus the

only information we can obtain about the structure of these molecules are the

expectation values of distances between particles (rij) and powers of these dis-

tances. We present below the integrals needed in the calculation of these

expectation values.

In order to find the rij integrals, we use the substitution

1

rij

¼ 2

p1=2

ð1
0

expð�u2r2
ijÞ du ð182Þ
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Thus for the integral we have

hgkjrijjgli ¼ rkl
ij

rkl
ij ¼ hgkj

r2
ij

rij

jgli

rkl
ij ¼

2

ðpÞ1=2

q
qa

ð1
0

du
�1

u2
hgkj expð�au2r0 �JijJijrÞjglija¼1 ð183Þ

Expanding the basis functions, we have

rkl
ij ¼

2

ðpÞ1=2
expð�g�s0�AAklsÞ

q
qa

ð1
�1

dr

ð1
0

du
1

u2
exp½�r0ð�AAklþau2 �JijJijÞrþ2s0�AAklr�ja¼1

ð184Þ

Applying the formula

ð1
�1

expð�r0Mr þ iz0rÞ dr ¼ pn=2jMj�1=2
expð�z0M�1z=4Þ ð185Þ

where M is an n � n matrix, and r and z are vectors of length n, we find the

integral over r:

rkl
ij ¼ 2

ðpÞ1=2
expð�g� s0�AAklsÞ

q
qa

ð1
0

du
p3n=2

u2
j�AAkl þ au2 �JijJijj�1=2

� exp½s0�AAklð�AAkl þ au2 �JijJijÞ�1�AAkls þ 2s0�AAklr�ja¼1

ð186Þ

which, upon further simplification, becomes

rkl
ij ¼ Skl

2

ðpÞ1=2

q
qa

ð1
0

du
1

u2

�
1 þ au2tr½JijA

�1
kl �
	�3=2

exp

�
�au2s0 �JijJijs

1 þ au2tr½JijA
�1
kl �

	����
a¼1

ð187Þ

At this point we define a ¼ tr½JijA
�1
kl � and b ¼ s0 �JijJijs. Using these definitions and

differentiating with respect to a, we have

rkl
ij ¼Skl

2

ðpÞ1=2

ð1
0

du
3a
2
ð1þau2aÞ�5=2 þbð1þau2aÞ�7=2

� �
exp

�au2b
1þau2aÞ

� 	����
a¼1

ð188Þ
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These two integrals may be solved by clever substitution and use of the integrals:

ð1

0

expð�bt2Þ dt ¼ 1

2

p
b

 !1=2

erfðb1=2Þ ð189Þð1

0

t2 expð�bt2Þ dt ¼ 1

4

p
b3

 !1=2

erfðb1=2Þ � 1

2b
expð�bÞ ð190Þ

and

ð1

0

t4 expð�bt2Þ dt ¼ 3

8

p
b5

 !1=2

erfðb1=2Þ � 1

2b
expð�bÞ � 3

4b2
expð�bÞ ð191Þ

After simplification, we have

rkl
ij ¼ Skl

1a

2b1=2
� b1=2

 !
erf

b
a

� 	1=2
" #( )

� a
p

 !1=2

exp � b
a

� 	
ð192Þ

The integrals for ðr2Þkl
ij may be obtained as a subset of the above integral by

setting it up as

ðr2Þkl
ij ¼

q
qu

hgkj expð�ur0�JJijrÞjgliju¼0 ð193Þ

With relative ease we obtain

ðr2Þkl
ij ¼ Skl

3

2
a� b

� 	
ð194Þ

9. One-Particle Densities

Here we will present the formulae needed for calculating the reduced one-

particle density matrices from the floating correlated Gaussians used in this

work. The first-order density matrix for wave function �ðr1; r2; . . . ; rnÞ for

particle 1 is defined as

Pðr1; r01Þ ¼
ð
��ðr1; r2; . . . ; rnÞ�ðr01; r2; . . . ; rnÞdr2 � � � drn ð195Þ

Since we are using the expansion

�ðrÞ ¼
XM
k¼1

ckŶYfkðrÞ ð196Þ
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we need to only find the matrix elements:

Pklðr1; r01Þ ¼
ð
fkðr1; r2; . . . ; rnÞflðr01; r2; . . . ; rnÞdr2 � � � drn ð197Þ

for basis functions fk and fl.

We will follow the derivations presented in the work by Poshusta and

Kinghorn [104] for the single-center Gaussians. The present work differs

from theirs in that we use multicenter Gaussians to shift density away from

the origin of the coordinate system. A definition used in the integral formulas is

�MM ¼ M 	 I3

where M is a matrix and I3 is the 3 � 3 identity. As in the previous work [104]

and for the convenience of the presentation, we define the following augmented

coordinate vectors:

rþ ¼ r01
r

� 	
¼ u

v

� 	
ð198Þ

where

u ¼ r01
r1

� 	
; v ¼

r2

r3

� � �
rn

0
BB@

1
CCA ð199Þ

These vectors allow us to separate the coordinates r1 and r01 from the coordinates

over which the integration is performed (v) in the density calculation. Likewise,

the vector of the shifts needs to be augmented to match the dimension of rþ:

sþk ¼

0

0

0

sk

0
BB@

1
CCA ð200Þ

We will also need

�AAþ
k ¼

�00 �00
�00 �AAk

� 	
ð201Þ
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and

�YY ¼
�00 �11 �00
�11 �00 �00
�00 �00 �In�1In�1

0
@

1
A ð202Þ

where �In�1In�1 is the ðn � 1Þ � ðn � 1Þ identity matrix. Using the above definitions,

we can formally represent fkðr1; r2; . . . ; rnÞ and fkðr01; r2; . . . ; rnÞ as

fkðr1; r2; � � � rnÞ ¼ exp �ðrþ � sþk Þ
0 �AAþ

k ðrþ � sþk Þ
� �

ð203Þ

and

flðr01; r2; � � � rnÞ ¼ exp � rþ � �YY
sþl

 !0 �YY�AAþ
l
�YY !

rþ � �YY
sþl

 !h i
ð204Þ

The product of the Gaussians in the integrand of Pkl may then be written (using

the abbreviations ����AAþ
l
��� ¼ �AAþp

l and ���sþl ¼ s
þp
l ) as

fkðr1;r2; . . . ;rnÞflðr01;r2; . . . ;rnÞ

¼ exp½�s0k
�AAksk � s0l

�AAlsl � rþ0ð�AAþ
k þ �AAþp

l Þrþ þ 2rþ0ð�AAþ
k sþk þ �AAþp

l s
þp
l Þ� ð205Þ

Using the definitions

�ZZkl ¼ �AAþ
k þ �AAþp

l ð206Þ

and

zþ ¼ �AAþ
k sþk þ �AAþp

l s
þp
l ð207Þ

we can rewriting the above expression as

fkðr1; r2; . . . ; rnÞflðr01; r2; . . . ; rnÞ ¼ exp½�s0k
�AAksk � s0l

�AAlsl � rþ0�ZZklrþ þ 2rþ0zþ�
ð208Þ

The last two terms in the exponent above can be expanded using the augmented

matrices defined above:

