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In this work we report very accurate variational calculations of the two lowest vibrational states of the D2

and T2 molecules within the framework that does not assume the Born–Oppenheimer approximation.
The non-relativistic energies of the states obtained in the non-BO calculations are corrected for the rel-
ativistic effects of the order of a2 calculated as expectation values of the operators representing these
effects. The v ¼ 0! 1 transition energy of D2 obtained in the calculations is compared with the transition
frequency obtained from the experimental spectra. The comparison shows the need to include correc-
tions higher than second-order in a to further improve the agreement between the theory and the
experiment.
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1. Introduction

The general theoretical framework for calculating energies of
stationary bound states of atoms and molecules with a very high
accuracy is provided by the quantum electrodynamics (QED)
[1,2]. Within this framework an effective approach was developed
to account for the relativistic effects in light molecular systems
based on the perturbation theory with the zeroth-order level being
the non-relativistic Schrödinger equation. The approach is called
non-relativistic QED theory (NRQED). A description of the NRQED
and of the way the effective operators representing the relativistic
effects are derived can be found in [2], as well as other sources. In
the NRQED theory the corrections are quantities proportional to
different powers of the fine structure parameter a (where
a ¼ 1=c). Also, as shown by Bethe and Salpeter [3], an effective ap-
proach to account for the relativistic effects can be independently
developed without using NRQED.

In the approach used in this work for the calculations at the
non-relativistic level, the Born–Oppenheimer (BO) approximation
concerning the separability of the motions of the electrons and
the motions of the nuclei is not assumed. In non-BO calculations
for molecules there are three types of inter-particle correlation ef-
fects that need to be described. These are the electron–electron,
nucleus–nucleus, and nucleus–electron correlation effects. To
achieve high accuracy in such calculations all three effects have
to be adequately represented in the wave function. While the elec-
ll rights reserved.

).
tron–electron correlation has been extensively studied and it is
fairly well understood, the nucleus–nucleus correlation in calcula-
tions that treat both electrons and the nuclei on equal footing has
not received much attention even though it is much stronger than
the former. This is due to the nuclei being considerably heavier
than electrons resulting in a much lower probability of finding
them is the same point in space than for much lighter electrons.
One can say that the nuclei avoid each other more (or correlate
more) in their relative motion in the molecule than the electrons.
As a result of this, while the independent particles model (i.e. the
orbital model) works well for electrons, it is inadequate for nuclei.

To accurately describe the strong nuclear–nuclear correlation in
a non-BO molecular calculation one needs to use basis functions
that virtually vanish when two nuclei approach each other. In
our diatomic non-BO calculations this is accomplished by using
one-center explicitly correlated Gaussian functions (ECGF) multi-
plied by powers of the internuclear distance [4–6]. These types of
functions can very effectively describe all three correlation effects
mentioned above. In recent years we have reported several non-BO
calculations on small molecules including D2 and T2 [7]. The calcu-
lations on those two systems were performed with 512 ECGFs. In
the D2 and T2 calculations presented in this work the ECGF basis
sets were extended to 10000 functions leading to much more accu-
rate results. Furthermore, besides the ground states, we also con-
sider in this work the first excited states of the two molecules.

The feature that makes the correlated Gaussians suitable for
quantum mechanical molecular all-particle calculations is the rel-
ative simplicity of the algorithms for calculating the Hamiltonian
matrix elements with these functions. Since these functions were
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introduced to quantum chemistry by Boys [8] and Longstaff and
Singer [9], they have been applied by several groups including
Adamowicz and Sadlej [10] and Rychlewski and coworkers
[11,12] in electronic calculations of small atomic and molecular
system. In recent years we have extended their use to the non-
BO atomic and molecular calculations. In those calculations we
have used the non-relativistic Hamiltonian obtained by rigorously
separating out the motion of the center-of-mass from the labora-
tory-frame Hamiltonian. The ‘internal’ Hamiltonian obtained this
way is rotationally invariant and its eigenfunctions transform
according to the irreducible representations of the SO(3) group of
rotations. In particular the ground state (or any rotationless J ¼ 0
state) of a system with positive (natural) parity is represented by
a spherically symmetric s-type wave function, which can be ex-
panded in terms of spherically symmetric ECGFs. By including in
these functions powers of the internuclear distances as preexpo-
nential multipliers the nuclear–nuclear correlation can be very
effectively described as we showed in several calculations concern-
ing ground and excited vibrational states of some small diatomic
molecules [13,14].

