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Nonrelativistic energies of all fifteen pure vibrational states of the H2 molecule have been recalculated
with much higher accuracy than before. In the calculations we employed explicitly correlated Gaussian
functions and an approach where the Born–Oppenheimer (BO) approximation is not assumed. The wave
function of each state was expanded in terms of 10000 Gaussians whose nonlinear parameters were opti-
mized using a procedure involving the analytical energy gradient. The obtained non-BO energies com-
bined with the recent BO adiabatic energies of Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem.
Phys. 129 (2008) 034102] allowed us to determine new improved values of the non-adiabatic corrections
for the considered states.
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1. Introduction

The Born–Oppenheimer approximation is central to the quan-
tum mechanical calculations on molecular systems. For the major-
ity of chemical problems the separation of the nuclear motion from
the electronic motion that one makes in solving the Schrödinger
equation within this approximation has an insignificant effect on
the results. However, measurements involving high resolution
gas-phase molecular spectroscopy, time-resolved laser spectros-
copy, and other high-precision methods have been providing re-
sults that are impossible to match with theoretical calculations
unless effects involving the coupling of the motions of the elec-
trons and the nuclei in the studied system are accounted for. In
the framework of the quantum mechanical molecular calculations
these effects can be either described using the perturbation theory
[1–3] or they can be incorporated in the model from the very
beginning without starting from a simpler model that in the lowest
order does not include the coupling. In the review summarizing
their works on the H2 molecules [4] Kolos and Wolniewicz
expressed a view that in very accurate calculations on small molec-
ular systems one should drop the idea of separating the electronic
and nuclear motions from the very beginning and solve the com-
plete Schrödinger equation describing all the particles involved
in the system. Over the last four decades several works have
appeared concerning calculations of energies and wave functions
of molecular systems without assuming the BO approximation
[1,5–10]. Our contribution to the field has been the development
ll rights reserved.
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of a non-BO approach that employs explicitly correlated Gaussian
functions to calculate ground and excited states of atomic and
molecular systems [11,12]. Unlike other approaches, our method
is not limited to one- and two-electron diatomic systems. Exam-
ples of non-BO calculations, where we have considered molecules
with more than two electrons, include the work of the vibrational
transitions of the LiH molecule [13], the calculations of the ioniza-
tion energy of BeH [14], the calculations of the ground state of H3

[15], and the work on the electron affinities of the LiH and LiD mol-
ecules [16].

Even with explicitly correlated Gaussians rigorous non-BO var-
iational calculations are currently limited to small molecular sys-
tems with a few electrons. For larger systems non-BO effects can
be determined using the perturbation theory approach. Such an
approach, for example, was used in the calculations of the H2 mol-
ecule by Kolos and Wolniewicz [4] and very recently by Pachucki
and Komasa [2,3]. In order to test the effectiveness of the perturba-
tion calculations of the non-adiabatic effects very accurate non-BO
energies are needed, which, when subtracted from the adiabatic
energies, give the complete non-adiabatic energy corrections.
These corrections can be directly compared with the corrections
obtained using the perturbation theory. The most popular simple
molecular system that have been used for testing the procedures
for determining mass corrections to various molecular properties
is the H2 molecule. A year ago we published the results of the
non-BO calculations of all fifteen bound pure vibrational states of
this system using 5800 explicitly correlated Gaussians per state
[17]. The calculations included the lowest order relativistic effects.
The exponential parameters of the Gaussians were extensively
optimized with a procedure that involved the gradient of the en-
ergy determined with respect to the Gaussian exponents. Since
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that publication a new 15.8 TFLOPS SGI Altix ICE system with 1392
processors was installed at the University of Arizona Computer
Center. This provided us with an opportunity to revisit the H2 cal-
culations and, by extending the basis set for each of the fifteen
bound vibrational states to 10000 basis functions, recalculate their
non-BO energies with much higher accuracy. The results of the cal-
culations, that lasted for more than a year, are presented in this
work. Most of the computer time was used to optimize the wave
functions and, as the Gaussian parameters for each state were opti-
mized separately, the calculations for all states have been run
simultaneously using either eight or sixteen processors per calcu-
lation. The results of this work include new values for the non-adi-
abatic corrections obtained using our new non-BO energies and the
adiabatic energies taken from the work of Pachucki and Komasa
[2].