� rþ0ð�AAþ
k þ �AAþp

l Þrþ þ 2rþ0ð�AAþ
k sþk þ �AAþp

l s
þp
l Þ

¼ exp � uvð Þ
�ZZkl

u
�ZZkl

uv

�ZZkl
vu

�ZZkl
v

 !
u

v

� 	
þ 2ðuvÞ

zþu

zþv

� 	" #
ð209Þ
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where �ZZkl
u is a 6 � 6 matrix , �ZZkl

v is a ðn � 1Þ � ðn � 1Þ matrix, and zþu is a vector

of length 6, while zþv is a vector of length ð3n � 3Þ. Expanding the above

expression again we get

exp½�u0�ZZkl
u u � v0�ZZkl

v v � 2u0�ZZkl
uvv þ 2u0zþu þ 2v0zþv� ð210Þ

Now, after substituting the above expression into the original expression,

we get

fkðr1;r2;...;rnÞflðr01;r2;...;rnÞ

¼exp½�s0k
�AAksk�s0l

�AAlsl�u0�ZZkl
u uþ2u0zþu��exp½�v0�ZZkl

v v�2u0�ZZkl
uvvþ2v0zþv � ð211Þ

We can now integrate over the variables in the v vector and we get

Pklðr1;r
0
1Þ¼p3ðn�1Þ=2jZkl

v j
�3=2

exp½�s0k
�AAksk �s0l

�AAlsl�u0�ZZkl
u uþ2u0zþu�

�exp½�u0�ZZkl
uvð�ZZkl

v Þ
�1�ZZkl

vuu�2u0�ZZkl
uvð�ZZkl

v Þ
�1zþv þ zþv0ð�ZZkl

v Þ
�1zþv � ð212Þ

By grouping all the terms that do not include u, we can define the following

‘‘augmented’’ overlap matrix element:

Sþ
kl ¼ p3ðn�1Þ=2jZkl

v j
�3=2

exp½�s0k
�AAksk � s0l

�AAlsl þ zþv0ð�ZZkl
v Þ

�1zþv � ð213Þ

Using this quantity, we get

Pklðr1; r01Þ ¼ Sþ
kl � exp½�u0ð�ZZkl

u � �ZZkl
uvð�ZZkl

v Þ
�1�ZZkl

vuÞu þ 2u0ðzþu � �ZZkl
uvð�ZZkl

v Þ
�1

zþvÞ�
ð214Þ

Now we define two new matrices:

�WW ¼ �ZZkl
u � �ZZkl

uvð�ZZkl
v Þ

�1�ZZkl
vu ð215Þ

and

d ¼ zþu � �ZZkl
uvð�ZZkl

v Þ
�1zþv ð216Þ

and we arrive at the following final expression for Pklðr1; r01Þ:

Pklðr1; r01Þ ¼ Sþ
kl � exp½�u0 �WWu þ 2u0d� ð217Þ
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Thus the density matrix elements take on the familiar form of a Gaussian with a

shifted center. We can now find the one-particle density matrix element by

setting r1 ¼ r01 �
x1

y1

z1

0
@

1
A:

Dklðr1Þ¼Pklðr1;r1Þ¼Sþ
kl �exp �ðW11 þ W22 þ 2W12Þðx2

1 þ y2
1 þ z2

1Þ þ 2
r1

r1

� 	0
d

� �
ð218Þ

This last expression was used in the code to calculate the densities. As derived,

the formulae apply to the density of pseudoparticle 1 (and all the particles

identical to it). As mentioned, the density of other particles may be obtained by

permuting the desired particle to position 1 in the basis functions.

B. Spherically Symmetric Molecules

In the standard language of chemistry we describe a molecular geometry with

bond lengths and bond angles. In the true quantum-mechanical picture of a

molecule, though, at best we can know average values of the distances between

particles in our system. We will call these two viewpoints the chemical and the

physical picture, respectively, following the designations of Monkhorst [55, 56].

It should be noted that we basically arrive at the chemical picture by making the

adiabatic and BO approximations in the physical picture. In the chemical picture,

we may solve the electronic problem for a fixed molecular geometry—that is, for

fixed bond lengths—or we may optimize the nuclear geometry in the average

field of the electrons and find fictitious equilibrium bond lengths. This bond

length, for a linear molecule, corresponds to the very bottom of the potential

energy curve; likewise, for polyatomic molecules, it corresponds to the very

bottoms of potential energy surfaces (PES’s). At no point does the molecule ever

reside in this point in the PES. We know that for every normal mode of vibration

of the molecule Evi
¼ hn vi þ 1

2

� �
the molecule has to be at least in the vi ¼ 0

state, and this state lies above the troughs of the PES by 1
2

hni.

The above is a well-understood problem of the BO approximation, and the

most accurate calculations of molecular properties takes this into account. A

less well understood difference between the physical and chemical pictures is

that, in the physical picture, the ground state of any molecule is spherically

symmetric. This may be understood in the chemical picture by noting that when

all degrees of freedom are taken into account, the total wave function contains

the nuclear vibratrional and rotational wave functions as well as the electronic

wave function:

�ðrN ; reÞ ¼ cðreÞcvibðrNÞcrotðrNÞ ð219Þ
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In the ground state, the nuclear rotation state is the J ¼ 0 state, which is

spherically symmetric. This total wave function may be thought of in analogy to

the hydrogen atom as a radial part (which is the expansion in explicitly correlated

Gaussians) multiplied by the rotational function, which for the ground state is

simply a constant. This point may be understood by the classical picture of the

molecule rotating about the center of mass. In this picture, the time-averaged

wave function will be spherically symmetric, because the molecule over time has

no preferred direction in space.

This presents a problem when we discuss the dipole moment of a polar

heteronuclear diatomic molecule, AX, where X will be the more electronegative.

In the chemical picture, it is quite common to say that in the ground state the

molecule lies along some axis and that it has a definite dipole moment. In the

physical picture, we say that the molecule has no measurable dipole moment in

the ground state.

When we apply an electric field to the molecule, though, say along the Z

axis, the molecule will begin to align itself with the field. We call this the

rotational polarization of the molecule. In this case, though, when the

Hamiltonian includes a field directed along the z axis, the rotational quantum

number J is no longer a good quantum number, and we now have only

eigenstates of ĴJz. This molecule is no longer spherically symmetric, and thus we

may measure the dipole moment. All that is necessary for the molecule to

rotationally polarize is for the energy lowering due to the interaction with the

field to be greater than a rotational excitation.