In this work we also calculated the leading relativistic correc-
tions of the order of a2 to the energies of the considered states.
The algorithms for calculating these corrections for rotationless
states of diatomic systems using the non-BO wave functions ex-
panded in terms of ECGFs and the first-order perturbation theory
were presented in our previous works [15–17].

There have been some works performed on D2 and T2 before.
Wolniewicz calculated vibrational energies of these systems using
the conventional approach involving determining the BO potential
energy curve first, correcting it for adiabatic, non-adiabatic, relativ-
istic and radiative corrections, and using it to calculate the vibra-
tional energy levels [18]. A similar approach was also recently
applied by Piszczatowski et al. [19] to calculate the dissociation en-
ergy of D2 and H2 with very high accuracy, which was achieved by
including not only a2 relativistic corrections but also the quantum
electrodynamics corrections of the order a3 and a4 (only the one-
loop term). Their dissociation energy value of 36748.3633 cm�1

with the assigned uncertainty of only 0.0009 cm�1 is still off by
about 0.02 cm�1 from the most recent experimental value of
36748.343(10) cm�1 [20].

We start this work with a brief description of the method used
in the calculations (a more complete description of the method can
be found in our recent reviews [4,5]). Next we describe the ap-
proach used to obtain a better estimate of the lowest experimental
pure vibrational transition frequency of D2. The results obtained in
the calculations and their comparison with the experimental re-
sults are presented in the last section.
2. The method used in the calculations

In this work we consider the lowest two rotationless states of
D2 and T2. In the non-relativistic calculations, which are done first
and independently for each state, we use the conventional
Rayleigh–Ritz variational method. The internal non-relativistic
Hamiltonian used in the energy functional, which we minimize
in the calculations, contains the internal non-relativistic Hamilto-
nian, bHnonrel, obtained from the ‘laboratory-frame’ Hamiltonian by
rigorously separating out the center-of-mass motion. The internal
Hamiltonian for D2 and T2 has the following form:
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In (1), q0 ¼ q1 ¼ 1 are the charges of the nuclei and q2 ¼ q3 ¼ �1 are
the electron charges, ri; i ¼ 1;2;3, are the position vectors of the
second nucleus and the two electrons with respect to the first
nucleus (placed in the center of the internal coordinate system;
we call this nucleus the ‘reference particle’), ri are their lengths,
rij ¼ jrj � rij;m0 ¼ m1 ¼ 3670:4829654me for D and m0 ¼ m1 ¼
5496:92158me for T, m2 ¼ m3 ¼ me ¼ 1 are the electron masses
[21], and li ¼ m0mi=ðm0 þmiÞ is the reduced mass of particle i. As
one can notice, the internal Hamiltonian (1) describes three
‘pseudoparticles’ with charges equal to the charges of the original
particles, but with masses changed to the reduce masses, moving
in the central potential of the charge of the reference particle. The
motions of the three pseudoparticles are coupled through the Cou-
lomb interactions and through the so-called mass-polarization
term, � 1
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To calculate the relativistic corrections of the order of a2 we use

the Breit–Pauli Hamiltonian and the first-order perturbation the-
ory. This approach has been used by others in very accurate calcu-
lations of light atoms and molecules [22–24]. The Breit–Pauli
relativistic operators representing the mass–velocity (MV), Darwin
(D), spin–spin (SS), and orbit–orbit (OO) interactions used in the
present work were derived starting from their representations in
the laboratory coordinate frame and transforming them to the
internal coordinate system described above. More details concern-
ing this transformation can be found in [15,16]. For D2 and T2 the
transformed MV, D, SS, and OO Hamiltonians have the following
form (in the Darwin term, the nuclear contributions proportional
to the reciprocals of the squares of the nuclear masses are not
included):
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As the spin–orbit interactions are zero for D2 and T2 due to the sin-
glet multiplicity of the electronic wave function, this effects do not
contribute to the relativistic correction. Also, the spin–spin interac-
tion between the nuclei and the electrons is zero because of the
electrons’ singlet multiplicity. The total first-order relativistic cor-
rection in this work was calculated for each state as the expectation
value of bHrel being:bHrel ¼ bHMV þ bHD þ bHSS þ bHOO ð6Þ

with the non-BO wave function. Thus, as such, the relativistic cor-
rection depends on the nuclear masses through the dependency
of the relativistic operators on these quantities and through the
mass dependency of the non-BO wave function used in the calcula-
tion of the correction.

