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Abstract

In the present work, we studied HD+ (dpe) molecular ion in the framework of variational method without assuming the Born–

Oppenheimer approximation. The non-adiabatic wave function was expanded in terms of explicitly correlated Gaussian basis func-

tions. An algorithm for calculating the nucleus–nucleus correlation function (i.e., the probability density of one nucleus in the ref-

erence frame where the other one is at the origin) was derived, implemented, and used to depict all bound states of HD+ with zero

rotational energy.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

In recent years we have been involved in the develop-

ment and implementation of methods that allow rigor-
ous description of atomic and molecular systems

without using the Born–Oppenheimer (BO) approxima-

tion regarding the separability of the electronic and nu-

clear motions. For an overview of this work, please see

our recent reviews [1,2]. In the non-BO work performed

in our laboratory we have used explicitly correlated mul-

ti-particle Gaussian basis functions (ECGs) for the wave

function expansion. So far we have used three types of
ECG basis sets. The simplest one employed in calcula-

tions of small atoms [3] consists of simple Gaussian

exponentials dependent on the vector, r, of the Cartesian

coordinates describing the position of each particle

(pseudo-particle) in an internal coordinate system,
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and has the following form:

/k ¼ exp½�r0ðAk � I3Þr�; ð2Þ
where Ak is a symmetric n · n matrix of variational

exponential parameters, I3 is the 3 · 3 identity matrix,

( 0) denotes transposition, and � is the Kronecker matrix

product. The second basis involves even preexponential

powers of the internuclear distance, rmk
1 , and has been

applied in calculations of ground and excited states of
small diatomic systems [4–6]. The basis functions have

the following form:

uk ¼ rmk
1 exp½�r0ðAk � I3Þr�: ð3Þ

The third basis consisting of ECGs with shifted centers

(or floating spherical explicitly correlated Gaussians,

FSECGs)

xk ¼ exp �ðr� skÞ0ðAk � I3Þðr� skÞ
� �

; ð4Þ
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have been applied in non-BO calculations of static elec-

trical properties of small diatomic systems [7–10] as well

as in non-BO calculations on some small triatomic

systems [11].

The internal Hamiltonian we use in non-BO calcula-

tions is obtained by explicit separation of the center-of-
mass Hamiltonian from the complete Hamiltonian of

the system expressed in the laboratory frame of coordi-

nates. The origin of the internal coordinate system is

placed at one of the nuclei (called the reference nu-

cleus). Since the internal Hamiltonian is spatially iso-

tropic (see Section 2), the bound non-adiabatic wave

functions of an atomic or a molecular system form a

fully symmetric representation of the rotational group.
This implies that the internal ground-state wave func-

tion of any molecule is always spherically symmetric

with respect to all rotations around the origin of the

internal coordinate system. This is the property of

the basis set (3) used in our approach in diatomic

non-BO calculations including the HD+ calculations

described in our recent work [12]. In those calculations

we determined all 23 rotationless states of HD+ (in the
conventional Born–Oppenheimer terminology those

states are called vibrational states) and demonstrated

that in the highest two states a significant charge asym-

metry occurs leading to polarization of the system and

formation of what can be described as a D–p complex.

In essence, the bond in HD+, which can be described as

covalent in the first 21 states, becomes strongly ionic in

the highest two states. This purely non-adiabatic effect
is a result of near degeneracy of the gerade and unger-

ade electronic wave functions, and similar near degen-

eracy of closely located vibrational states near the

dissociation threshold.

In the non-BO calculation of a molecular system, the

wave function has to describe the coupled motion of the

nuclei and electrons. The basis functions used to expand

the wave function must correctly reflect this coupling.
While the state of electrons can be very well represented

with basis functions localized at atomic centers, the

motion of the nuclei has to be described by functions

that represent strongly reduced probability of two nuclei

being found near each other (the Coulomb hole). Since

the non-BO calculations have to be performed with very

high accuracy (the non-adiabatic effects are very small),

the success of such calculations strongly depends on the
basis functions used. It has been shown in our previous

calculations that, in the absence of the nucleus–nucleus

interaction (i.e., for the atomic case), basis set (2) per-

forms very well [3]. However, the application of this

basis, even to small molecules (e.g. Hþ
2 , H2), failed. This

was due to the fact that simple correlated Gaussians cen-

tered at the origin of the coordinate system poorly

describe a system where main portion of the density
(i.e., nuclear density) is shifted away from the origin.