Some of the reasons we deem important to carry out improved
nonrelativistic non-BO calculations of the vibrational spectrum of
H2 are: (i) in our previous calculations [17], while the energies of
the lower lying states were well converged, this was not the case
for the upper half of the energy spectrum. In the calculations
presented here the convergence has been significantly improved.
We estimate that the maximum error of the new energies is now
lower than 1:4� 10�8 hartree. One needs to achieve this level of
accuracy in order to determine the vibrational transitions with a
comparable precision as offered by the currently available state-
of-the-art experimental spectroscopy measurements; (ii) the H2

molecule serves as a model for testing the accuracy of various
methods used to perform quantum mechanical calculations on
small molecular systems. Very accurate calculations of the H2 spec-
trum can help to determine how to improve those new methods
and whether the accuracy they offer is sufficient to adequately de-
scribe larger molecular systems; (iii) as the method we used in the
present H2 calculations does not assume the BO approximation, the
non-adiabatic energy corrections can be determined directly with-
out resorting to the perturbation theory (PT). As in all applications
of the perturbation theory, there is always a question about the
convergence of the PT series and whether it is adequately fast to
provide good results at lower orders for the studied problem. The
energies converged as tight as ours can provide a useful set of data
for testing the PT convergence.

We start this work with a brief description of the method we
used (a more complete description of the method can be found
in our recent reviews [11,12]). The results and a discussion are pre-
sented in the last section.

2. The approach

The calculations presented here have been performed using the
standard variational method applied separately to each state. The
variational minimization has been applied to the total internal en-
ergy expressed as the expectation value of the internal nonrelativ-
istic Hamiltonian, bHnonrel, obtained from the ‘laboratory frame’
Hamiltonian by separating out the center-of-mass motion. For H2

the internal Hamiltonian expressed in terms of the internal Carte-
sian coordinates with the center at one of the protons has the fol-
lowing form:
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In (1) q0 ¼ q1 ¼ 1 are the charges of the protons and q2 ¼ q3 ¼ �1
are the electron charges, ri, i ¼ 1;2;3, are the position vectors of
the second proton and the two electrons with respect to the proton
placed in the center of the internal coordinate system, ri are their
lengths, rij ¼ jrj � rij, m0 ¼ m1 ¼ 1836:15267261me are the masses
of the protons, m2 ¼ m3 ¼ 1 are the electron masses [18], and
li ¼ m0mi=ðm0 þmiÞ is the reduced mass of particle i. It is impor-
tant to note that the internal Hamiltonian (1) is spatially ‘isotropic’
(rotationally invariant). More information on the center-of-mass
separation and the form of the internal Hamiltonian (1) can be
found elsewhere [11,12]

As in the previous works the spatial part of the H2 non-BO wave
functions of the pure (rotation-less) vibrational states are ex-
panded in terms of one-center, spherically symmetric explicitly
correlated Gaussian functions multiplied by even powers (mk) of
the distance between the protons, r1 [17,19–22]:

/k ¼ rmk
1 exp �r0ðAk � I3Þr½ �; ð2Þ

where r ¼ fr01; r02; r03g
0
; 0 denotes the vector (matrix) transposition, Ak

is a 3� 3 symmetric matrix of the Gaussian exponential parame-
ters, I3 is a 3� 3 unit matrix, and � denotes the Kronecker product.
As one notices, the functions (2) are fully spherically symmetric and
have the necessary radial flexibility (through the rmk

1 factors) to de-
scribe radial nodes of the spherically symmetric wave functions
representing rotation-less vibrational bound states of the internal
Hamiltonian (1) considered in this work.

The variational minimization of the energy involved optimiza-
tion of the linear coefficients of the expansion of the wave function
in terms of the Gaussian basis functions, the Gaussian exponential
parameters, Ak, and the pre-exponential r1 powers, mk of the Gaus-
sians (2). As /k basis functions have to be square integrable one
needs to impose restrictions on the elements of each Ak matrix to
make it positive definite. In our approach this is accomplished by
using the Cholesky-factored form of Ak, Ak � LkL0k, where Lk is a low-
er triangular matrix (all elements above the diagonal are zero). With
the Cholesky-factored representation of Ak, this matrix is automat-
ically positive definite for any real values of the Lk matrix elements.
Thus the Lk matrix elements become optimization variables in our
calculations. As mentioned, another set of variables that we opti-
mize are the pre-exponential powers, mk. Their values ranged from
0 to 250 in the present calculations. The pre-exponential r1 power of
each Gaussian function was only optimized when the function was
first added to the basis set. The permutation symmetry of the wave
function was implemented by placing the symmetrization operator,
ð1þ PppÞð1þ PeeÞ (Ppp permutes the labels of protons and Pee per-
mutes the electron labels), in front of each basis function.