Another problem comes in examining the polarizability. In the physical

picture, the spherically symmetric molecule, just like an atom, has isotropic

polarizability. In the chemical picture, for a diatomic molecule we have two

unique polarizabilities: (1) azz and axx in the internal coordinate system or (2)

aZZ ¼ 1
3
ðaxx þ axx þ azzÞ (isotropic polarizability) and �a ¼ azz � axx [polar-

izability anisotropy(PA)] in the laboratory coordinate system. The latter are the

values that are measured in experiments. The isotropic polarizability of the

physical picture is comparable to the BO-isotropic polarizability at very low

field strengths but is comparable to azz at higher field strengths. We cannot

extract the PA from the physical picture, because in this ideal model of dilute

gas-phase molecules the polarizability is isotropic.

One possible solution to this problem may be had from examining the time

development of a molecule on the electric field. Before the field is applied, the

molecule is spherically symmetric, and no PA exists. As soon as the field is

applied, the molecule will distort and lose the symmetry. Early in this distortion

process, though, especially if the field is small, the molecule is still symmetric.

If one can calculate the polarizability at this state, and then calculate the

polarizability of the state when the molecule is fully aligned with the field, then

these two values can give the PA.
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C. Good Quantum Numbers and the Symmetry Properties of

the Basis Functions

In the absence of an electric field, the non-BO Hamiltonian commutes with the

square of the angular momentum operator, ½ĤH; ĴJ2� ¼ 0, and so the eigenfunctions

of the Hamiltonian also have to be eigenfunctions of ĴJ2. This condition is met,

for example, by functions such as

gk ¼
Yn

i¼1

x
pki

i ylki

i zmki

i expð�ak
i ðriÞ2Þ

Yn

j> i

expð�bk
ijðri � rjÞ2Þ ð220Þ

In the presence of an electric field, this commutation is no longer true:

½ĤH; ĴJ2� 6¼ 0, though if the field is applied along the z axis, then the Hamiltonian

does commute with the z component of angular momentum: ½ĤH; ĴJz� ¼ 0. In this

case the eigenfunctions of the Hamiltonian must also be eigenfunctions of ĴJz.

This is met by functions such as those used in this work:

gk ¼
Yn

i¼1

expð�ak
i ðri � Rk

i Þ
2Þ
Yn

j> i

expð�bk
ijðri � rjÞ2Þ ð221Þ

so long as the only components of Rk
i that are nonzero are the z components.

Thus, the wave functions used in this work are not rigorously correct for the field-

free calculations, but the energy error should be only contamination by the first

few rotational states and has, in practice, never been a problem.

D. The Finite Field Method

The response of the energy of a molecule to a static electric field along the z axis

may be written as

Eðf Þ ¼ Eo �
qE

qf
f � 1

2!

qE2

q2f
f 2 � 1

3!

qE3

q3f
f 3 � 1

4!

qE4

q4f
f 4 � � � ð222Þ

We define these derivatives as the usual response properties:

Eðf Þ ¼ Eo � mf � 1

2!
af 2 � 1

3!
bf 3 � 1

4!
gf 4 � � � ð223Þ

where a is called the polarizability, b is called the first hyperpolarizability, and g
is called the second hyperpolarizability. To calculate the response of a molecule

to a static electric field only requires knowledge of these properties.

We use a very simple method for calculating the response of molecules to

electric fields. We calculate the wave function and energy for molecules in
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electric fields of various strengths and plot this information. This plot is fitted to

a polynomial, and the ith-order properties are extracted from the ith-order

coefficients of the fit.

In the physical picture of a molecule, the non-BO energy at the field strength

f is equal to the energy at the field �f , because as the direction of the field

changes the the molecule orients itself with the field so as to have as low a

potential energy as possible. Thus, for any ground-state spherically symmetric

molecule the energy is an even function of the field, and if it is approximated by

a polynomial, only even powers need to be used. This obviously results in a zero

dipole, as well as zero-valued odd-ordered properties in general for any system.

An alternative approach is to apply stronger fields and only use energies

calculated for positive field strengths in generating the polynomial fit. In this

case the energy is a function of both odd and even powers in the polynomial fit.

We will show that the dipole moments derived from our non-BO calculations

with the procedure that uses only positive fields and polynomial fits with both

even and odd powers match very well the experimental results. Thus in the

present work we will show results obtained using interpolations with even- and

odd-power polynomials. Methods other than the finite field method exist where

the noise level in the numerical derivatives is smaller (such as the Romberg

method), but such methods still do not allow calculation of odd-ordered

properties in the non-BO model.

E. Vibrationally Corrected Electronic Values

The conventional approach used to describe the response of a molecule to a static

electric field is either to perform pure electronic BO calculations or to perform

calculations where the BO values are corrected for vibrational and rotational

(thermal) motion of the nuclei. The vibrationally corrected polarizabilities

usually do an excellent job of correcting the errors inherent in the pure electronic

BO values. Bishop has written several excellent reviews on this topic [78–80].

F. Isotopomers of H2

Please note that much of this material is reported in the recent article by Cafiero

and Adamowicz [66].

There have been no previous direct non-BO studies of the response of H2 and

its isotopomers to electric fields. The ground-state dipole moment of HD has

been determined experimentally by Nelson and Tabisz [81] to be 0.000345 a.u.

There have been several theoretical studies of the dipole moment of HD, all

within the BO approximation but including adiabatic corrections. The

calculated values by Wolniewicz, 0.000329 [83], Ford and Browne, 0.000326

[82], and Thorson et al., 0.000334 [84], all agree well with the experimental

value, although they are all about 5% too small. This is an extremely difficult

experiment to carry out, and because all theoretical studies agree on the value, it
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may be that the experimental work is slightly inaccurate. There have been

several studies of the vibrational corrections to the pure electronic BO values.

Adamowicz [85] used numerical MCSCF electronic functions and numerical

evaluation of the vibrational equations to obtain the following ground-state

(ground electronic, v ¼ 0, J ¼ 0) values of azz: 6.623 (H2), 6.569 (HD),

and 6.509 (D2) a.u. Also, he found the following for gzzzz: 1088(H2), 1074(HD),

and 1052(D2) a.u. Bishop et al. [86] employed the sum over states method and

found the static limit value of azz to be 6.397 a.u. In a different study,

Bishop et al. [87] found gzzzz to be 1099 including electronic and vibrational

contributions. There are no non-BO investigations of the values of bzzz.

The wave functions used in this work were built from noncorrelated products

of simple gaussians describing the electronic and nuclear wave functions. Initial

guesses for the exponential coefficients (squares of the diagonal elements of Lk)

and functional centers (sk) were generated quasi-randomly. The exponential

coefficients were randomly distributed around the value 4:0 with a variance of 1.

Since the electric field in our calculations was applied along the z direction, the

initial guesses for the functional centers were distributed randomly along the

z axis around 1:4 bohr for the H-nucleus and one of the electrons, and around

0:0 bohrs for the second electron, with a variance of 0:015. The initial guess

wave functions were optimized with respect to all of the elements of Lk and sk

using analytical gradients. The process of optimization builds the required

correlation into the wave function by filling in the off-diagonal elements of Lk.

The correct permutational symmetry was implemented into the wave

functions by projection onto irreducible representations of the total symmetry

group Se
2 for heteronuclear species and Se

2 	 SH
2 for homonuclear species, where

e refers to electron exchange and H refers to nuclear exchange. The irreducible

representations chosen were singlets in all cases.