Such a shift occurs for the nuclear density due to the
repulsion interaction between the nuclei. To correct

the problem, we introduced basis (3). The rmk
1 factor in

this basis (where r1 is the internuclear distance) shifts

the maximum of the nuclear density away from the ori-

gin of the coordinate system where the reference nucleus

is located. With mk ranging from 0 to 250, this effect can
be very effectively described as it has been demonstrated

for several systems where our calculations produced

more accurate results than had ever been obtained by

others [7–10].

The main purpose of this work is to introduce the

procedure for calculating nucleus–nucleus correlation

function based on the non-BO diatomic wave function

expanded in terms of basis functions (3). In the ab-
sence of a definite molecular structure, such as the

one obtained in a BO calculation, the density plots

provide complementary information to the expectation

values of the structural parameters. For HD+ such

parameters were calculated in our previous work on

this system [12]. They included the averaged distance

between the deuteron and the proton, as well as the

averaged distances between the deuteron and the elec-
tron, and the proton and the electron [12]. The latter

two are the parameters that allowed us to conclude

that in the two vibrational states the electron becomes

almost entirely localized around the deuteron. In the

present study we show how the nucleus–nucleus corre-

lation function changes with the increase of the vibra-

tional quantum number.
2. Hamiltonian, wave function, and pseudoparticle

densities

The complete non-relativistic Hamiltonian for HD+

in the laboratory Cartesian coordinate system is (in

atomic units)

ĤTOT ¼ �
X3
i¼1

1

2Mi
r2

Ri
þ
X3
i¼1

X3
j>i

QiQj

Rij
; ð5Þ

where Mi�s, Qi�s, and Ri�s are the masses, the charges,

and the position vectors of the particles, respectively

(M1 = md, M1 = mp, M1 = me, Q1 = 1, Q2 = 1,

Q3 = �1), and where Rij = |Rj � Ri| are interparticle dis-
tances. Note that no distinction between the electrons

and the nuclei is made and the two types of particles

are treated equivalently. In the next step, we transform

the laboratory coordinate system to a new coordinate

system [1,2], whose first three coordinates are the Carte-

sian coordinates describing the position of the center of

mass in the laboratory coordinate frame and the remain-

ing six coordinates are internal coordinates. The internal
coordinates are defined with respect to a Cartesian coor-

dinate system whose origin is placed at the deuteron and

whose axes are parallel to the axes of the laboratory
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coordinate frame. The first three of the six internal coor-

dinates, defined as r1 = R2 � R1, describe the position of

the proton with respect to the coordinate origin and the

last three, r2 = R3 � R1, describe the position of the elec-

tron. Using the new coordinates, we can separate the

Hamiltonian representing the motion of the center-of-
mass in the laboratory coordinate system from the total

Hamiltonian, ĤTOT, thereby reducing the three-particle

problem to a two-pseudoparticle problem. The internal

Hamiltonian has the following form:

Ĥ ¼ � 1

2

X2
i

1

mi
r2

ri
þ
X2
i 6¼j

1

M1

r0
ri
rrj

 !
þ
X2
i¼1

q0qi
ri

þ
X2

i<j

qiqj
rij

: ð6Þ

This Hamiltonian describes a system of two pseudopar-

ticles, or internal particles, with masses m1 = mdmp/
md + mp and m2 = mdme/md + me, and charges q1 = 1

and q2 = �1 moving in the spherical potential generated

by the q0 = 1 charge of the reference particle located at

the origin of the coordinate system. Thus, the wave

function describing the internal state of the system,

W(r1,r2) is dependent on the Cartesian coordinates of

two pseudoparticles, the first resembling the proton

(r1) and the second resembling the electron (r2). The sec-
ond term in the parentheses in Eq. (6) is the mass polar-

ization term, which arises from the coordinate

transformation and which couples the motion of the

two pseudoparticles. In the potential energy term,

ri and rij are defined as: ri = |Ri + 1 � R1| and

rij = |Rj + 1 � Ri + 1| = |rj � ri|.