In expanding the spatial parts the D2 and T2 non-BO wave func-
tions we used one-center, spherically symmetric ECGFs that in-
clude even powers of the internuclear distance, r1, as
preexponential multipliers: [6]:

/k ¼ rmk
1 exp �r0ðAk � I3Þr½ �; ð7Þ



Table 1
Dunham’s spectral parameters (in cm�1) fitted to the available D2 spectral lines
corresponding to the 0! 1 rovibrational transitions of this molecule.

Yij

Y10 2993.6108(30) 2993.6130(19)
Y11 �1.05454(48) �1.05450(54)

Y12 � 10�4 2.27(15) 2.13(28)

Y01 30.43956(60) 30.44047(53)

Y02 � 10�2 �1.1558(24) �1.162(27)

Y03 � 10�6 5.61(30) 7.56(90)

r̂ 1.2049 0.3852
r 0.0109 0.0016
Jmin � Jmax 0–9 0–5
m0!1 2993.6108(30) 2993.6130(19)
Data points 57 9
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where r ¼ fr01; r02; r03g
0 and 0 denotes the vector (matrix) transposi-

tion. The powers of r1 ranged from 0 to 250 in the present calcula-
tions. Before the functions (7) are used in expanding the D2 and T2

wave functions they are symmetrized with respect to the permuta-
tions of the electron labels and the nuclear labels. Since the trans-
formation between the laboratory and the internal coordinates is
linear, the symmetrization operators, which originally are defined
with respect to the laboratory coordinates, can be expressed in
terms of the internal coordinates and directly applied to functions
(7) [6].

In the present calculations we used 10000 basis functions for
each considered state. These functions have been extensively opti-
mized using the variational energy minimization applied indepen-
dently to each state, i.e. the lowest (ground) state and the second
lowest (first vibrationally excited) state. Both the linear expansion
coefficients and the Gaussian exponential parameters, fAkg, have
been subject to the optimization. The calculations for the two D2

states were initiated with the 10000 ECGFs taken from our previ-
ous calculations of the corresponding states of H2 [25]. The mk

powers of r1 were not reoptimized. The calculations for T2 were
initiated with the basis sets obtained for D2.

The ECGFs used in the calculations have to be square integrable.
This automatically happens if Ak’s are represented in Cholesky-fac-
tored form, Ak � LkL0k, with Lk being a lower triangular real matrix.
Thus, in the calculations the elements of the Lk matrices replace the
elements of the Ak matrices as the optimization variables. The opti-
mization of Lk’s through the energy minimization for each state has
been the most time consuming step of the calculations. To expedite
the optimization we used the analytical gradient of the energy
functional determined with respect to the Lk matrix elements.
The optimization of each basis set was carried out by cycling over
all functions in the set several times and reoptimizing the param-
eters of only one function at a time. We found such an approach
most optimal for large basis sets.

After the basis set and the corresponding non-BO wave function
and the non-relativistic energy were generated for each of the con-
sidered states, the calculations of the relativistic corrections were
carried out. The non-relativistic and relativistic total energies were
subsequently used to calculate the v ¼ 0! v ¼ 1 transition
frequencies.

3. Estimation of pure vibrational ¼ 0! 1 transition of D2 from
the available experimental rotation–vibrational spectra

The frequency of the pure vibrational transition J ¼ 0; v ¼ 0! 1
of the deuterium molecule, D2, was estimated by fitting the posi-
tions of 57 lines (including duplicated lines) taken from the rota-
tion–vibrational v ¼ 0! 1 spectral data published in several
sources [26–32], to the Dunham’s energy formula [33,34]:

EvJ ¼
X

i;j

Y ij v þ 1
2

� �i

JðJ þ 1Þ½ �j: ð8Þ

From the available spectral data we eliminated five lines obtained
by Looi et al. [26], as they are not accurately reproduced by Dun-
ham’s formula (8). This inaccuracy can be seen in the quantity
ðEexp � EtheorÞ=dexp whose value for each of the five lines is approxi-
mately equal to eight, while for the other lines used in the fit its va-
lue is about one.