The key feature that differentiates our approach from other ap-
proaches utilizing explicitly correlated Gaussian functions is the
use of the analytical energy gradient calculated with respect to
the Gaussian exponential parameters in the variational energy
minimization. Employing the gradient significantly accelerates
the optimization process and allows achieving high accuracy in
the calculation.

The present calculations concern all fifteen pure vibrational
states (v ¼ 0;1;2; . . . ;14) of H2. The maximum number of basis
functions used for each state was 10000. This is almost twice the
number of functions used in our previous H2 calculations [17].
More details about the procedure of growing the Gaussian basis
set for H2 can be found in our previous work [17]. The procedure
consisted of adding groups of twenty functions and reoptimizing
the whole set after each addition. In the reoptimization cycle the
exponential parameters of each function were reoptimized once.
After a 10000 function basis was generated for each state addi-
tional fifty reoptimization cycles were performed to further lower
the energy.

The non-BO energies obtained in the calculations were used to
calculate the non-adiabatic corrections. These corrections were ob-
tained by subtracting the adiabatic vibrational energies recently
published by Pachucki and Komasa [2] from our non-BO energies.



Table 2
Non-adiabatic energy contributions, Enonadiab , to the energies of the pure vibrational
states of H2. The contributions are compared with the results of Wolniewicz [1] and
with the results of Pachucki and Komasa [2,3]. The differences between our results
presented in the second column and the results of Wolniewicz and of Pachucki and
Komasa are given in the parenthesis. All values are in cm�1.

v Enonadiab Enonadiaba Enonadiabb Enonadiabc

0 �0.4991 �0.4988 (+0.0003) �0.511 (�0.012) �0.4990 (+0.0001)
1 �1.3357 �1.3350 (+0.0007) �1.347 (�0.011) �1.3355 (+0.0002)
2 �2.0922 �2.0913 (+0.0009) �2.104 (�0.012) �2.0922 (0.0000)
3 �2.7737 �2.7728 (+0.0009) �2.785 (�0.011) �2.7739 (�0.0002)
4 �3.3834 �3.3824 (+0.0010) �3.395 (�0.012) �3.3838 (�0.0004)
5 �3.9221 �3.9208 (+0.0013) �3.934 (�0.012) �3.9227 (�0.0006)
6 �4.3861 �4.3847 (+0.0014) �4.398 (�0.012) �4.3869 (�0.0008)
7 �4.7664 �4.7654 (+0.0020) �4.779 (�0.013) �4.7680 (�0.0016)
8 �5.0470 �5.0459 (+0.0011) �5.059 (�0.012) �5.0489 (�0.0019)
9 �5.1989 �5.1980 (+0.0009) �5.210 (�0.011) �5.2015 (�0.0026)

10 �5.1777 �5.1772 (+0.0005) �5.187 (�0.009) �5.1811 (�0.0034)
11 �4.9179 �4.9176 (+0.0003) �4.926 (�0.008) �4.9217 (�0.0038)
12 �4.3270 �4.3270 (+0.0000) �4.333 (�0.006) �4.3308 (�0.0038)
13 �3.2842 �3.2844 (�0.0002) �3.287 (�0.003) �3.2872 (�0.0030)
14 �1.6477 �1.6482 (�0.0005) �1.646 (0.002) �1.6498 (�0.0021)

a The results of Wolniewicz [1] taken from the paper of Pachucki and Komasa [2].
b The results of Pachucki and Komasa [2].
c The results of Pachucki and Komasa [3].
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Non-BO calculations produce wave functions that depend on
the internal coordinates of the nuclei and electrons. The wave func-
tions for the ground and excited rotation-less states of H2 consid-
ered in this work differ from each other in the number of the r1

radial nodes (r1 is the distance between the two protons). To de-
scribe this node structure we use plots of the nucleus–nucleus
(proton–proton for H2) correlation functions defined as [23]:

giðnÞ ¼ hWiðrÞjdðr1 � nÞjWiðrÞi ¼
Z 1

�1
jWiðn; r2; r3Þj2dr2 dr3; ð3Þ

where dðr1 � nÞ is the 3-dimensional Dirac delta function and WiðrÞ
is the wave function of the i state. The nucleus–nucleus correlation
function (3) provides information on the structure of the molecular
system in different states. In the results section we show plots of
the correlation functions for some selected H2 vibrational states.