The energy values obtained for the H2 isotopomer series were all converged

until the energy change with respect to variation was in the subpicohartree

range, and the squared gradient norm for the total gradient vector was at most

10�14. The energy curve was fitted with a fourth-order polynomial.

The values for the dipoles, polarizabilities, and hyperpolarizabilities of the

H2 series were obtained using (a) a 16-term basis with a fourfold symmetry

projection for the homonuclear species and (b) a 32-term basis with a twofold

symmetry projection for the heteronuclear species. These different expansion

lengths were used so that when combined with the symmetry projections the

resulting wave functions were of about the same quality, and the properties

calculated would be comparable. A crude analysis shows that basis set size for

an n particle system must scale as kn, where k is a constant. In our previous

work [64, 65] we used a 244-term wave function for the five-internal-particle

system LiH to obtain experimental quality results. This gives a value of

k5 ¼ 35 � 244. Applying this analysis to HD, which has three internal particles,
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we get k3 ¼ 33 ¼ 27. Thus the basis set size of 32 terms should be sufficient to

give results of similar quality to what was obtained in the LiH case. For H2,

where we have additional basis functions generated by the proton exchange

symmetry projection, the basis may be smaller. The calculated values are

presented in Table XI.

Allowing only positive and rather significant electric field values permits the

calculation of the dipole moment of the heteronuclear species. Applying the

same approach to homonuclear species (H2, D2, and T2) should give the dipoles

identically equal to zero. In our calculations, these actually come out to 10�8.

This small noise that entered our calculations was due in part to the previously

mentioned fact that the zero-field wave function we use is not an eigenfunction

of ĴJ2 as it should be. The level of noise introduced is negligible, because 10�8 is

four orders of magnitude smaller than the size of the dipole moments for the

heteronuclear species.

The dipole moment obtained for HD, 3:27 � 10�4 a.u., is very close to the

values obtained by Wolniewicz (3:29 � 10�4) [83] and by Ford and Brown

(3:26 � 10�4) [82]. All of these values are about 5% lower than the

experimentally measured value. The ratio of the dipole moment of HD to

those of HT and DT may be predicted based on electronegativity arguments to

be 0.75 and 3.0. The values obtained here fulfill this prediction exactly.

We see the expected trend in polarizabilities and second hyperpolarizabilities

going down the series according to total mass. H2 has the highest polarizability,

6.74 a.u., because the light, very quantum-mechanical protons delocalize more

easily in the electric field than the heavier D and T nuclei. Also, the electrons

in H2 are slightly farther away from the nuclei than in the heavier isotopomers

and are more polarizable. Indeed when we add weight to the nuclei, as in HD,

the polarizability goes down to 6.67 a.u. Another large jump in polarizability

(6.65 a.u. to 6.59 a.u) comes between HT, the last isotopomer containing a

TABLE XI

Values for the Zero-Field Energies, Dipole Moments ðmÞ, Polarizabilities ðaÞ,
Hyperpolarizabilities ðbÞ, and Second Hyperpolarizabilities ðgÞ for the Non-BO H2

Isotopomer Seriesa

hHi m a ðbÞ g

H2 �1.153736345 1:00 � 10�8 6.74 (0.0360) 1062

HD �1.156234289 3:27 � 10�4 6.67 (0.0306) 1038

HT �1.157152576 4:37 � 10�4 6.65 (0.0186) 1028

D2 �1.159178760 9:00 � 10�9 6.59 (0.0360) 1009

DT �1.160312051 1:09 � 10�4 6.56 (0.0312) 999

T2 �1.161561149 9:00 � 10�9 6.52 (0.0360) 989

aAll values are in atomic units.
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proton, and D2, where both nuclei are heavier. The second hyperpolarizability

for H2 agrees well with the previous values. Our value of 1062 a.u. is smaller

than Bishop’s 1099 and Adamowicz’s 1088 a.u. The corresponding values for

the other isotopomers are also smaller than the values by Adamowicz. The value

of b for the homonuclear species should be identically zero. We obtain for all

three homonuclear species a value of 0.0360 a.u. This very small value is

consistent across all of these species, and it is larger than zero due to the very

sensitive nature of this third-order property to small numerical inaccuracies.

Although we show the values of b for all the heteronuclear isotopomers in

Table XI (in parentheses), they are very small and too close to the numerical

noise to be trusted.

G. LiH and LiD

There have been several recent attempts to find the nuclear corrections to the LiH

dipole moment. Papadopoulos et al. [88] used the perturbation theory to calculate

the corrections, and Tachikawa and Osamura [57] used the Dynamic Extended

Molecular Orbital method to try to calculate the nonadiabatic result directly.

Results for these methods are reported in Table XII. In all cases, the calculated

values are outside of the range of the experimental results [89, 90], also reported

in Table XII.

For LiH and LiD, 244-term non-BO wave functions were variationally

optimized. The initial guess for the LiH non-BO wave function was built by

multiplying a 244-term BO wave function expanded in a basis of explicitly

correlated functions by Gaussians for the H nucleus centered at and around

(in all three dimensions) a point separated from the origin by the equilibrium

distance of 3.015 bohr along the direction of the electric field. Thus the centers

TABLE XII

Experimental (expt.) and Theoretical (calc.)

Dipole Moments ðmÞ for LiH and LiD from the

Literaturea

m m

LiH

[88], calc. 2.317

[57], calc. 2.389

[89], expt. 2.3145

[90], expt. 2.314 (0.001)

LiD

[57], calc. 2.392

[90], expt. 2.309 (0.001)

aAll values are in atomic units. Values given in

parentheses are experimental uncertainty.
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corresponding to the hydrogen nucleus were scattered from about 2.9 to about

3.1 bohr. The lithium nucleus was, of course, placed at the origin of the internal

coordinate system. The functional centers corresponding to the electrons were

located primarily on the two nuclei, with two electrons at the origin (about

0:0 � 0:001 bohr in all three directions) and two electrons near the H nucleus

(about 3:05 � 0:06 bohr) per basis set. This reflects the strong ionic character in

the lithium–hydrogen bond. The LiD non-BO wave function was optimized

starting from the converged LiH wave function. Wave functions of various

smaller expansion lengths were optimized for LiH alone. Table XIII shows the

convergence properties of the dipole moment for these basis sets. It can be seen

that the calculated value of the dipole converges and reaches a value near that of

experiment, 2.314 a.u., as larger basis sets are used. The reported results for all

functions were converged to the point where the squared norm of the total

gradient was at least on the order 10�8, and the energy changed at most in the

ninth decimal place. At this point the dipole moment was converged to seven

decimal places, which is more than experimental accuracy. The total variational

energy (also in Table XIII) for our 244-term wave function is �8.0636331

hartree. The most accurate non-BO energy calculated before was that of Scheu

et al. [120] equal to �8.0661557 hartree. Thus our energy value for this basis set

is in error by only about 0.0025 hartree. Despite this small error, we deem the

obtained convergence of the dipole moment value with the basis set size quite

satisfactory, and it is highly unlikely that further enlargement of the basis can

change this value by an amount close to the uncertainty level of the experiment

where the LiH/LiD dipole moments were measured.