As we have noted in previous works, and as has been

described by Monkhorst [13], this model of the molecule
is quite similar to an atom. We have the analogue of the

nucleus with the reference particle (deuteron) at the ori-

gin of the internal coordinate system, and we have the

analogues of electrons in the pseudoparticles (see our

previous work [11], or the work of Monkhorst [13], for

further discussion). However, as it is in the case of

HD+, some of the pseudoparticles can be significantly

heavier than the electrons and can have positive charges.
The HD+ wave functions, W(r) = W(r1,r2), for all 23

rotationless states were generated in our previous work

[12] using 2000-term expansions in a basis of ECG�s with
preexponential powers (3)

WðrÞ ¼
XK
k¼1

ckukðrÞ: ð7Þ

These wave functions were used here to calculate the
one-pseudoparticle density associated with pseudoparti-

cle 1 (i.e., pseudoproton) using the following formula:

gðnÞ ¼ hWðrÞjdðr1 � nÞjWðrÞi ¼
Z 1

�1
jWðn; r2Þj2 dr2; ð8Þ
where d(r1 � n) is the 3D Dirac delta function. The

pseudoparticle 1 density is equivalent to the correlation

function of particles 1 and 2 (i.e., the deuteron and the

proton). Thus, these two terms can be used interchange-

ably. The pseudoparticle density g(n) calculation re-

quires evaluation of the following matrix elements:

gklðnÞ ¼ hukðrÞjdðr1 � nÞjulðrÞi: ð9Þ
The algorithm for calculating these matrix elements is

given in Appendix A.

We should note that the pseudoparticle density satis-

fies the following normalization condition:Z 1

�1
gðnÞ dn ¼ 4p

Z 1

0

gðnÞn2 dn ¼ 1: ð10Þ
3. Results

Since in the non-adiabatic calculations both electrons
and nuclei are described on equal footing as quantum

particles, the only available information about the

molecular structure is contained in the electron–nucleus

and nucleus–nucleus correlation functions. This is differ-

ent from the conventional BO calculations where one

can show molecular geometries in, for example, a ball

and stick form, and electronic densities localized around

the nuclei and at the bonds.
For all the considered states of HD+, the wave func-

tions are symmetric with respect to any rotation around

the center of the internal coordinate system, but they

differ in the number of radial nodes. The radial nodes

should occur in terms of the r1 = |r1| coordinate because

this coordinate represents the relative distance between

the two nuclei in HD+. Our calculations of the expecta-

tion values of the interparticle distances [12] showed that
a strong charge asymmetry occurs in the system in the

highest two vibrational states. Thus, it is interesting to

see if those two states also differ from the other states

in terms of the pseudoproton density.

In this work, we present 2D and 3D plots of the

pseudoparticle 1 density. Since the wave functions are

spherically symmetric, the 2D plots of the pseudoparti-

cle 1 density, g(n) (n = |n|), should fully describe the
behavior of this quantity. However, the 3D plot [i.e.,

the plot of g(nx,ny,0)] perhaps better represents the fully
spherically symmetric nature of the pseudoparticle den-

sity function. In Fig. 1 we show the 2D pseudoproton

density for the ground state and for the second, ninth,

twentieth, twenty first, and twenty second excited states

(i.e., the states with the vibrational quantum numbers,

m = 0, 2, 9, 20, 21, and 22). The 3D plots of the pseudo-
proton density for the ground state and the second,

third, and ninth excited states are shown in Fig. 2. As

expected, the number of oscillations on these plots

increases with the excitation level. Also, the spatial



Fig. 1. 2D correlation function plots for the ground state, the second, ninth, twentieth, twenty first, and twenty second excited states of HD+.
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extent of the pseudoparticle density increases with the

