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1. INTRODUCTION

Since the early work of Hylleraas on the helium atom,1 it has
been common knowledge that, to accurately account for the
interaction between the electrons in an atom or a molecule,
wave functions that explicitly depend on interelectronic
distances must be employed. To overcome the algebraic and
computational difficulties associated with the use of the
Hylleraas functions for systems with more than two to three
electrons, in 1960 Boys2 and Singer3 introduced a simpler
format of basis functions that explicitly depend on the
interelectronic distances, the so-called explicitly correlated (or
exponentially correlated) Gaussian functions (ECGs). ECGs,
due to the simplicity of calculating the Hamiltonian matrix
elements with those functions, have become popular in very
accurate quantum-mechanical calculations of small atoms,
molecules, and other quantum systems in the past 30
years.4−7 They have been successfully applied in high-accuracy
atomic and molecular calculations performed with and without
the assumption of the Born−Oppenheimer (BO) approxima-
tion for systems with three to eight particles . Those include
very accurate calculations of the BO potential energy surfaces
(PESs) of two-, three-, and four-electron systems.
The problem of finding an effective and highly accurate

approximation to the wave function that describes electrons
and nuclei in an atom or a molecule, or more generally a system
of particles interacting with attractive and/or repulsive
Coulombic forces, is very complex and requires a careful
physical analysis and insight. This particularly applies to the
proper description of the interparticle correlation effects

resulting from the repulsion of charged equivalent particles
(e.g., electrons) subject to the Pauli exclusion principle. In
calculations where the BO approximation is not assumed, the
correlation effects also involve coupling of the motions of
particles with opposite charges, such as nuclei and electrons in a
molecule. In this case, the correlation effects include the
electron−nucleus correlation resulting from the electrons,
particularly the core electrons, following very closely the nuclei,
as they are strongly attracted to them.
Another issue that arises in describing the correlation effects

is related to whether the correlation is primarily radial, i.e.,
whether the shape of the Coulomb hole (in the case of two
repelling particles) is symmetric or it has some angular
anisotropy. The angular correlation anisotropy appears, for
example, in excited states of atoms, where two electrons may
occupy configurations where they are not only “radially”
separated but they are also separated by having different angular
wave functions. Such a situation occurs, for example, in excited
Rydberg 2D states of the lithium atom corresponding to
electron configurations 1s2nd, n = 3, 4, 5, ..., where, in addition
to the contribution to the wave function from the main 1s2d
configurations, there are contributions from configurations
1s1p2. We will elaborate on this issue later in this review.
The goal of the present publication is to review recent works

that have used all-particle ECGs in very accurate variational BO
and non-BO quantum-mechanical calculations on atoms and
molecules. In addition to providing a general overview, we will
focus particular attention on the key issues related to the
effective implementation of computational algorithms. We will
also describe several representative examples of BO and non-
BO calculations of some small atomic and molecular systems,
with emphasis on how well the results of the calculations
compare with the best available experimental measurements.
Even though the variational method combined with

expanding the wave function in terms of all-particle ECGs is
one of the most accurate methods available to solve for the
ground and excited states of quantum systems, it suffers from
unfavorable N! dependency on the number of identical
particles. This limits the applicability of the method at present
to small atomic and molecular systems. It should also be
mentioned that, even though orbital calculations are usually
significantly less accurate and slower converging for small
systems than the calculations with explicitly correlated
functions, in some instances with proper extrapolations such
calculations are quite competitive and capable of providing very
accurate results as well.
In Table 1 we summarize the acronyms used in this review.

1.1. Need for High-Accuracy BO and Non-BO Calculations

From the very beginning of molecular quantum mechanics, the
development of highly accurate theoretical models that produce
results agreeing with the most up-to-date high-resolution
spectroscopic measurements has been an important source of
knowledge and information. It has allowed the validation of the
theoretical foundations and provided better understanding of
the electronic structures of atoms and molecules. As the
experimental techniques advance and achieve higher levels of
precision, refinements have to be made in theoretical models to
describe effects and interactions neglected or treated more
approximately in the previous models. In recent years the
measurements of such quantities as molecular rovibrational
transition energies, ionization potentials, and electron affinities
have reached the precision of 0.01−0.001 cm−1 and even
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higher. Obtaining a similar precision in theoretical calculations
(which usually means converging the energy to the relative
accuracy of 10−6−10−9 or higher) is a very challenging task. As
recent works have shown,8−21 achieving high accuracy in the
calculations requires not only a very accurate description of the
correlation effects, but also the inclusion of relativistic, quantum
electrodynamics (QED) and, possibly, the effects due to the
finite size of the nuclei. These types of effects have already been
calculated for two- and three-electron atomic systems, leading
to theoretical results which are very precise and accurate when
compared to the experiments.22−32 Now the challenge lies in
extending these types of calculations to atoms with more than
three electrons and to small molecular systems with three or
more nuclei. High-accuracy theoretical results for such systems
will provide new grounds for the verification of the theoretical
models and for the assessment of their limitations. It should be
noted that based on the comparison of the theoretical and
experimental data it is in principle possible to accurately
determine the values of fundamental constants, nuclear radii,
nuclear quadrupole moments, and other quantities. Therefore,
highly accurate calculations on small atoms and molecules may
become a very valuable tool for the precision measurement
science. As an example, we can mention the determination of
the proton/electron mass ratio33 and the nuclear charge
radii.24,31,34−36