TABLE XIII

Expectation Values for Zero-Field Energies, Virial Coefficients ðZÞ, Dipole

Moments ðmÞ, and Static Polarizabilites ðaÞ for Non-BO LiH/D for Various

Expansion Lengths (m)a

m hHi Z m a

LiH

24 �8.0423294 1.000000 2.4047 24.42

64 �8.0592988 1.000000 2.3394 28.48

104 �8.0619267 1.000000 2.3261 29.41

144 �8.0629324 0.999999 2.3149 29.54

244 �8.0636331 0.999999 2.3140 29.57

Experimental 2:314 � 0:001[90]

LiD

244 �8.0650331 1.000000 2.3088

Experimental 2:309 � 0:001[90]

aAll values are in atomic units.
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The optimized basis functions show strong correlation between the nuclei,

between the nuclei and the electrons, and between the electrons. The centers

describing the H/D nucleus show a spread of values from about 2.9 bohr

to 3.1 bohr, with the expectation value for the internuclear distance being

3.063 bohr for LiH and 3.052 bohr for LiD. These values are in good agreement

with the value 3.061 bohr for LiH obtained by Scheu et al. [120] in their non-BO

calculations and are, as expected, longer than the BO ‘equilibrium’ value. Our

values are believed to be much more accurate than those of Ref. 57, which are

3.119937 bohr and 3.104819 bohr for LiH and LiD, respectively.

The value of the dipole moment of LiH obtained in this work, 2.3140 a.u., is

essentially identical to the experimental value, 2:314 � 0:001 [90]. Our

calculations simulate experiment more closely than any previous calculations.

The results also provide validation of the perturbation approach of Ref. 88, since

the perturbation result, 2.317 a.u., is very close to our value. At the same time,

our results are much more accurate than those of Ref. 57, the only other

‘‘direct’’ calculation of the LiH dipole moment. The value of the dipole moment

of LiD, 2.3088, is also of good accuracy, compared to the experimental result,

2:309 � 0:001 [90]. Again, our result is much more accurate than that of Ref. 57.

There have been a few recent studies of the corrections due to nuclear motion

to the electronic diagonal polarizability (azz) of LiH. Bishop et al. [92]

calculated vibrational and rotational contributions to the polarizability. They

found for the ground state (v ¼ 0, the state studied here) that the vibrational

contribution is 0.923 a.u. Papadopoulos et al. [88] use the perturbation method

to find a corrected value of 28.93 a.u. including a vibrational component of 1.7

a.u. Jonsson et al. [91] used cubic response functions to find a corrected value

for azz of 28.26 a.u., including a vibrational contribution of 1.37 a.u. In all cases,

the vibrational contribution is approximately 3% of the total polarizability.

The results for the non-BO diagonal polarizability are shown in Table XIII.

Our best—and, as it seems, well-converged—value of a, 29.57 a.u., calculated

with a 244-term wave function, is slightly larger than the previously obtained

‘‘corrected’’ electronic values, 28.93 and 28.26 a.u. [88,91]. It is believed that

the non-BO correction to the polarizability will be positive and on the order of

less than 1 a.u. [92], but it is not possible to say if the difference between the

value obtained in this work and the previous values for polarizability are due to

this effect or to other effects, such as the basis set incompleteness in the BO

calculations. An effective way of testing this would be to perform BO

calculations of the electronic and vibrational components of polarizability using

an extended, well-optimized set of explicitly correlated Gaussian functions.

This type of calculation is outside of our current research interests and is quite

expensive. It may become a possibility in the future. As such, we would like the

polarizability value of 29.57 a.u. obtained in this work to serve as a standard for

non-BO polarizability of LiH.
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VII. THE USE OF SHIFTED GAUSSIANS IN NON-BO

CALCULATIONS ON POLYATOMIC MOLECULES

We have shown that in order to calculate a non-Born–Oppenheimer wave

function we must use basis functions that are eigenvalues of the total angular

momentum. We have used such functions in the calculation of atoms and

diatomic molecules and have shown that we are working on extending these basis

sets to triatomic molecules. We may also perform non-Born–Oppenheimer

calculations of reasonable accuracy using basis functions which are not rigorous

eigenfunctions of angular momentum but which are complete sets and may

approximate such eigenfunctions.

Non-Born–Oppenheimer wave functions calculated in this way look more

like their Born–Oppenheimer counterparts in the smaller basis set limits, and

thus a good starting guess for these may be taken from Born–Oppenheimer

calculations in the same basis. Thus we calculate the electronic part first (this

requires much fewer basis functions than does a full non-Born–Oppenhimer

calculation) and then form the total basis function by multiplying each

electronic portion by a guess for the nuclear portion:

cTðrtotalÞ ¼ cNðrnucÞceðrelecÞ ð224Þ

We will present below a short description of some Born–Oppenheimer

calculations we have done on this basis, followed by examples of triatomic

non-Born–Oppenheimer calculations on this basis.

A. Born–Oppenheimer Calculations in a Basis

of Explicitly Correlated Gaussians

FSECGs have been used in BO calculations for some time, but always with quite

small systems. It has been said [94] that the bottleneck for the application of

ECGs to larger systems ðn > 4Þ is the large amount of time spent in optimization

of the wave functions. We have removed a large part of the bottleneck in these

calculations by implementing analytical gradients in the optimization and

parallelizing the entire code. The use of the analytical gradients speeds up

optimization, because the optimization routine needs to make only one function

call to calculate the energy and the total gradient vector, rather than several

function calls to calculate finite-difference gradients. The analytical gradients are

also more accurate and lead to faster optimization paths.

B. Test Calculations on H3 and Hþ
3

Please note that much of this work may be found in a previous article [70].

A new upper bound for the BO energy of the ground state of Hþ
3 was recently

obtained by Cencek et al. [48] using explicitly correlated Gaussians. Below we
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show how our calculations compare against those. The Young projection

operator used was for the singlet state, and the D3h point group symmetry was

ensured by constraining the molecule to the xy plane and applying the operator:

P̂P ¼ 1̂1 þ Ĉ3C3 þ Ĉ2
3C2
3 þ ŝ1s1 þ ŝ2s2 þ ŝ3s3 ð225Þ

We did expect to gain a slight lowering of the energy due to our use of analytical

gradients in our optimization as opposed to a numerical optimization used by

Cencek et al., and we did. Table XIV shows the energy obtained by Cencek et al.

for the 75-term wave function, as well as the squared gradient norm—that is, the

sum of the squares of the gradients with respect to all the variational parameters.