excitation. In higher excited states, though the density

shows many oscillations, the highest density maximum

is still the one closest to the origin of the coordinate

system.
The states with m = 21 and 22 are the highest two ex-

cited states near the dissociation threshold. The spatial

extent of the density dramatically increases for these

states in comparison with the lower states. Also, in

these highest two states (�the ionic states�), the last den-



Fig. 2. 3D correlation function plots for the ground state, the second, third, and ninth excited states of HD+ in the same scale. nx and ny (x- and y-

axis, respectively) are in a.u.
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sity maximum counting from the origin becomes much

more prominent, indicating that in those states the two

nuclei spend more time being significantly separated

from each other than being close to each other. By

comparing the pseudonucleus density of the highest

�covalent� state (m = 20) also shown in Fig. 1 with the

densities of the �ionic� m = 21 and 22 states one may no-

tice a significant difference in the spatial diffuseness of
the states and in the height of the last maximum. These

differences are consistent with describing the HD+ sys-

tem in the latter two states as a complex of the D atom

interacting with a proton. This seems to be a distinctive

feature of the two states in comparison to the other

(more �covalent�) states, where the electron is more

evenly distributed between the two nuclei.
4. Conclusions

We have presented a study of the nucleus–nucleus

correlation function (pseudoparticle 1 density) for the

HD+ molecular ion without using the Born–Oppenhei-

mer approximation. In view of the lack of a definite

molecular structure (such as the one resulting from a
BO calculation), this correlation function provides a

representation of the calculated state and a tool for
its analysis. The correlation function plots for HD+

show increasing oscillatory behavior with the increas-

ing level of excitation. For the highest two excited

vibrational states, where the bond becomes strongly

ionic (as shown by the calculations of the averaged val-

ues of the interparticle distances [12]), the behavior of

the correlation function shows some differences in

comparison with lower states where the bond of the
system is almost 100% covalent. The major difference

is the increase of the correlation function at larger

internuclear separations. This is consistent with the re-

sults for the average internuclear distance which also

showed a significant increase for the higher two states.

The nucleus–nucleus correlation function plots will

provide particularly useful information for the analysis

of non-BO wave functions in calculations of larger
molecular systems excited both vibrationally and rota-

tionally. Calculations of these types of states are the

aim of our future studies.
Appendix A. Matrix elements for the non-BO

nucleus–nucleus correlation function

To evaluate the matrix elements gkl(n) = Æuk(r)

|d(r1 � n)|ul(r)æ we will use some of the results from
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previous works [14,15]. First, we need the value of the

multi-dimensional Gaussian integralZ þ1

�1
exp½�x0Axþ y0x� dx ¼ pn=2

jAj1=2
exp

1

4
y0A�1y

� �
:

ðA:1Þ
The integration here is over n variables, x is an n-compo-

nent vector of these variables, y is a constant vector,

n · n matrix A is assumed to be symmetric and positive

definite. The expression for the overlap between simple

spherical Gaussians (2) follows directly from (A.1). If

we define Akl = Ak + Al, then

/kj/lh i ¼ p3n=2

jAklj3=2
; ðA:2Þ

where the vertical bars denote the determinant of a
matrix.

The matrix element of the Dirac delta function with

two simple spherical Gaussians can be obtained using

the Gaussian representation of the delta function

dðr1 � nÞ ¼ lim
a!1

a
p

� �3=2
exp �aðr1 � nÞ2

h i
: ðA:3Þ

With this,

/k dðr1 � nÞj j/lh i

¼ lim
a!1

a3=2

p3=2
/k exp �ar21 þ 2ar1n� an2

� ��� ��/l

� 	
: ðA:4Þ

The square of r1 can be conveniently represented using

J11 matrix of rank 1 whose all elements are zeros except

element 11, which is equal to 1

r21 ¼ r0ðJ 11 � I3Þr: ðA:5Þ

Then,

/k dðr1 � nÞj j/lh i

¼ lim
a!1

a3=2

p3=2
/k exp �ar0ðJ 11 � I3Þr½jh

þ 2aðj1 � nÞ0r� an2
���/l

	
¼ lim

a!1

a3=2

p3=2

p3n=2

jAkl þ aJ 11j3=2

� exp ½aðj1 � nÞ0 ðAkl þ aJ 11Þ � I3½ ��1ðj1 � nÞ � an2�
ðA:6Þ

In the last expression we used the relation (A.1). j1 is an

n-component vector whose first element is equal to 1 and
the rest are zeros.