The development of high-level quantum-mechanical meth-
ods related to the use of ECGs in atomic and molecular
calculations can also serve as an important source of ideas and
technical solutions for the development of other approaches,
which can be applied to larger systems. As ECGs will start to
replace products of single-particle Gaussian orbitals as basis
functions in expanding the wave function in high-level
molecular BO calculations, these techniques may find new
applications. For example, further development of such
approaches as the R12 (F12) method37−41 may benefit from
utilizing the analytic gradient. Another example is the use of the
ECGs with time-dependent nonlinear parameters (e.g.,
Gaussian centers) in studying the dynamics of chemical
processes such as processes initiated by photoexcitations in
clusters. Techniques employing ECGs can also provide useful
tools for the development of methods that describe the
dynamics of the coupled nucleus−electron motion in atomic
and molecular systems which can now be studied with the
femto- and attosecond spectroscopies.
Another important reason for performing accurate calcu-

lations on small atoms and molecules with very high accuracy is
that such benchmark calculations can provide valuable
reference data for testing of less accurate quantum-chemical
methods. An example is the total nonrelativistic energy of the
system, which is one of the most commonly computed
quantities. The nonrelativistic energy is difficult to determine
very precisely even if highly accurate experimental data for
ionization potentials, electron affinities, dissociation energies, or
transition frequencies are available. This is because the
determination of the total nonrelativistic energy requires the
knowledge of the binding energies of all subsystems and, more
importantly, the exact contribution of relativistic and QED
effects. The latter quantities cannot be directly obtained in the
experiment.
There is also a predictive purpose for carrying out very

accurate atomic and molecular calculations. Several recent non-
BO and BO ECG calculations have produced quantities that
either have not yet been measured experimentally or have been
measured, but with significant error bars exceeding the
uncertainty of the calculations. The existence of very precise
theoretical predictions may inspire the development of more
precise experimental tools and stimulate remeasurement of
those quantities. The breadth and accuracy of the experimental
data have been increasing rapidly, and further major improve-
ments are expected due to the development of new
experimental methods for UV laser generation and frequency
metrology with phase-locked femtosecond combs.42 The data
collected using those new techniques are beginning to reveal
deviations that suggest that the accuracy of the existing
calculations is no longer adequate. For example, extensive
studies of the spectrum of H3

+, by Oka’s group at the University
of Chicago,43,44 have gone considerably beyond the limits of
the existing theoretical work. More accurate laboratory and field
(including interstellar) observations and measurements of
spectra of atoms and molecules require more accurate
theoretical calculations for interpretation and assignment.

1.2. Challenges in High-Accuracy Calculations

Very accurate BO calculations of ground and excited states of
atomic and molecular systems are rare in quantum-chemical
studies because they usually require in-house software develop-
ment and substantial computational resources. Even more
scarce are atomic and molecular calculations where the BO

Table 1. Glossary of Acronyms and Abbreviations Used in
This Review

abbreviation description

BO Born−Oppenheimer
non−BO non-Born−Oppenheimer
BP Breit−Pauli
CC coupled cluster
CH Coulomb Hamiltonian
CN clamped nuclei
COM center of mass
CPU central processing unit
D Dirac
DB Dirac−Breit
DBOC diagonal Born−Oppenheimer correction
DC Dirac−Coulomb
ECG explicitly correlated Gaussian
EFG electric field gradient
FPO frozen partial optimization
FICI free iterative-complement interaction
FNM finite nuclear mass
GPT Gaussian product theorem
GSEP/GHEP generalized symmetric/Hermitian eigenvalue problem
ICI iterative-complement interaction
INM infinite nuclear mass
JC James−Coolidge
KG Klein−Gordon
MDC matrix differential calculus
MBPT many-body perturbation theory
MV mass-velocity
NRQED nonrelativistic quantum electrodynamics
PEC potential energy curve
PES potential energy surface
QED quantum electrodynamics
SE Schrödinger equation
SVM stochastic variational method
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approximation is not assumed. High accuracy also requires that
the calculations include relativistic and QED corrections. Those
are usually calculated with the perturbation theory. A few
groups have developed capabilities to carry out such
calculations for systems with one and two electrons. The
actual applications, however, in most cases have been limited to
one- or two-electron systems only. This is particularly true for
molecular systems computed without using the BO approx-
imation. While the development of methods describing the
coupled motion of the electrons and the nuclei has received
some attention,45−51 none of the works has reached a level of
accuracy similar to that achievable in the calculations with
ECGs. Non-BO calculations of the ground and excited states of
molecular systems are difficult for the following reasons:
(i) Treating nuclei and electrons of a molecular system on

equal footing adds complexity to the problem due to the
increased number of the degrees of freedom one needs to
accurately represent in the wave function. Additional degrees of
freedom require additional computational effort.
(ii) The non-BO wave function needs to very accurately