As can be seen, the wave function obtained by Cencek et al. [48] had

considerable ‘‘room’’ for further optimization: The gradients with respect to

most variational parameters were indeed quite small, but the gradients with

respect to the off-diagonal exponential coefficients were somewhat larger and

thus made the squared norm of the gradient overall larger. After several cycles of

our unconstrained optimization in which we reoptimized all variational

parameters, the energy for this basis set was lowered and the gradients with

respect to all parameters, and thus the squared norm of the gradient, became

much smaller. This final wave function is more tightly converged than that

obtained before.

The formulas derived in Cencek et al. [49] involve a simplifying

approximation of only including one correlation term per basis function;

that is, only two electrons are correlated per function. In this work, all functions

include correlation among all electrons. For two electrons there is no difference

in the two forms of the basis, but for three or more electrons the formulas

derived here should prove more efficient; that is, they should converge faster

and with a smaller basis set size.

We tested a 76-term wave function for the system H3, including

permutational and point group symmetry. The initial guess for the nonlinear

parameters in the ECGs were generated randomly using Matlab. The Young

TABLE XIV

Expectation Values of the Hamiltonian, hHi, Virial Coeffi-

cients, Z, and Squared Gradient Norms, k grad k2, For the

Ground State of Hþ
3 ðR1 ¼ R2 ¼ R3 ¼ 1:65Þ for the 75-Term

Wave Function

Cencek et al. [48] This Work

hHi �1.343834724 �1.343834853

Z 0.9999977 0.9999978

k grad k2 Oð10�8Þ Oð10�12Þ
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projection operator used was a doublet, and the D1h point group symmetry was

ensured by constraining the molecule to the z axis and applying the operator:

P̂P ¼ 1̂1 � ŝhsh ð226Þ

The energy obtained after optimization for the 76-term function was found to be

lower than the energy obtained by Cencek and Rychlewski [49] for the 100-term

wave function, illustrating the power of including correlation among all the

electrons in each basis term (see Table XV).

C. Geometry Optimization

Please note that much of this work may be found in a previous article [69].

In the course of this research, we introduced the first geometry optimization

via analytical gradients to be used in very-high-accuracy electronic structure

calculations with FSECGs [69]. In this method we simultaneously optimize the

nonlinear parameter of the basis functions and the molecular structure

parameters. Simultaneous optimization of both types of parameter provides a

unique path to the high accuracy of the calculation. The explicitly correlated

Gaussians are a particularly interesting basis to use in geometry optimization

since, by monitoring the magnitude of correlation coefficients (off-diagonal

elements in the Lk matrix), we can see the dynamic correlations of pairs of

electrons increasing or decreasing as the molecule undergoes changes in nuclear

geometry. A simple example of this is found in the results on small hydrogen

clusters presented here.

Sample calculations were carried out on H2, Hþ
3 , and H3. Geometry

optimizations were carried out in internal coordinates. The projection operators

used in the expansion (4) represented a singlet state for H2 and Hþ
3 and a doublet

state for H3. Starting geometries that were used are given in Table XVI. The

initial wave functions were centered at the nuclei. For all of the initial functions

the correlation parameters were set to zero (that is, the matrices Ak were

TABLE XV

Expectation Values of the Hamiltonian, hHi, Virial

Coefficients, Z, and Squared Gradient Norms, k grad k2, for

the Ground State of H3 ðR1 ¼ R2 ¼ 1:75Þ for the 76-Term

wave Function (This Work) and the 100-Term Wave Function

(Cencek and Rychlewski) [49]

100-term [49] 76-term

hHi �1.658491 �1.658565

Z — 1.00012

k grad k2 — Oð10�13Þ
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diagonal). Expansion lengths used were m ¼ 16 for H2 and Hþ
3 and m ¼ 64

for H3.

The nonlinear optimization is always sensitive to the initial guess of the

parameters (nonlinear and geometrical). For each system, several initial guesses

for the parameters were used, and we report the results of the calculations which

produced the lowest energies. In all cases, equilibrium structures were found;

additionally, the saddle point for H3 was found using a constrained

optimization. This point is defined in the work by Liu [98] as the minimum

under the conditions of linearity and sh symmetry. We thus reduced the

optimization to a single variable—that is, the bond length. It is interesting to

note that for the H3 saddle point the correlation coefficients (off-diagonal

elements of Ak) were all of about the same order of magnitude (10�2), while for

the equilibrium point, where H2 and H are separated, the magnitudes of the

correlation coefficients between the electrons of H2 were much larger (10�2)

than those between electrons on different subunits (10�5). This reflects the

expected result that there is strong correlation of electrons within the localized

chemical bond in H2 and much weaker correlation of the electrons that are

spatially separated. In the case of the H3 equilibrium structure, the optimization

settled into the van der Waals’ well corresponding to linear H3 with the H2 � � �H

distance equal to 6.442 bohr. This structure is in good agreement with the

potential surface minima for this system determined by Truhlar and Horowitz

[99], Wu et al. [100], and Tang and Toennies [101]. Final energies, virial

coefficients, squared gradient norms, and geometries are given in Table XVI.

We compared the van der Waals region obtained with our method to that

which may be obtained with a fairly high-end standard method, CCSD(T)/cc-

pVTZ, as implemented in Gaussian 98 [102]. The CCSD(T) energy for this

system, though not variational, should provide a reasonable estimate of the

TABLE XVI

Starting Geometries (in parentheses), Energies, hĤHi, Virial Coefficients, Z, Squared Gradient Norms,

k grad k2, and Optimized Geometries for the Hydrogen Clustersa

hĤHi Z k grad k2 Geometry

H2ðR12 ¼ 2:000Þ �1.173092 1.000000 10�13 R12 ¼ 1:399

Hþ
3 �1.334711 0.999999 10�13 R12 ¼ 1:650

ðR12 ¼ 1:400, R13 ¼ 1:650

R13 ¼ R23 ¼ 1:220Þ R23 ¼ 1:649

H3(global minimum) �1.673468 0.999999 10�13 R12 ¼ 1:400

ðR12 ¼ R23 ¼ 1:750Þ R23 ¼ 6:442

H3(saddle point) �1.655734 1.000000 10�13 R12 ¼ 1:757

ðR12 ¼ R23 ¼ 1:750Þ R23 ¼ 1:757

aAll reported values are in atomic units.
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variational energy in this basis, because the single and double excitations are

much more important than the triple excitations. The CCSD(T) energy was

�1.6721738 hartree, about 1.3 millihartree higher than our result. The geometry

obtained with CCSD(T) was R12 ¼ 1:403 bohr and R23 ¼ 6:478 bohr. The

expected value of R12 is 1.401 bohr, which is slightly closer to our value of

1.400 bohr. The literature value of R23 is between 6.44 and 6.48 bohr. The

relatively newer result of Tang and Toennies [101] predicts a value of 6.46 bohr,

roughly between the values obtained using our method and CCSD(T).