3. The results

In Table 1, we present the total nonrelativistic energies for all
fifteen pure vibrational states obtained in the calculations. The re-
sults obtained with 6000, 7000, 8000, 9000, and 10000 functions
are presented to show the energy convergence pattern. There are
two entries for 10000 functions for each state. The first corre-
sponds to the energy obtained by enlarging the basis from 9000
to 10000 functions using the same procedure as used for the
6000! 7000;7000! 8000, and 8000! 9000 enlargements. The
second 10000-function entry is the energy obtained by performing
additional fifty optimization cycles of the 10000-function basis set.
The increase of the basis from 5800 Gaussians used in our previous
work [17] to the current 10000 Gaussians resulted in a noticeable
lowering of the energies of all fifteen states. The improvement was
not uniform (see the values in the parenthesis in Table 1). The larg-
est energy lowering occurred for the top states (by �10�8 hartree)
and the smallest for the bottom states (by �10�10 hartree).

As one can see the energy convergence becomes slightly worse
for the higher states than for the lower ones. While for the lower
states, the additional fifty optimization cycles have almost no ef-
fect on the energy, for the higher states some improvement was
obtained. Overall the results show that our final non-BO energy
for the highest vibrational state (v ¼ 14) is converged to about
5� 10�9 hartree. For lower states the convergence is significantly
better.

An important issue that needs to be addressed is the accuracy of
our results. To estimate it we have performed an analysis of the
convergence of our non-BO energies for all states using a nonlinear
Table 1
Convergence of the total non-BO energy with the number of basis functions, M. Energies are
functions we show the energy lowering achieved by enlarging the basis set from 5800 to 1
difference between the value of the energy obtained from an extrapolation to an infinite

v M ¼ 7000 M ¼ 8000 M ¼ 9000

0 �1.16402503072 �1.16402503079 �1.16402503082
1 �1.14506537180 �1.14506537193 �1.14506537202
2 �1.12717793514 �1.12717793540 �1.12717793558
3 �1.11034047802 �1.11034047842 �1.11034047872
4 �1.09453917164 �1.09453917213 �1.09453917248
5 �1.07976944479 �1.07976944555 �1.07976944606
6 �1.06603723345 �1.06603723427 �1.06603723496
7 �1.05336075872 �1.05336075984 �1.05336076064
8 �1.04177303330 �1.04177303480 �1.04177303576
9 �1.03132537776 �1.03132537950 �1.03132538074

10 �1.02209238958 �1.02209239171 �1.02209239319
11 �1.01417905483 �1.01417905732 �1.01417905898
12 �1.00773110799 �1.00773111095 �1.00773111280
13 �1.00295039306 �1.00295039616 �1.00295039813
14 �1.00011594097 �1.00011594357 �1.00011594522

a The energy obtained after additional fifty optimization cycles.
extrapolation procedure. The procedure is based on the following
formula: EðKÞ ¼ Eð1Þ þ A

Kb, that relates the energy obtained with
K basis functions to the energy extrapolated to an infinite number
functions, Eð1Þ, and to two constants, A and b. Eð1Þ, A, and b are
determined using a least-squares fitting procedure using the ener-
gies obtained in the calculations for different values of K. The
results of the extrapolation are shown in the last column of Table
1. They were calculated as differences between the energy values
obtained with 10000 functions and the corresponding values esti-
mated for the infinite number of basis functions. As one can see,
the convergence is quite satisfactory particularly for the lowest
states.

In Table 2, we show the values of the non-adiabatic energy cal-
culated for each state by subtracting the adiabatic energies of Pa-
chucki and Komasa [2] from our non-BO energies. As one can see
these corrections increase from v ¼ 0 to v ¼ 10 and then decrease
from v ¼ 11 to v ¼ 14. Table 2 also includes a comparison of the
adiabatic corrections obtained in the present calculations with
the corrections obtained by Wolniewicz [1] and by Pachucki and
Komasa [2,3]. In general, our results agree very well with the re-
sults of Wolniewicz. The largest difference is only 0:0020 cm�1.
in hartrees. In the parenthesis by the nonrelativistic energy obtained with 10000 basis
0000 functions. The error in the energy shown in the last column was estimated as a

number of basis functions and the energy obtained with 10000 basis functions.