represent the correlated motion of the nuclei and the electrons,
and it has to be constructed using basis functions that can
effectively describe the electron−electron, nucleus−electron,
and nucleus−nucleus correlation effects. It may sound
somewhat unusual to talk about the nucleus−nucleus
correlation, as the term “correlation” is usually used to
described the effects pertaining to electrons, but if nuclei and
electrons are treated on equal footing, as happens in non−BO
calculations, the nucleus−nucleus correlated motion also needs
to be represented in the wave functions in a similar way as the
electron−electron correlated motion is. In addition, the masses
of the nuclei being much larger than that of the electron may
lead to rapid variation of the relative internuclear wave function,
which is hard to represent with the usual basis functions.
Moreover, the nucleus−nucleus correlation is much stronger
than the electron−electron correlation in the sense that the
nuclei are heavy and they stay separated (i.e., their motion is
more correlated) with the separation distance varying much less
than the separation distance between much lighter and, thus,
more delocalized electrons. The nucleus−nucleus correlation
can only be described in the wave function by including
correlation factors.
(iii) After separating the translational degrees of freedom, the

internal Hamiltonian of an atomic or a molecular system in
isolation is “isotropic” (i.e., rotationally invariant) and its
eigenfunctions belong to the irreducible representations of the
group of three-dimensional (3D) rotations. It is necessary that
the basis functions used in the wave function expansion reflect
this symmetry.
(iv) As the vibrational and electronic degrees of freedom are

coupled, the manifold of the excited states for a non-BO
molecular system corresponding to a particular value of the
total rotational quantum number includes a mixture of
vibrational and electronic states. While the mixture for the
lower lying states is usually strongly dominated by a single
component, being a product of the electronic wave function
times a vibrational wave function, for states lying close to the
dissociation limit, two or more components may provide more
significant contributions. Those components may have
electronic wave functions representing different electronic
states and vibrational wave functions corresponding to different
vibrational quantum numbers. Some of those states may have

multiple nodes (e.g., high vibrational states) and require flexible
basis functions to be described.
(v) Including angular dependency in the wave function (to

determine higher rotational states) requires addition of angular
factors to the basis functions. For such functions, the
multiparticle Hamiltonian integrals are more complicated
than those for basis functions describing states with zero
angular momenta. More complicated are also the expressions
for the derivatives of the Hamiltonian matrix elements that
need to be calculated to determine the analytic energy gradient
whose use is crucial in the minimization of the variational
energy functional.
(vi) If accuracy similar to that of high-resolution experiments

is the aim of the calculation, the lowest-order relativistic and
QED effects need to be accounted for. Matrix elements
involving operators representing those effects are more
complicated than the Hamiltonian matrix elements.

1.3. Very Accurate BO Calculations of Molecular Potential
Energy Surfaces (PESs)

The first success of very accurate molecular calculations that
utilized explicitly correlated basis functions was the work of
Kołos and Wolniewicz concerning the H2 molecule. In their
work published in 197552 they presented calculations of the H2

spectra that agreed with the experimental data of Herzberg
within 1 cm−1. Their work also led to some revisions of
Herzberg’s original line assignment. In spite of the enormous
advances in computer hardware, it took the next 30 years to
achieve a comparable level of accuracy in the calculations of
rovibrational spectra of a three-proton, two-electron system,
H3

+. However, even at present the H3
+ rovibrational spectrum

is well understood only for states lying below the barrier to
linearity of this system, which is located 10 000 cm−1 above the
ground state level. Precise assignment of the spectral lines
above this barrier still remains a great challenge for both theory
and experiment. Once the assignment is made, the H3

+ ion will
be the best understood three-nucleus system ever studied
experimentally and theoretically.
The ECGs were introduced to quantum-chemical calcu-

lations by Boys and Singer.2,3 In 1964 an important paper by
Lester and Krauss on the Hamiltonian integrals with ECGs for
two-electron molecular systems appeared53 that had given
momentum to several works concerning implementation of
these functions in the molecular calculations. In the 1970s,
Adamowicz and Sadlej had extended the Lester and Krauss
approach to calculate the electron correlation energy for some
small diatomics in the framework of the perturbation
theory.54−60 About the same time Jeziorski and Szalewicz
employed ECGs in very accurate calculations of the interaction
energies using the symmetry-adapted perturbation theory.61,62

The late 1970s and early 1980s witnessed development of
nonvariational methods for calculating electronic structures of
atoms and molecules. Many-body perturbation theory (MBPT)
and the coupled cluster (CC) methods had been implemented
and started becoming routine tools for high-level ab initio
calculations of small and medium-size molecules.63,64 Motivated
by this development, the team of Monkhorst, Jeziorski,
Szalewicz, and Zabolitzky introduced ECGs to the CC
method65−68 and this was achieved by using the coupled
cluster equations at the pair level reformulated as a system of
integro-differential equations for spin-free pair functions. These
equations were solved using two-electron ECGs (also called
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Gaussian geminals). The work resulted in a series of benchmark
studies for small atomic and molecular systems.
Another important development concerning the use of ECGs

in MBPT/CC calculations of medium-size molecular systems
originated with the work of Kutzelnigg,37,69 who suggested that
linear rij correlation factors should be added to orbital products
to improve the description of the electron correlation. In order
to improve the computational efficiency in the calculations, he
suggested using the resolution of identity to avoid explicit
calculation of integrals involving more than two electrons. The
approach was termed the “R12 method” and quickly became a
mainstream technique in computational chemistry to perform
high-accuracy atomic and molecular calculations.70,71 Recently
the R12 method has evolved to an array of methods, most
notably the F12 method where the linear r12 correlation factor
is replaced by a Slater-type geminal,72,73 exp[−αr12], and the
G12 method where the explicit correlation is given by a
Gaussian geminal, i.e., exp[−αr122].
The works on the implementation of ECGs in the MBPT/

