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Very accurate variational calculations of the five lowest vibrational states of the 3He4He+ ion are carried
out within a framework that does not assume the Born–Oppenheimer (BO) approximation, i.e., treating
the two nuclei and three electrons forming the system on an equal footing. The non-BO wave functions
are expanded in terms of one-center explicitly correlated Gaussian functions multiplied by even powers
of the internuclear distance. The wave functions are used to calculate the leading relativistic corrections.
The approach reproduces the experimental 3He4He+ fundamental transition within 0.055 cm�1 and sim-
ilar accuracy is expected for the higher yet unmeasured vibrational transitions determined in the present
calculations.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Due to the slight asymmetry of the charge in the 3He4He+ ion
that results from non-adiabatic interactions, the rovibrational
spectrum of this system has more lines than of the parent fully
symmetric 4He4He+ system. However even for 3He4He+, only the
fundamental vibrational transition frequency is determined with
very high accuracy of about 0.001 cm�1 [1]. In our recent calcula-
tions [2] we reproduced this transition within 0.06 cm�1 using an
approach which combines a non-Born–Oppenheimer (non-BO)
variational calculation of the nonrelativistic energy and a first-
order perturbation-theory calculation of the leading relativistic
corrections.

As the higher pure vibrational transitions of 3He4He+ are not
experimentally determined, the theoretical calculations can pro-
vide predictions for those transitions that can guide an experimen-
tal attempt to measure them. This has motivated the present work
where the non-BO approach combined with the perturbative
determination of the relativistic effects is used in the calculations
of the third, fourth and fifth pure vibrational levels of 3He4He+.
Some small improvement was also made in the energies of the
ground and first excited levels.

The non-BO calculations of molecular systems, such the ones
featured in this work, are considerably more difficult than elec-
tronic structure calculations based on the BO approximation with
ll rights reserved.
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the nuclei placed in fixed positions. The first reason for this is
the increased number of active particles, which now is the sum
of the number of electrons and the number of nuclei. The second
reason is that the use of a different type of basis functions for
expanding the wave function is required, which results from equal
treatment of electrons and nuclei. Due to the strong correlation of
the motions of the nuclei and the electrons, this basis needs to
explicitly depend on the electron–electron, electron–nucleus, and
nucleus–nucleus distances. Also, as the Hamiltonian of both atomic
or molecular systems (after separations of the center of mass mo-
tion) is spherically symmetric (isotropic; see the next section), the
basis functions have to reflect this symmetry. In particular, in the
calculations of pure vibrational states (i.e., states with zero angular
momentum) of 3He4He+ the basis functions have to be rotationally
invariant with respect to the center of the internal coordinate sys-
tem, which in our approach is a Cartesian system centered at a se-
lected particle (usually the heaviest nucleus).

In the last decade we have developed an approach for perform-
ing non-BO calculations of light atomic and molecular systems
[3–8]. In these calculations we have used different types of
explicitly correlated Gaussian basis functions for expanding the
non-BO wave functions. As the correlated Gaussians explicitly
depend on the interparticle distances, they can effectively describe
the above mentioned correlation effects. In our diatomic non-BO
calculations we have used explicitly correlated N-particle
Gaussians multiplied by powers of the internuclear distance. The
powers of the distance are needed to describe the strong
nucleus–nucleus correlation effects. Unlike the electron correla-
tion, which can be usually very effectively described by correlated
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Gaussians where the inter-electron distances appear only in the
Gaussian exponents, the correlation between the nuclei also re-
quires the use of preexponential factors. The role of those factors
is to help effectively describe the proper shape of the ‘vibrational’
part of the wave function, i.e., to reduce the probability of two nu-
clei to be found close to each other and to make the probability dis-
tribution reach its maximum at the points where the nuclei spent
most of the time (for the ground vibrational states these are the
points corresponding to the equilibrium bond lengths).

The calculations presented here are a continuation of our work
on extending the very accurate quantum mechanical treatment to
molecular systems with more than two electrons. For over two dec-
ades the hydrogen molecule and its isotopologues described by
seminal works by Kolos and Wolniewicz [9] and by Wolniewicz
[10] have served as models on which various theoretical methods
have been tested against the most accurate experimental measure-
ments. Now, thanks to the development of methods that utilize
explicitly correlated Gaussians and advances in computer hard-
ware, the models, where the highly accurate theoretical calculations
can be tested against the experiment, have extended to three- and
four-electron molecular systems. The present work contributes to
extending this fruitful interaction between theory and experiment.