D. Extension to Non-Born–Oppenheimer

We show here how we may take the information obtained above and use it as a

starting point for non-Born–Oppenheimer calculations. The five-particle systems

of non-Born–Oppenheimer Hþ
3 and its isotopomers were transformed via

separation of the center-of-mass Hamiltonian to four-pseudoparticle systems

as described above. The resulting total position vector is

r ¼

r1

r2

r3

r4

0
BB@

1
CCA ð227Þ

For the illustrative calculations shown here, the spin-free wave functions, �,

for the Hþ
3 isotopomers were obtained as 50-term expansions in a basis of

FSECG’s gkðrÞ:

�ðrÞ ¼
X50

k¼1

ckŶYgkðrÞ ð228Þ

where ŶY is the total Young operator described above.

The FSECG basis function for four particles is

gkðrÞ ¼ expf�ðr � skÞ0½ðLkL0
kÞ 	 I3�ðr � skÞg ð229Þ

where sk is a 12 vector of 1‘‘shifts’’ that are variational parameters, and Lk is an

upper triangular 4 � 4 matrix of variational exponential parameters.

The ground-state energy values and the wave functions for the considered

systems were variationally optimized:

E ¼ min
h�jĤHj�i
h�j�i ð230Þ

Each wave function was optimized with respect to the parameters Lk, sk, and ck.

This lead to 1
2

nðn þ 1Þ þ 3n þ 1 variational parameters per basis function (23 for

466 sergiy bubin, mauricio cafiero and ludwik adamowicz



the Hþ
3 systems). We began with an initial guess for the wave function built from

the above Born–Oppenheimer calculations and then use analytical gradients in

a truncated Newton-type algorithm to find the lowest value for the energy. The

initial guesses for the nuclear portions of the basis functions were randomly

generated with all the sk centers lying in the xy plane. For small basis sets such as

those used here, it has been found that placing functional centers off of the xy

plane makes a negligible difference in the energy and structural expectation

values. Because the basis set is increased and the planar optimization space

becomes saturated, the placement of functions off of the xy plane would become

more important, with the basis set limit featuring a full three-dimensional

spherical symmetry for the ground state.

For the homonuclear (HON) species, the permutation–symmetry operator

had the following form: ŶY ¼ ŶYNðS3Þ 	 ŶYeðS2Þ, where ŶYNðS3Þ is a Young

operator for the third-order symmetric group which permutes the nuclear

coordinates and ŶYeðS2Þ is a Young operator for the second-order symmetric

group which permutes the electronic coordinates. For the fermionic nuclei (H

and T, spin = 1/2) the Young operators corresponded to doublet-type

representations, while for the bosonic D nuclei we use operators that correspond

to the totally symmetric representation. In all cases the electronic operator

corresponded to a singlet representation.

For the heteronuclear (HEN) A2B-type species, the symmetry operator was

ŶY ¼ ŶYNðS2Þ 	 ŶYeðS2Þ. In this case the nuclear operator was a singlet for H pairs

and symmetric for D pairs. Finally for the HEN HDT-type isotopomer we had

ŶY ¼ ŶYeðS2Þ. Again in all cases the electron operators represented a singlet. For

discussion of the construction of the operators, see, for example, the excellent

work of Pauncz [73].

It is obvious that the projection operators for the different species have

different numbers of terms in them. The HON species have 12 terms (3!� 2!)
while the A2B-type species have four terms, and the HDTþ isotopomer has only

two terms. This results in different sizes of the spin-projected basis sets, and for

this reason the properties obtained in this work are not precisely comparable

between the A3, A2B, and ABC systems, although a very good idea of the trends

may be obtained from the data in Table XVI. While all of the above are given in

terms of the original particles, it should be noted that the permutations used in

the internal particle basis functions are ‘‘pseudo’’-permutations induced by the

permutations on real particles.

The geometrical parameters reported in Table XVI include the distances

from the particle at the origin of coordinates to the other two nuclei (r1 and r2)

as well the distance between the two ‘‘loose’’ nuclei (r12); also included are the

squares of all of these distances. For the HON species, the quantity actually

calculated is hr1 þ r2 þ r12i. The value reported in the table is this number

divided by three. For the HEN A2B species we calculate hr1 þ r2i and hr12i
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separately. Finally, for the HDTþ isotopomer, we find each distance separately.

The same patterns were used for the squares of the distances. Since the wave

functions used were nonadiabatic and include both electronic and nuclear

coordinates, the bond lengths calculated are not the usual equilibrium bond

lengths, re (i.e., the very bottom of potential wells), obtained in conventional

BO calculations, but rather the r0 bond lengths (i.e., bond lengths that are more

comparable to bond lengths obtained in the BO calculations by averaging the

internuclear distances over the ground vibrational state of the system).

For one isotopomer, DHþ
2 , two additional larger basis sets were optimized

(m ¼ 80, 118, 489) in order to determine the convergence of the structure

parameters. This data are presented in Table XVII. As may be seen, the energies

are not yet converged. Because there are no references for the fully nonadiabatic

energy of DHþ
2 , we may estimate it by adding the zero-point vibrational energy

to the best Born–Oppenheimer energy obtained so far. These data may be found

in the work by Jaquet et al. [103], and the value is �1.326672 hartree. Although

our energies for DHþ
2 are above this value, the geometry is well known to

converge before the energy. The difference in bond length for the DH bond

decreases by 0.003 bohr, going from 50 basis functions to 80, and then

decreases by less than 0.001 bohr, going from 80 to 118 basis functions. Finally,

taking a very large step to 489 basis functions, the bond lengths are seen to

decrease by less than 0.01 bohr. It may be noted also that this basis set produces

an energy much closer to the estimated energy than the smaller basis sets, and so

the geometry may be that much more reliable.

Assuming that any additional increase in basis set size will cause a decrease

on the order 0.005 bohr or less, we may say that the geometries of the systems

considered here obtained with 50 basis functions are fairly well optimized. The

isotopic differences across the isotopomers seem to be consistant as well. It will

be expected that bond lengths obtained from the HON species will be slightly

TABLE XVII

Values for the Nonadiabatic Energies, Virial Coefficients ðZÞ, and

Bond Lengths of DHþ
2 for Various Expansion Lengthsa

m hHi Z rij

50 �1.316992613 0.999999 rDH ¼ 1:735

rHH ¼ 1:746

80 �1.318112939 0.999996 rDH ¼ 1:731

rHH ¼ 1:741

118 �1.318845090 0.999999 rDH ¼ 1:731

rHH ¼ 1:740

489 �1.321226255 0.999742 rDH ¼ 1:724

rHH ¼ 1:734

aAll values are in atomic units.
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more accurate than those obtained from the HEN species due to the difference

in the spin-projected basis set size. Likewise, the HDTþ isotopomer will have

the least accurate bond lengths.

E. Discussion

The commonly accepted equilibrium bond length, re, for Hþ
3 is 1.650 bohr (see,

for example, Cencek et al. [48] and references therein). This number corresponds

to the very center of the potential energy well. In actual fact, molecules in their

ground states reside above this trough in the zero-point vibrational state. The

more anharmonic the well is, however, the more the bond length will be shifted to

higher values. Hþ
3 is a particularly floppy molecule, and so the r0 bond length

would be expected to be significantly larger than the re bond length. This is in fact

the case, since the value we obtained in our nonadiabatic calculation is 1.748 bohr.