CC methods have been paralleled by progress in the ECG
variational calculations. For example, variational ECG calcu-
lations were able to reach a nanohartree (subwavenumber)
precision level for nonrelativistic adiabatic calculations of the
helium dimer74 and below picohartree level for the hydrogen
molecule75 using ECG calculations.
Following the important works of Kołos and Wolniewicz,

there have been several other works on very accurate
calculations of small molecular systems.76−80 As this review
primarily deals with the calculations performed with the use of
ECGs, we should particularly mention the works of the group
of Rychlewski.4,74,81−87

In recent years several methods have been developed and
implemented for more efficient generation of PESs of small
molecular systems employing ECGs.7 The key element of this
development has been the use of the analytical gradient
determined with respect to the Gaussian nonlinear parameters
in the variational energy minimization.88−91 One can compare
the increase of the efficiency associated with the use of the
gradient in this case with the efficiency increase in the
molecular-structure optimization after the energy gradient
determined with respect to molecular geometrical parameters
was introduced to the field. As computational resources become
increasingly more accessible and affordable, such calculations
become more feasible. However, as the size of the molecules
increases, the complexity and the cost of the ECG PES
calculations also increase. Let us consider two-electron systems
with different numbers of nuclei as an example. For a system
with one nucleus, e.g., the helium atom, one can reach 1 × 10−9

hartree accuracy of the energy with only 200 Gaussians.92 In
the case of two and three nuclei, H2 and H3

+, 500 and 1000
Gaussians are needed, respectively, to achieve similar
accuracy.93,94 Also, for a four-electron, four-nuclear system,
(H2)2, even 7000 Gaussians only yield 1 × 10−6 hartree
accuracy.95 In the ECG calculations of larger molecular systems,
besides the need for larger basis sets, a problem which one can
encounter and has to deal with more often is the occurrence of
the linear dependency between the basis functions. Effectively
dealing with this problem requires rather sophisticated
approaches. Also, better techniques for handling the usage of
memory, for guessing new basis functions when the size of the
basis set is being extended, and for the basis set optimization
have to be developed. These measures will be elaborated on in
this review.

The main purpose of the BO molecular calculations
employing ECGs is to generate PESs of ground and excited
states that can be used to perform rovibrational calculations.
The ECG PESs of small systems are usually capable of
delivering a subwavenumber accuracy for the full range of the
vibrational transitions provided that at least the adiabatic
correction is included in the energy of each PES point. We will
show examples of such calculations in this review. If the
calculations also provide the corresponding surface of the
molecular dipole moment, the rovibrational transition mo-
ments, and thus the band intensities, can be calculated. PESs
can also be used to perform reaction dynamics calculations
using either the classical trajectory approach or a wave packet
quantum approach. In both approaches nonadiabaticity, or
hopping between PESs of several electronic states, can be
simulated. Such simulations involve calculating adiabatic and
nonadiabatic coupling matrix elements, which can be relatively
easily done (though it has never been reported so far) for
energy points determined using wave functions expanded in
terms of ECGs.
The ECG PES calculations performed so far have been

limited to states described with wave functions with no nodes at
the nuclei. If such nodes exist, the Gaussians in the basis
functions need to be multiplied by a coordinate or a product of
coordinates.96 Such coordinate premultipliers to ECGs are also
used in other applications (see section 3).
Finally, the development and implementation of new

algorithms and procedures always involves solving numerous
technical problems at both the algebraic and computational
levels. A part of this review is devoted to this. We particularly
emphasize those issues that have broader implications and
applications in the areas that are not limited to the
development of methods for very accurate BO and non-BO
calculations of small atomic and molecular systems.

2. FORMALISM

2.1. Nonrelativistic Hamiltonian in the Laboratory Frame
and Separation of the Center of Mass Motion

Let us consider a system comprised of N nonrelativistic
particles interacting via Coulomb forces. If Ri is the position
vector of the ith particle in the laboratory Cartesian coordinate
frame, Mi is its mass, and Qi is its charge, then the Hamiltonian
of the system has the following form:

∑ ∑ ∑̂ = − ∇ +
= = >

H
M

Q Q

R
1

2i

N

i i

N

j i

N
i j

ij
Rlab

1

2

1
i

(1)

Here ∇Ri
denotes the gradient with respect to Ri and Rij = |Rj −

Ri| is the distance between the ith and jth particles. We will call
Ĥlab the laboratory frame Hamiltonian.
As the primary goal is solving for the bound states, the first

step will be to separate out the translational motion of the
system as a whole; i.e., we will eliminate the motion of the
center of mass from further consideration. There are several
possible ways to do that. Perhaps the most natural way is to use
the interparticle coordinates. Let us place some particle at the
origin of the new, internal, Cartesian coordinate system. This
particle is called the reference particle. Then we can refer the
other particles to the reference particle using relative
coordinates ri = Ri+1 − R1. These coordinates, along with the
three coordinates describing the position of the center of mass,
r0, are our new coordinates. If we denote the total mass of the
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system as Mtot = ∑i=1
N Mi, then the coordinate transform looks

as follows:

= + + +
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while the inverse coordinate transformation is given by
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Upon the transformation of the laboratory frame, the
Hamiltonian Ĥlab in eq 1 separates into two operators, i.e.,
the Hamiltonian describing the motion of the center of mass
(COM) of the system

̂ = − ∇H
M
1

2 rCM
tot

2
0 (4)

and the following “internal” Hamiltonian that represents the
relative motion of the particles:

∑ ∑ ∑

∑
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where n = N − 1, the prime symbol denotes the matrix/vector
transposition, rij = |rj − ri|, mi = Mi+1, qi = Qi+1, and μi = m0mi/
(m0 + mi). The Hamiltonian in eq 5 describes the motion of n
pseudoparticles with masses mi and charges qi in the central
field of the reference particle. The motions of the
pseudoparticles are coupled through the mass polarization
terms ∑i≠j

n (1m0)∇ri′∇rj and through the Coulombic inter-

actions dependent on the distances between the pseudopar-
ticles and the origin of the internal coordinate system, ri, and on
the relative distances between the pseudoparticles, rij.
Due to the separability of the internal motion and the motion

of the center of mass, the solution of the Schrödinger equation
(SE) with the laboratory Hamiltonian can be presented as the
product

ψ ψ= ′k r r rexp[i ] ( , ..., )nlab 0 0 1 (6)

where k0 is the momentum of the system as a whole and
ψ(r1,...,rn) is the solution of the SE with the internal
Hamiltonian.
The Hamiltonian in eq 5 can be conveniently written in the

matrix form. To do that we combine the coordinates of the
pseudoparticle positions and the corresponding gradients into
two 3n-component column vectors:
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With that we have

∑ ∑̂ = −∇′ ∇ + +
= <

H
q q

r

q q

r
M

i

n
i

i i j

n
i j

ij
r r

1

0

(8)

Here M = M ⊗ I3 is the Kronecker product of the n × n matrix
M and the 3 × 3 identity matrix, I3. The diagonal elements of
matrix M are 1/(2μ1), 1/(2μ2), ..., 1/(2μn), while all off-
diagonal elements are equal to 1/(2m0).
2.2. Clamped-Nuclei Hamiltonian

Finding the eigenfunctions of the Coulomb Hamiltonian (CH)
in eq 1 expressed in the laboratory frame would involve
describing translational states of the COM and therefore the
use of plane waves in the trial wave functions. The resulting
states would be completely delocalized in space, having little
practical use from a chemical prospective. As pointed out in
section 2.1, the separation of the COM motion from the
internal motion generates a Hamiltonian of the type in eq 5.
Such a Hamiltonian in the mass polarization terms mixes
derivatives of the electronic and nuclear coordinates. The direct
use of the Hamiltonian in eq 5 is far from being trivial and is
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the subject of the sections devoted to the non-BO approach. To
simplify the problem, first Heitler and London97 and then Born
and Oppenheimer98 decided to consider the nuclei as being
particles with infinite masses. This led to a formalism, partly
used also by Handy and Lee,99 involving the splitting of the CH
into two contributions:

̂ = ̂ + ̂H H Tlab el n (9)

Ĥel is defined as

∑̂ = − ∇ +
=

H
m

V r r
1

2
({ }; { })

i

N

rel
e 1

2 e n
i

e

e

(10)

where {re} and {rn} are labels of electronic and nuclear
coordinates, respectively, and ∇r

2
i
e is a Laplacian operator that

acts only on the three Cartesian coordinates of the ith electron,
Ne represents the total number of electrons in the system. T̂n is
the kinetic energy of the nuclei and is defined as

∑̂ = − ∇
α α=

α
T

M
1

2

N

rn
1

2
n

n

(11)

where Mα is the mass of nucleus α. From eq 11 it follows that if
the nuclear masses are allowed to reach very large values (at the
limit of infinite masses) the only term to survive in eq 9 is Ĥel,
also known as the clamped-nuclei (CN) Hamiltonian. In this
review, we refer to BO calculations as those that approximate
the eigenfunctions of the CN Hamiltonian, where the nuclei are
kept at fixed positions in space and the only variables the wave
function depends on are the positions of the electrons.
2.3. The Adiabatic Approximation

The SE involving the CN Hamiltonian has the following form:

̂ Φ = Φμ
μ

μH Er r r r r( ; ) ( ) ( ; )el
e n n e n

(12)

The solutions Φμ(r
e;rn) are also called electronic wave

functions, and sometimes the CN Hamiltonian is called the
electronic Hamiltonian. In this section we assume that the
solutions of eq 12 are nondegenerate. The semicolon separating
the electronic and nuclear coordinates in eq 12 denotes the fact
that the nuclear coordinates are treated as parameters in both
the Hamiltonian and the wave function. This means that the
nuclear coordinates take part in neither the derivative
operations nor the integrals.
In the calculation of the ground state wave function, once