The fitting produced the Yij parameters. As the higher order
vibrational parameters, Y20;Y30, etc. cannot be determined from
the available rotation–vibrational v ¼ 0! 1 spectral data, we only
use the Y10 parameter to determine the frequency of the pure
ground vibrational transition, 0! 1, of D2. The value of this transi-
tion is:

m0!1 ¼ Y10 ¼ 2993:6108ð30Þ cm�1: ð9Þ
We are confident that this value is much more accurate then the va-
lue of 2993.56 cm�1 reported by Stoicheff [32].

The fitting calculations were performed by using a weighted
non-linear least-square routine with the weights taken as the in-
verse squares of the corresponding uncertainties, ui ¼ 0:10�
0:004 cm�1, of the experimental data. The mean accuracy of the
experimental data used in the calculations was 0.0429 cm�1. To
obtain high quality Dunham’s parameters, Yij, we used the follow-
ing in the fitting calculations: the minimum number of fitted
parameters was set consistent with the minimum value of normal-
ized standard deviation, r̂, and in determining the standard devia-
tion, r, very carefully chosen values of the estimated standard
errors, ri, of the fitted parameters, i, and of the coefficients,
ccði; jÞ, correlating these parameters were employed. The results
of the calculation are presented in Table 1. The uncertainty shown
in the parentheses for each Dunham’s parameter was estimated
from the standard deviation and it is given in units of the last
two quoted digits of the value of the parameter.

Alternatively, the m0!1 transition can be estimated by using in
the fitting 92 rotation–vibrational lines taken from Refs.
[31,32,35,36]. These lines include the 57 v ¼ 0! 1 lines men-
tioned above, as well as 30 lines due to the v ¼ 0! 0 transitions
and 5 lines due to the v ¼ 0! 2 transitions. The fitting of the 92
lines, where we used the mean experimental accuracy of
0.0433 cm�1, produced the following values of the vibrational
parameters: Y10 ¼ 3112:632ð51Þ and Y20 ¼ �59:511ð25Þ. These
two parameters allows calculation of the fundamental vibrational
transition using the formula:

m0!1 ¼ Y10 þ 2Y20 ¼ 2993:6108ð713Þ cm�1: ð10Þ

The larger standard error in (10) than in (9) results from the accu-
mulation of errors due to Y10 and Y20.

To addition to the above two calculations another test calcula-
tion was performed where the ground m0!1 vibrational transition
of D2 was determined based on the nine high-accuracy experimen-
tal data measured by McKellar and Oka [27] with the mean exper-
imental error of 0.0042 cm�1. The vibrational transition of
m0!1 ¼ 2993:6130ð19Þ determined based on these nine lines is in
a satisfactory agreement with the values of m0!1 obtained from
the 57 and 92 line data sets. The test indicates that the transition
frequence evaluated from the experimental data using (9) is reli-
able and can be used for comparison with the results of high-accu-
racy quantum–mechanical calculations. It should be pointed out
that a similar data set of the D2 rotation–vibrational transitions
as used in this work was also employed by Bak et al. [37] for com-
parison of the results of spectral and ab initio calculations of
the vibrational g-factors of the hydrogen molecule and its
isotopomers.



Table 2
Total non-relativistic non-BO energies ðEnonrelÞ, mass–velocity (MV), Darwin (D), spin–spin (SS), and orbit–orbit (OO) relativistic corrections, and the total energies (non-
relativistic + relativistic corrections; Erel ¼ Enonrel þ a2ðhHMVi þ hHDi þ hHSSi þ hHOOiÞ of the two lowest pure vibrational states (v ¼ 0 and 1) of D2 and T2. We also show the
corresponding energies and the relativistic correctionsa for pairs of the dissociated atoms. All values are in hartrees.