In the next part of this Letter we describe the method used in
the calculations. The results and their discussion is presented in
the second part.
2. The method

The internal nonrelativistic all-particle Hamiltonian, Ĥnonrel,
used in the present calculations is obtained from the ‘laboratory
frame’ Hamiltonian by separating the center-of-mass motion. In
this an internal Cartesian coordinate system is used with the center
placed at the heaviest nucleus (the 4He nucleus). Ĥnonrel has the fol-
lowing form:
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In (1) q0 = q1 = 2 are the charges of the nuclei and q2 = q3 = q4 = �1
are the electron charges, ri, i = 1, 2, 3, 4, are the position vectors of
the 3He nucleus and the three electrons with respect to the 4He nu-
cleus (called the ‘reference particle’), ri are their lengths, rij = jrj � rij,
m0 = 7294.2995363me and m1 = 5495.885269me are the masses of
the 4He and 3He nuclei [11], me = 1 is the electron mass, and li = m0-

mi/(m0 + mi) is the reduced mass of particle i. More information on
the center-of-mass separation and the form of the internal Hamilto-
nian (1) can be found elsewhere [12,13].

In the calculations, the spatial parts of the non-BO wave func-
tions of the vibrational states of the 3He4He+ ion are expanded in
terms of the following one-center, spherically symmetric, explic-
itly correlated Gaussian functions multiplied by even powers
(mk) of the internuclear distance, r1 [5–8]:

/k ¼ rmk
1 exp �r0ðAk � I3Þr½ �; ð2Þ

where r ¼ fr01; r02; r03; r04g
0 and 0 denotes the vector (matrix) transpo-

sition, � denotes the Kronecker product, and I3 is a 3 � 3 unit ma-
trix. Values in the range of 0–250 are used for mk and they are
optimized for each basis function just after the function is added
to the basis set. Limiting the powers of mk in basis functions (2)
to only even values has very little effect on the energy [5,6], but sig-
nificantly speeds up the calculations, as the algorithms for calculat-
ing the Hamiltonian matrix elements are less complicated.

The matrix of exponential coefficients, Ak, for each basis func-
tion (2) has to be positive definite in order for the /k basis function
to be square integrable. Imposing restrictions on the elements of
Ak’s that would make the matrix positive definite is not optimal
from the computational point of view. A more efficient way to deal
with this issue is to use the Cholesky-factored form of Ak, Ak � LkL0k,
where Lk is a lower triangular matrix (all elements above the diag-
onal are zero). As the LkL0k product is automatically positive definite
for any values of the Lk matrix elements, no restrictions need to be
imposed on those elements in the variational energy minimization.
Using Lk matrix elements as the variational parameters consider-
ably simplifies the minimization of the energy, which is computed
as the solution of the secular equation

Hc ¼ ESc; ð3Þ

where H({mk}, {Lk}) and S({mk}, {Lk}) are K � K Hamiltonian and
overlap matrices (K is the size of the basis) and c is the vector of lin-
ear expansion coefficients. The minimization of the energy, E, with
respect to {Lk} in our approach involves the analytical first deriva-
tives of the energy with respect to those parameters (i.e., the energy
gradient). The use of the energy gradient considerably accelerates
the energy minimization.

The maximum number of basis functions used for each of the
five vibrational states considered in the calculations is 10000. In
the process of generating this number of functions we start with
a small randomly selected basis set of a few dozen functions. Next
the basis set is grown by successive additions of small groups of
functions which, after the inclusion in the basis set, are optimized
using the gradient-based energy minimization approach. When the
number of functions is less than 1000 all functions are optimized
simultaneously. After passing 1000 functions the optimization is
done by adjusting the parameters of only one function at a time
and cycling over all functions in the basis set. After a 10000 basis
set is constructed for each state several additional optimization cy-
cles of all basis functions are performed.

In the next step the non-BO wave functions are used to deter-
mine the leading relativistic corrections of the order a2 (a is the
fine structure constant; in atomic units a = 1/c, where c is the speed
of light in vacuum). The mass–velocity (MV), Darwin (D), spin–spin
(SS), and orbit–orbit (OO) corrections are determined using first-
order perturbation theory. The corrections are represented by the
following operators in the internal coordinate frame:
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We should mention that the spin–orbit interaction is zero for the
states considered in this work as the non-BO wave functions are
spherically symmetric. The total relativistic correction is the sum
of the MV, D, SS, and OO corrections. Taking into account the indis-
tinguishability of electrons the expectation values of bHD and ĤSS re-
duce to:

bHD

D E
¼ 3p dðr2Þ þ dðr12Þ � dðr23Þ½ �; bHSS

D E
¼ 6pdðr23Þ: ð8Þ



Table 1
The convergence of the total nonrelativistic non-BO energies (ENR) and the relativ-
istically corrected energies (EREL) for low-lying vibrational states of the 3He4He+ ion.
The values in parentheses are estimated theoretical uncertainties due to the finite size
of the basis used. All values are in hartrees.