Φ0(r
e;rn) is available, or approximated to a sufficient degree of

accuracy, a trial solution to the CH can be attempted as a
product of a purely nuclear function, denoted as χ(rn), with
Φ0(r

e;rn), namely

χΨ = Φr r r r r( , ) ( ) ( ; )a
0 e n n

0
e n

(13)

where the subscript “a” stands for adiabatic to indicate that the
electronic part of the wave function is calculated assuming that
the electrons follow the motions of the nuclei adiabatically, i.e.,
without transferring any part of their energy to the nuclei, and
vice versa.
Because the electronic wave function Φ0(r

e;rn) must be
independent of the COM motion, the nuclear coordinates in
the trial wave function above are a redundant set. In
mathematical terms we can impose the independence of the
electronic wave function from the COM motion by having
Φ0(r

e;rn) being a constant upon any displacement of the COM
coordinates, namely

̂ Ψ = − ∇ Ψ =H
M

r r r r( , )
1

2
( , ) 0rCM a

0 e n 2
a
0 e n

0 (14)

With the above properties of Ψa(r
e,rn), it can be used as a trial

wave function in the SE involving the CH with the assumption
that the electronic part needs no further improvement and can
be integrated out. The function χ(rn) is then obtained by first
integrating over the electronic coordinates with the Φ0(r

e;rn)
being replaced by Φ0(r

e,rn), where now the nuclear coordinates
are promoted from parameter to variable status. Carrying out
such a procedure, one obtains the following SE for the nuclear
functions χk(r

n):99
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(15)

where λk represents the eigenvalue corresponding to χk(r
n) and

the potential, in which the nuclei move, is generally specific to
the electronic state (μ), namely

= + ⟨Φ | ̂ |Φ ⟩μ μ
μ μU E Tr r r r r r( ) ( ) ( , ) ( , ) r

n n e n
n

e n
e (16)

The ⟨ ⟩re stands for integration over the electronic coordinates.
In the right-hand side of eq 15 terms that involve other
solutions to the CN Hamiltonian, or electronic excited states,
do not appear because they have not been introduced in the
ansatz in eq 13.
Equation 11 shows that the potential in which the nuclei

move is not just the corresponding eigenvalue of the electronic
wave function. An additional term needs to be added, called the
adiabatic correction, or the diagonal Born−Oppenheimer
correction (DBOC hereafter). Generally, the DBOC is specific
to the particular electronic state described by the wave function
Φμ(r

e,rn), and has the following form:

∑= − ⟨Φ |∇ |Φ ⟩μ

α α
μ α μE

M
r r r r r( )

1
2

( , ) ( , ) ra
n e n 2 e n

e

(17)

The inclusion of the DBOC of eq 17 corrects the CN energy by
a term of the order of O(me/M). In section 11.3 the
methodology of calculating the DBOC with floating ECG is
presented.
The above procedure to obtain the adiabatic corrections

should be taken by the reader with a grain of salt. Here, we aim
to approximate the solutions of the CH starting from the
solutions of the CN Hamiltonian. We are not trying to justify
whether the form of the trial wave function in eq 13 is
appropriate, such as having proper permutational and rotational
symmetry. For a more in-depth discussion of the links between
the CH and the CN Hamiltonian, we refer the interested reader
elsewhere.100,101

2.4. Including the Nonadiabatic Effects by Means of
Perturbation Theory

The correction derived in section 2.3 refines the CN energy by
a term having the O(me/M) magnitude. This correction
modifies the BO PES by the addition of a term. The corrected
PES is then

= +μ μ μU E Er r r( ) ( ) ( )n n
a

n
(18)

A nonadiabatic correction to the ground state energy cannot be
included in the same way as the adiabatic correction. That is
because any nonadiabaticity will mix ground and excited
electronic states, as well as ground and excited rovibrational
states. It is impossible to disentangle these two contributions.
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Therefore, the correction to the adiabatic energy must depend
on both nuclear and electronic coordinates, namely Ena

0 (re,rn),
and it is specific to the rovibrational adiabatic state considered.
The nonadiabatic correction is derived by considering wave
function corrections orthogonal to the adiabatic wave function
of eq 13, e.g., orthogonal to Φ0(re;rn) in the electronic
coordinates, and/or orthogonal to χ(rn) in the nuclear
coordinates. An ansatz of the wave function that goes beyond
the adiabatic approximation is commonly written as

∑ χΨ = Φ

= Ψ + Ψ

μ
μ μcr r r r r

r r r r

( , ) ( ) ( ; ) (19)

( , ) ( , ) (20)

k
k k

e n

,
,

n e n

a
e n

na
e n

where Φμ are the wave functions of electronic excited states
obtained by solving the CN SE in eq 12, the χk are approximate
nuclear wave functions, and the cμ,k are some real-valued
expansion coefficients. For the sake of clarity, the label denoting
the electronic state has been omitted by the total wave
functions in eqs 19 and 20, as well as in the equations that
follow. In an intermediate normalization framework, the first
term of the series in eq 20 would be identical to the wave
function in eq 13.
The nonadiabatic correction can be derived using the

perturbative formalism with the CH represented as a sum of
adiabatic Hamiltonian, Ĥa, and a perturbation, Ĥ′. The
adiabatic Hamiltonian can be written in a spectral form in
terms of its eigenvalues and the CN electronic eigenfunctions
as

∑̂ = |Φ ⟩ ⟨Φ |
μ

μ
μ

μH Ua
(21)

and the perturbation is defined as what is left to make up the
CH:

̂ ′ = ̂ − ̂H H Hlab a (22)

In order to numerically solve the problem, it is not possible to
consider matrix elements of the Ĥ′ perturbation, as they are not
well-defined.102 A better approach103,104 is to start by splitting
the wave function into adiabatic and nonadiabatic contribu-
tions, as in eq 19, and derive perturbative-like solutions to the
nonadiabatic part.
By applying eqs 12 and 16, and by noticing that the first-

order nonadiabatic correction to the adiabatic energy is zero,
the first result can be derived right away, namely

⟨Φ | ̂ ′|Φ ⟩ =H 0r0 0 e (23)

Thus, the leading correction is a second-order quantity. The
first step in computing this correction is by finding an
expression for the first-order correction to the wave function,
that is, the Ψna term in eq 20. In doing so, Pachucki and
Komasa103,104 derived the following equation:

δχΨ = Φ +
− ̂ ′

̂ Ψ
E H

T
r

1
( ( ) )na 0 0 n

el
n a

(24)

where the operators have the same meaning as in eq 9; the
prime indicates that the reference state, Φ0, is excluded from
the inversion. The δχ function indicates the nonadiabatic
correction to the nuclear wave function. The Pachucki−
Komasa103,104 nonadiabatic correction to the electronic energy
takes the form

= ⟨Ψ| ̂ ′|Ψ ⟩

= ⟨Ψ| ̂ |Ψ ⟩

= Ψ ̂
− ̂ ′

̂ Ψ

E H
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a n 0 n
el
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which is of second order in terms of the perturbation eq 22. We
should note that the adiabatic ansatz involved in eq 25 could be
labeled with a rotational and a vibrational quantum number,
thus showing that the nonadiabatic corrections are specific to
each rovibrational state.
2.5. The Variational Method

Most of the calculations considered in this review are
performed within the framework of the Ritz variational method.
The main idea of the variational method in nonrelativistic
quantum mechanics is based on the fact that the expectation
value of the Hamiltonian of the system computed with an
arbitrary wave function, ψ(r) (here r denotes the coordinates of
all active particles), which satisfies the proper symmetry
constraints, is always an upper bound to the exact ground
state energy, ⟨ψ|Ĥ|ψ⟩/⟨ψ|ψ⟩ ≥ E0. This general property of the
energy functional facilitates a way to obtain very accurate
approximations to the exact wave function by the optimization
of the parameters, both linear and nonlinear, which the function
comprises. This optimization is accomplished by the energy
minimization. If the wave function is expanded in terms of
some basis functions

∑ψ ϕ=
=

r r( ) c ( )
k

K

k k
1 (26)

and only the linear coefficients are optimized, then the energy
minimization procedure reduces to solving the generalized
eigenvalue problem

ε=Hc Sc (27)

where H and S are K × K symmetric (or Hermitian if the basis
functions are complex) matrices of the Hamiltonian and
overlap ϕ ϕ= ⟨ | ̂ | ⟩HHkl k l and ϕ ϕ= ⟨ | ⟩Skl k l , while c is a K-
component vector of the linear coefficients. Equation 27 has K
solutions, i.e., K energy values and K corresponding wave
functions. According to the mini−max theorem, if the energy
values are set in an increasing order, the first one provides an
upper bound to the exact nonrelativistic ground state energy of
the system and the kth one provides an upper bound to the
exact energy of the (k − 1)th excited state (details of the proof
can be found in ref 5).
In addition to varying the linear coefficients in the wave

function expansion, one can also vary nonlinear parameters
involved in the basis functions. The accuracy of atomic and
molecular quantum mechanical calculations, particularly those
involving explicitly correlated basis functions, is primarily
achieved by performing extensive optimization of the basis
function nonlinear parameters.
2.6. Choices of Basis Functions for Highly Accurate
Variational BO and Non-BO Calculations

In atomic calculations the possible choices of the basis
functions are limited. The most crucial limitation is related to
the need for accurate and expeditious calculation of the
Hamiltonian matrix elements. Also, the basis set has to
accurately describe the state of the system under consideration
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and, in particular, the electron correlation effects in the state. As
these effects concern electrons avoiding each other in their
motions around the nucleus, the most effective basis functions
for describing the correlation phenomenon are functions
explicitly dependent on the interelectron distances. The most
efficient explicitly correlated functions are those that simulta-
neously depend on distances of all electrons in the system.
The most serious problem in the development of methods

employing explicitly correlated functions is the difficulty that
may arise in accurately calculating the integrals which appear in
the Hamiltonian matrix elements. As the complexity of these
integrals grows with the increasing number of electrons and
with the electrons occupying higher angular momentum states,
more complicated expressions for these integrals appear. This
may create difficulties in extending the calculations to systems
with more electrons.
Among the basis functions most often used in quantum

calculations of small atoms with less than four electrons, there
are the Hylleraas-type functions31,105−109 and the exponential
functions (also known as the Slater-type functions).110−113 For
a three-electron atomic system the Hylleraas function has the
following form (here we consider the states with zero total
angular momentum):