System (state) Enonrel hHMVi hHDi hHSSi hHOOi Erel

D2 ðv ¼ 0Þ �1.16716880921 �1.634543 1.374586 0.102591 �0.047375 �1.16717971190
D2 ðv ¼ 1Þ �1.15352889586 �1.601481 1.346122 0.097798 �0.045667 �1.15353971800
D + D �0.99972763049 �1.248639 0.999183 �0.000544 �0.99974094333
T2 ðv ¼ 0Þ �1.16853567568 �1.638226 1.377617 0.103055 �0.047321 �1.16854658555
T2 ðv ¼ 1Þ �1.15730657764 �1.610923 1.354126 0.099125 �0.045925 �1.15731741942
T + T �0.99981811308 �1.249091 0.999454 �0.000367 �0.99983142592

a The relativistic corrections for the hydrogen-like atoms are calculated analytically using the exact non-relativistic ground state wave function, wðr1Þ ¼ l3=2p1=2e�lr1 ,
where l ¼ m0m1=ðm0 þm1Þ is the reduced mass of the system ðm0 is the nuclear mass and m1 is the electron mass). The corresponding expressions are:
hbHMVi ¼ � 5

8
1

m3
0
þ 1

m3
1

� �
l4; hbHDi ¼ l3

2m2
1
, and hbHOOi ¼ � l3

m0 m1
.

Table 4
Some expectation values calculated for the v ¼ 0 and 1 pure vibrational states of the
D2 and T2 molecules with the wave functions expanded in terms of 10 000 explicitly
correlated Gaussians. As in the h1=rN�ei expectation value, N is used to denote a
nucleus, while e denotes an electron. All values are in a.u.
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4. The results

In Table 2 we present the total non-relativistic energies for the
two lowest vibrational states obtained in the calculations for D2

and T2. Based on the previous calculations for H2 [25] we believe that
the tenth significant digit in each energy value is essentially con-
verged. It is likely that for each system the ground v ¼ 0 state con-
verges slightly better than the first excited v ¼ 1 state because the
v ¼ 1 state wave function is more complicated and more difficult
to describe than the v ¼ 0 state wave function. In Table 2 we also
present the hbHMVi; hbHDi; hbHSSi, and hbHOOi contributions to the a2 rel-
ativistic correction, as well as their sum added to the non-relativistic
energies for each of the two systems. The relativistic corrections and
the total non-relativistic and relativistic energies are also shown for
two isolated D and T atoms. These values enable determination of the
dissociation energies (DE) for the two systems. DE for D2 ðv ¼ 0Þ is
36748.5620(10) cm�1 and for T2 ðv ¼ 0Þ it is 37028.6975(10) cm�1.
Our D2 DE can be compared with a recent experiment of Liu et al.
[38], where the value of 36748.36286(88) cm�1 was obtained. It
can also be compared with theoretical work [19], where the values
of 36748.5634(5) cm�1 (without the inclusion of QED corrections)
and 36748.3633(9) cm�1 (with QED corrections) were obtained.

The D2 and T2 v ¼ 0! 1 transition frequencies calculated as
the differences of the corresponding total energies of the two states
are presented in Table 3. We show the results obtained with and
without the relativistic corrections. The frequencies are compared
with the frequencies obtained by Wolniewicz [18]. In his calcula-
tions Wolniewicz used an approach based on the Born–Oppenhei-
mer approximation with corrections for the finite masses of the
nuclei (adiabatic and non-adiabatic) and for the leading relativistic
and radiative corrections added to each point of the potential en-
ergy curve subsequently used in calculating the vibrational ener-
gies. Table 3 also includes a comparison with the experimental
frequency.

Wolniewicz concluded his work by saying that the most impor-
tant source of errors in his calculations rests in the non-adiabatic
corrections. As the present non-BO calculations have been con-
verged to a very high accuracy at the non-relativistic level and
the finite-mass effects (both adiabatic and non-adiabatic) have
been explicitly accounted for in the variational energy and the
Table 3
Lowest pure vibrational transition frequencies of D2 and T2 calculated using the non-
relativistic ðEv¼1

nonrel � Ev¼0
nonrelÞ and relativistic ðEv¼1

rel � Ev¼0
rel Þ total energies. All values are

in cm�1.