m Basis ENR EREL

0 10000a �4.989719657(30) �4.989926676(30)
1 10000a �4.981743256(80) �4.981950301(80)
2 6000 �4.974137214 �4.974344203

7000 �4.974138191 �4.974345236
8000 �4.974138670 �4.974345736
9000 �4.974138951 �4.974346032
10000 �4.974139132 �4.974346207
10000a �4.974139290(250) �4.974346391(250)

3 6000 �4.966904665 �4.967111834
7000 �4.966906214 �4.967113384
8000 �4.966907070 �4.967114273
9000 �4.966907673 �4.967114884
10000 �4.966907994 �4.967115195
10000a �4.966908238(2000) �4.967115441(2000)

4 6000 �4.960043560 �4.960250681
7000 �4.960046529 �4.960253651
8000 �4.960048178 �4.960255289
9000 �4.960049158 �4.960256291
10000 �4.960049834 �4.960257023
10000a �4.960050253(2500) �4.960257477(2500)

a Results obtained after performing additional optimization of the Gaussian
nonlinear parameters.

Table 2
The convergence of vibrational transition energies of the 3He4He+ ion. All values are in
cm�1.

Transition Basis NR REL

0 ? 1 10000a 1750.618(60) 1750.612(60)
1 ? 2 10000a 1668.878(130) 1668.865(130)
2 ? 3 6000 1587.361 1587.321

7000 1587.235 1587.208
8000 1587.153 1587.123
9000 1587.082 1587.054
10000 1587.051 1587.024
10000a 1587.033(200) 1587.010(200)

3 ? 4 6000 1505.838 1505.849
7000 1505.527 1505.537
8000 1505.353 1505.373
9000 1505.270 1505.287
10000 1505.192 1505.195
10000a 1505.154(400) 1505.149(400)

a Results obtained after performing additional optimization of the Gaussian
nonlinear parameters.
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3. The results

The total non-BO nonrelativistic energies and total energies that
include the MV, D, SS, and OO relativistic corrections for the v = 0,
1, 2, 3, and 4 states are shown in Table 1 for different numbers of
basis functions. As the results for the v = 0 and 1 states were pre-
sented before [2], we only show the results obtained with different
basis set sizes for the v = 2, 3, 4 and 5 states. The energies shown in
Table 1 for the v = 0 and 1 are slightly improved with respect to the
energies presented before [2]. The improvement was achieved by
performing several additional optimization cycles of the nonlinear
parameters of the Gaussians. That optimization, for example, low-
ered the total nonrelativistic energy of the v = 1 state from
�4.981743230 to �4.981743256 hartree.

As one can see in Table 1, for all four states considered in this
work the energies (both nonrelativistic and those including relativ-
istic corrections) are converged to within seven-eight significant
figures. Such tight convergence was only possible because of
extensive optimization of the nonlinear Gaussian parameters with
the gradient-based procedure. As mentioned, when the basis set
for each state reached 10000 functions several additional cyclic
optimizations were performed. This further lowered the energy
of each state by 1 � 10�7�5 � 10�7 hartree.

The transition energies, calculated as the difference between
the total nonrelativistic and relativistic energies of the adjacent
states, are shown for different basis set sizes in Table 2. As one
can see, the transition energy values are converged to about
0.1 cm�1. For the 0 ? 1 transition the result obtained is this work
is slightly improved with respect to the results obtained previously
[2]. The 0 ? 1 transition energy of 1750.612(60) cm�1 obtained
from the total energies that include the relativistic corrections is
now off from the experimental value of 1750.55687(98) cm�1 [1]
by 0.055 cm�1. For the other transition energies, i.e., the 1 ? 2
transition of 1668.865(130) cm�1, the 2 ? 3 transition of
1587.010(200), and the 3 ? 4 transition of 1505.149(400), the ex-
pected accuracy is likely slightly lower, but still the results are very
precise.

4. Summary

In this work we continue to show very accurate results obtained
with our non-BO approach developed to study bound energy levels
of diatomic systems. By using large sets of explicitly correlated
Gaussian functions, variationally optimizing their nonlinear
parameters with a gradient-based method, and including the lead-
ing relativistic corrections, we are able to generate pure vibrational
transition energies of the three-electron 3He4He+ ion with an accu-
racy of the order of 0.1 cm�1. Such an accuracy level is higher than
ever achieved before for a three-electron diatomic system.
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