M ¼ 10 000 M ¼ 10 000a Est. error

�1.16402503084 �1:16402503084 ð�2:1� 10�10Þ 6� 10�11

�1.14506537209 �1:14506537210 ð�5:6� 10�10Þ 5� 10�10

�1.12717793572 �1:12717793573 ð�1:3� 10�9Þ 9� 10�10

�1.11034047893 �1:11034047896 ð�1:7� 10�9Þ 9� 10�10

�1.09453917277 �1:09453917280 ð�2:2� 10�9Þ 1� 10�9

�1.07976944642 �1:07976944647 ð�3:5� 10�9Þ 2� 10�9

�1.06603723543 �1:06603723550 ð�3:9� 10�9Þ 2� 10�9

�1.05336076124 �1:05336076136 ð�5:2� 10�9Þ 3� 10�9

�1.04177303648 �1:04177303663 ð�6:7� 10�9Þ 3� 10�9

�1.03132538164 �1:03132538188 ð�8:6� 10�9Þ 4� 10�9

�1.02209239417 �1:02209239440 ð�1:0� 10�8Þ 4� 10�9

�1.01417906013 �1:01417906044 ð�1:2� 10�8Þ 4� 10�9

�1.00773111411 �1:00773111446 ð�1:4� 10�8Þ 5� 10�9

�1.00295039947 �1:00295039985 ð�1:4� 10�8Þ 5� 10�9

�1.00011594635 �1:00011594657 ð�1:2� 10�8Þ 5� 10�9



Fig. 1. Proton–proton correlation functions, giðnÞ, for the v ¼ 0;7, and 14 pure
vibrational states of the H2 molecule. The densities are shown as two-dimensional
functions of the nx and ny coordinates with the nz coordinate set to zero.

S. Bubin et al. / Chemical Physics Letters 477 (2009) 12–16 15
The Wolniewicz’s results are slightly higher than ours except for
the highest two states. Such a small difference can only come to
play if the H2 calculations are performed at very high accuracy
with including higher order relativistic and quantum electrody-
namics (QED) effects.

The non-adiabatic energies obtained in the first of two recent
works by Pachucki and Komasa [2] show larger differences with
our results (the largest difference being �0:013 cm�1). As it is sta-
ted in the Pachucki and Komasa paper, there is some inaccuracy in
their results due to neglecting higher order non-adiabatic effects.
This inaccuracy explains the differences with our results. Pachucki
and Komasa included these effects in the second of the two papers
[3] and their results noticeably improved as can be seen from the
comparison shown in Table 2. However, for the top seven states,
while our results perfectly agree with the results of Wolniewicz,
the results of Pachucki and Komasa show some larger deviations.

Finally, as an illustration of the results of the present calcula-
tions, we show in Fig. 1 plots of the proton–proton correlation
functions for v ¼ 1;7, and 14 states. As the wave functions for
the rotation-less states of H2 are spherically symmetric, spherically
symmetric are also the corresponding correlation functions. As
such they could have been plotted on one-dimensional graphs,
but we have chosen a two-dimensional representation to empha-
size the ‘atom’ like character of the wave functions obtained for
H2 (or any other system) with an approach that does not assume
the Born–Oppenheimer approximation. The concentric rings in
the correlation functions correspond to the radial vibrational max-
ima. With the increasing excitation level the molecule becomes
increasingly more diffuse in space.

In a large-scale calculations such as these it is usually in order to
comment on the computational resources used. As mentioned, the
calculations have been performed on a distributed-memory com-
puter cluster. The optimizations of the Gaussian exponential
parameters of the basis sets used to expand the wave functions
were by far the most time consuming steps of the calculations.
The memory use was limited to only 1-2GB of RAM allocated on
each processor and a very small scratch allocation.
4. Summary

The main contribution of this work is the recalculation of the
energies of all rotation-less vibrational states of the H2 molecule
with much higher accuracy than done before. The new results
enabled us to more accurately recalculate the non-adiabatic
energy corrections for these states. The values of these correc-
tions provide new standards for testing methods for calculating
the non-adiabatic corrections using the perturbation theory.
For example, they show that the procedure developed by
Wolniewicz [1] nearly twenty years ago performs still somewhat
better than the procedure recently presented by Pachucki and
Komasa [3].
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