Since J11 is a rank 1 matrix, we can write the determi-

nant in the last formula as

jAkl þ aJ 11j ¼ jAkljjIn þ aA�1
kl J 11j
¼ jAkljð1þ atr½A�1
kl J 11�Þ; ðA:7Þ
where tr [. . .] denotes the trace of a matrix and In is an

n · n identity matrix. As the limit of the preexponential

part of (A.6) is a finite number, the limit of the exponent

must be equal to �bn2, with b being a finite number.

Otherwise the entire expression (A.6) would have been

either zero or infinity, which is not the case. Hence,

/k dðr1 � nÞj j/lh i ¼ p3ðn�1Þ=2

jAklj3=2
1

tr½A�1
kl J 11�3=2

exp½�bn2�

¼ /kj/lh i 1

p3=2

1

tr½A�1
kl J 11�3=2

exp½�bn2�:

ðA:8Þ

Making use of the normalization condition,Z 1

�1
/k dðr1 � nÞj j/lh i dn ¼ /kj/lh i; ðA:9Þ

we can easily find that b ¼ tr½A�1
kl J 11��1

. Thus,

/k dðr1 � nÞj j/lh i ¼ /kj/lh i 1

p3=2

1

tr½A�1
kl J 11�3=2

� exp � n2

tr½A�1
kl J 11�

" #
: ðA:10Þ

The last relationship is now used to evaluate the matrix

elements of d(r1 � n) with basis functions (3). To do that
we differentiate (A.10) p = (mk + ml)/2 times with respect

to a parameter, k, and set the parameter to zero at the

end. The procedure looks as follows:

uk dðr1 � nÞj julh i ¼ /k r
2p
1 dðr1 � nÞ
�� ��/l

� 	
¼ ð�1Þp op

okp
/k exp �kr0ðJ 11 � I3Þr½ �jh

� dðr1 � nÞj/lijk¼0

¼ ð�1Þp op

okp
p3n=2

Akl þ kJ 11j j3=2
1

p3=2

� 1

tr½ðAkl þ kJ 11Þ�1J 11�3=2

� exp � n2

tr½ðAkl þ kJ 11Þ�1J 11�

" #�����
k¼0

:

ðA:11Þ

Applying the following formulae:

o

ok
jAkl þ kJ 11j ¼ jAkl þ kJ 11jtr½ðAkl þ kJ 11Þ�1J 11�;

ðA:12Þ

o

ok
tr½ðAkl þ kJ 11Þ�1J 11� ¼ � tr½ðAkl þ kJ 11Þ�1J 11

� ðAkl þ kJ 11Þ�1J 11� ðA:13Þ
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and using the fact that tr [XJ11XJ11] = tr [XJ11]
2 = (X11)

2

for an arbitrary matrix X reduces the final result to

gklðnÞ ¼ uk dðr1 � nÞj julh i

¼ ukjulh i 1

2p
1

C p þ 3
2


 �
� 1

ðA�1
kl Þ

3=2
11

n2

ðA�1
kl Þ11

" #p
exp � n2

ðA�1
kl Þ11

" #
; ðA:14Þ

where Æuk|ulæ is the overlap matrix element [15]

ukjulh i ¼ /k r
2p
1

�� ��/l

� 	
¼ 2ffiffiffi

p
p C p þ 3

2


 �
tr ½A�1

kl J 11�p /kj/lh i

¼ 2ffiffiffi
p

p C p þ 3

2


 �
ðA�1

kl Þ
p
11 /kj/lh i; ðA:15Þ

and C(x) is the Euler gamma function.
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