D2 T2

Ev¼1
nonrel � Ev¼0

nonrel
2993.6150(1) 2464.5022(1)

Ev¼1
rel � Ev¼0

rel
2993.6326(10) 2464.5171(10)

Wolniewicz [18] 2993.609 2464.497
Experiment (see Table 1) 2993.6108(30), 2993.6130(19)
wave function, these effects are automatically included in our re-
sults to a very high precision. The finite-mass effects are also
explicitly included in the calculations of the relativistic effects.
We believe that our transition energies are converged to within
0.001 cm�1 or better (the estimate comes from the convergence
pattern obtained when optimizing the non-linear variational
parameters and from our previous systematic calculations on sim-
ilar systems, such as H2 and HD). This leaves the quantum electro-
dynamic (QED) corrections as the only source of an error in our
calculations.

The results presented in Table 3 show that adding the relativis-
tic correction makes the agreement between the experimental
transition energy of D2 worse than without that correction. For a
clue why this happens we went to the work of Piszczatowski
et al. on H2 [19]. In that work the v ¼ 0! 1 transition was calcu-
lated with inclusion of the leading relativistic ða2Þ and QED (the a3

correction and the one-loop term of the a4 correction). Their value
for the a2 of 0.0235(3) cm�1 is almost cancelled by the a3 þ a4 cor-
rection of �0.0215(2) cm�1. Without the QED correction their re-
sult would be by about 0.02 cm�1 higher than the experimental
value. As the relativistic correction for D2 of 0.0176 cm�1 is by
0.0059 cm�1 smaller that for H2, it is reasonable to expect that
the QED correction is also less negative for this system than for
H2. Thus, the D2 v ¼ 0! 1 transition energy calculated without
the QED correction, as it is done in this work, likely overestimates
the experimental value by 0.01–0.02 cm�1. This is what happens
with our result. Applying a similar argument to T2 suggests that
the v ¼ 0! 1 transition energy of 2464.5171 cm�1 obtained for
this system in this work should also be considered as an upper
bound to the true value overestimating it by about 0.01 cm�1.

In Table 3 we also show the D2 v ¼ 0! 1 transition energy ob-
tained by Wolniewicz [18]. His result of 2993.609 cm�1 is remark-
ably accurate suggesting that the procedure he used to calculate
the QED (radiative) corrections was reliable.
D2 ðv ¼ 0Þ D2 ðv ¼ 1Þ T2 ðv ¼ 0Þ T2 ðv ¼ 1Þ

h1=rN—Ni 0.703846 0.684680 0.705667 0.689942
h1=rN—ei 0.904959 0.890653 0.906353 0.894605
h1=re—ei 0.581653 0.570874 0.582673 0.573867
hrN—Ni 1.434562 1.502127 1.428359 1.483304
hrN—ei 1.567223 1.602852 1.563908 1.592899
hre—ei 2.191855 2.236727 2.187730 2.224135
hr2

N—Ni 2.077687 2.316156 2.056241 2.248689

hr2
N—ei 3.113364 3.265511 3.099443 3.222635

hr2
e—ei 5.754556 5.997527 5.732488 5.928941
hdðrN—eÞi 0.226936 0.222025 0.227455 0.223404
hdðre—eÞi 0.016328 0.015565 0.016402 0.015776
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In the last step the non-relativistic wave functions obtained for
the v ¼ 0 and v ¼ 1 states were used to determine some com-
monly calculated expectation values. The values are shown in Ta-
ble 4. As expected D2 has a slightly longer bond in both v ¼ 0
and v ¼ 1 states than T2. Also the electrons are on average closer
together in T2 than in D2 in both states. As the reduced masses of
the electrons increase in going from D2 to T2, they approach on
average slightly closer the T nucleus than the D nucleus. This effect
is seen in a slightly smaller hrT�ei distance than the hrD�ei distance.

5. Summary

In this work we present very accurate non-BO calculations of
the two lowest pure vibrational states of the D2 and T2 molecules
employing the explicitly correlated Gaussian functions. The non-
BO wave functions were used to evaluate the a2 relativistic correc-
tions, which were added to the non-relativistic energies. These
energies were then used to calculate the v ¼ 0! 1 transition ener-
gies for the two systems. The comparison of the calculated result
with the experimental value for the transition energy of D2 shows
an overestimation by about 0.01–0.02 cm�1. This is explained
based on the recent very accurate calculations of H2 by Piszczatow-
ski et al. [19] as resulting from neglecting the leading QED correc-
tions of the order of a3.
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