As the nuclei get heavier, the displacement of the molecule from its

equilibrium structure in the zero-point vibration becomes smaller and the r0

bond lengths should approach the re bond lengths. This is in fact the case, as we

see from Table XVIII. Tþ
3 is about 0.04 bohr closer to the expected well than

Hþ
3 , which is about 0.1 bohr from the expected value. Another phenomenon

seen in the data is that the uncertainty in the nuclear position, calculated as

d ¼ ðjhri2 � hr2ijÞ1=2
, gets progressively smaller for each HON isotopomer,

going from 0.238 to 0.194 to 0.179 as we move from Hþ
3 down to Tþ

3 .

An interesting point in the data presented here is that for the HON species

and the A2B HEN species it is impossible to determine from the r data alone if

the molecule is linear or planar triangular. Even if the expectation values of the

TABLE XVIII

Values for the Nonadiabatic Expectation Values of the Ground-State Energies, Virial Coefficients

ðZÞ, Interparticular Distances, and Squares of Interparticular Distances, for Some

Isotopomers of Hþ
3

a

hHi Z rij r2
ij

Hþ
3 �1.314383574 0.999999 rHH ¼ 1:748 r2

HH ¼ 3:112

Dþ
3 �1.322718305 0.999999 rDD ¼ 1:720 r2

DD ¼ 2:996

Tþ
3 �1.326427799 0.999997 rTT ¼ 1:707 r2

TT ¼ 2:946

DHþ
2 �1.316992613 0.999999 rDH ¼ 1:735 r2

DH ¼ 3:059

rHH ¼ 1:746 r2
HH ¼ 3:105

HDþ
2 �1.319779541 0.999999 rHD ¼ 1:734 r2

HD ¼ 3:056

rDD ¼ 1:719 r2
DD ¼ 2:997

HDTþ �1.320907124 0.999999 rTD ¼ 1:715 r2
DT ¼ 2:976

rTH ¼ 1:729 r2
DD ¼ 3:034

rHD ¼ 1:734 r2
DD ¼ 3:053

aAll values are calculated for an optimized 50-term explicitly correlated Gaussian basis set and are

in atomic units.
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angles were calculated, we would find that due to indistinguishability of the

nuclei the angles would come out equal in either configuration. The only way to

predict from the nonadiabatic calculations the actual structure of the molecules

and determine whether they are linear or planar triangular is to consider

the average bond lengths calculated for the HDTþ isotopomer. In HDTþ the

indistinguishability plays no role, and in this system only we find that the

molecular geometry is a near-equilateral triangle, and not linear. Thus, just as in

experiment, ‘‘isotopic substitution’’ is necessary to extract information about

the molecular structure from the nonadiabatic calculations.

VIII. FUTURE WORK

At this stage we are at the very beginning of development, implementation, and

application of methods for quantum-mechanical calculations of molecular

systems without assuming the Born–Oppenheimer approximation. So far we

have done several calculations of ground and excited states of small diatomic

molecules, extending them beyond two-electron systems and some preliminary

calculations on triatomic systems. In the non-BO works, we have used three

different correlated Gaussian basis sets. The simplest one without rij premul-

tipliers (fk ¼ exp �r0ðAk 	 I3Þr½ �) was used in atomic calculations; the basis

with premultipliers in the form of powers of r1 (fk ¼ rmk

1 exp �r0ðAk 	 I3Þr½ �)
was used in calculations for diatomic systems; and Gaussians with shifted

centers (fk ¼ exp �ðr � sÞ0ðAk 	 I3Þðr � sÞ
� �

) were used in non-BO calcula-

tions of diatomic molecules in the static electric field. The latter basis was also

used in non-BO calculations of ground states of some simple triatomic systems

(H3, Hþ
3 and their isotopomers).

At present our effort concentrates on the development of methods for non-

BO calculations of excited states of molecules with three nuclei. Our aim is to

match in such calculations the accuracy we have been getting for the diatomic

systems. This development will open to us the possibility of studying highly

vibrationally excited, charged, and neutral clusters of hydrogen and its

isotopomers. H3 and Hþ
3 are among the most interesting cases in this cathegory.

At present we consider two different approaches for such calculations. The first

is based on implementation of correlated Gaussian basis functions with

preexponential multipliers consisting of products of all three internuclear

distances (r1, r2, and r12) raised to even powers (fk ¼ rmk

1 rnk

2 rlk
12

exp �r0ðAk 	 I3Þr½ �). Such a basis should very effectively describe the coupled

motions of electrons and nuclei in systems with three heavy, repelling particles.

In the second approach we will use the correlated Gaussians with shifted centers

(fk ¼ exp �ðr � sÞ0ðAk 	 I3Þðr � sÞ
� �

). Since these functions are not rotation-

ally invariant eigenfunctions, we will need to implement a projection procedure

for separating functional manifolds corresponding to different quantum
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numbers of the square of the total angular momentum operator ĴJ2. This may be

done by including a penalty term in the Hamiltonian matrix

(a � jhfkjĴJ2 � JðJ � 1Þjfkij; a being a positive penalty factor) which will

elevate the energies of functions corresponding to the rotation eigenvalues

different from the one considered in the calculation (J) to higher energies

effectively separating them away.

Another development that we will undertake in the near future is

development of algorithms for non-BO calculations of molecules with

p-electrons (the CH radical is an example of such a system). We also contemplate

development of methods for describing systems where only the light nuclei

(apart from electrons) are treated as quantum particles, and the other heavier

nuclei are described either classically or by using a low-level approximation.

This development would move us closer to cosidering the quantum dynamics of

such reactions as inter- and intramolecular proton transfer.

Finally, the development of new algorithms in atomic and molecular non-BO

calculations must be carried out in parallel with the development of

the computer technology, particularly in parallel with the advances in

parallel computing. An option that can be considered involves the so-called

meta-computing. Meta-computing on a grid of distributed computing platforms

connected via high-speed networks can revolutionize computational research by

enabling hybrid computations that integrate multiple systems distributed over

wide geographical locations [46]. The non-BO method developed in our work is

well-suited for implementation on parallel computational platforms. In our

laboratory we use parallel ‘‘Beowulf’’ clusters based on commercially available

PC components and connected via a fast Ethernet switch. The clusters use a

Unix (Linux) operational system, and the software parallelism is facilitated by

MPI. For our non-BO calculations we found the Beowulf clusters to be very

cost-effective since the calculations can be easily distributed over a network of

processors and executed in parallel with quite little interprocessor communica-

tion and without the need to share a common operational memory. Utilization of

massively parallel systems has given us momentum to proceed with the

development of the non-BO method which we hope the computers of the future

will allow to apply to larger systems more central to chemistry. Hence, while the

applications presented in this chapter concern very small systems, the emphasis

in the development we have carried out is placed on creating a general method

that is applicable to molecular systems with an arbitrary number of electrons

and nuclei.
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