ϕ

α α α

=

− − −

r r r r r r

r r r

r r r( , , )

exp( )

n n n n n n
1 2 3 23 31 12 1 2 3

1 1 2 2 3 3

1 2 3 4 5 6

(28)

where ri are electron−nucleus distances, rij are interelectron
distances, and α’s are parameters which are subject to
optimization in the variational calculation. One notices that
the Hylleraas functions are only correlated through the
preexponential polynomials and there is no rij presence in the
exponent. In the exponential functions

ϕ α α α β β

β

= − − − − −

−

r r r r r

r

r r r( , , ) exp(

)

1 2 3 1 1 2 2 3 3 1 23 2 31

12 (29)

the opposite happens: the rij factors are only present in the
exponent. Recently, it was demonstrated that the exponential
functions in eq 29 are very effective in calculations of atoms
with three electrons113 and other four-body Coulomb
systems.114 Clearly, they are capable of describing both the
short-range cusp behavior of the wave function as defined by
the Kato conditions115 and the long-range behavior. However,
neither the Hylleraas functions nor the exponential functions
have been applied to study atomic systems with more than
three electrons. This limitation is due to the lack of algorithms
for accurate and efficient calculation of Hamiltonian matrix
elements with those functions for systems with more than three

electrons. However, such algorithms exist for ECGs, which will
be discussed later in this review.
Explicitly correlated functions have also been employed in

molecular BO calculations. The most thoroughly investigated
system has been the H2 molecule, whose first study dates back
to James and Coolidge.116 Some of the most impressive
calculations performed for this system have been those of Kołos
and Wolniewicz. The wave functions in their approach were
inspired by the work of James and Coolidge and were expanded
in terms of the following functions (denoted by Gk below)
expressed in terms of elliptic coordinates of the two electrons
denoted by the labels 1 and 2:117−120

= + ± +Λ ΛG x y g x y g(1, 2) ( i ) (1, 2) ( i ) (2, 1)k k k1 1 2 2
(30)

αξ αξ ρ ξ η ξ

η βη β η

βη β η
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̅ ̅
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̅ + ̅+Λ+

g (1, 2) exp( )

{exp( ) ( 1)

exp( )}

v r s r s
v r s r

s s s p

, , , , 1 2 1 1 2

2 1 2

1 2 (31)

The “±” in eq 31 refers to singlet and triplet states, respectively,
Λ is the angular momentum projection quantum number, and p
= 0, 1 for g and u symmetries, respectively. ξj = (rja + rjb)/R and
ηj = (rja−rjb)/R are the elliptic, and xj and yj the Cartesian
coordinates for the two electrons with the z axis coinciding with
the internuclear axis (“a” and “b” denote nuclei). ρ = 2r12/R, r12
is the interelectronic distance, and ci, α, α̅, β, and β̅ are
variational parameters. Thus the basis set is defined by the set
of exponents vi, ri, si, ri̅, and s1̅. The calculations reported in
1995 by Wolniewicz120 with the basis functions in eq 31 still
remain some of the most accurate ever performed with the BO
approach involving the calculation of the potential energy
surface first and then calculating the rovibrational energy levels
by solving the Schrödinger equation for the nuclear motion.
The drawback of the basis functions in eq 31 is that they cannot
be extended to study molecules with more than two nuclei.
Even an extension of the approach to diatomics with more than
two electrons has not been accomplished. Thus, at present, the
only basis set of explicitly correlated functions that can be
extended to systems with more than two electrons and/or more
than two nuclei are Gaussians. We will describe the various
types of molecular Gaussian functions used in the BO and non-
BO, atomic and molecular calculations in section 3.
2.7. Competition between ECG and JC Functions

Very recently, Pachucki80 employed another type of explicitly
correlated functions, the James−Coolidge (JC) functions,116 in
BO variational calculations of the hydrogen molecule. In those
calculations he obtained a lower energy at the equilibrium

Table 2. BO Energies (in hartrees) of Hydrogen Molecule at RH−H = 1.4011 bohra

K energy ΔE type year authors

22 363 −1.174 475 931 400 215 99 0.000 000 217 179 772 54 JC 2010 Pachucki80

4800 −1.174 475 931 400 135 0.000 000 217 179 772 ECG 2008 Cencek and Szalewicz75

2400 −1.174 475 931 399 860 0.000 000 217 179 772 ECG 2008 Cencek and Szalewicz75

1200 −1.174 475 931 395 0.000 000 217 180 ECG 2008 Cencek and Szalewicz75

600 −1.174 475 931 326 0.000 000 217 180 ECG 2008 Cencek and Szalewicz75

300 −1.174 475 929 976 0.000 000 217 179 ECG 2008 Cencek and Szalewicz75

6776 −1.174 475 931 400 027 ICI 2007 Nakatsuji et al.122

7034 −1.174 475 931 399 84 0.000 000 217 179 76 JC 2006 Sims and Hagstrom123

883 −1.174 475 930 742 0.000 000 217 177 KW 1995 Wolniewicz120

aΔE is the energy difference between calculations at RH−H = 1.4011 bohr and RH−H = 1.4 bohr.
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internuclear distance than the previous best result by Cencek
and Szalewicz obtained with 4800 ECGs.75 The advantage of
using the JC basis set in H2 calculations lies in the fact that this
set comprises many fewer nonlinear parameters that need to be
optimized than the ECG basis set. However, the JC basis is
again restricted to two-electron, two-nucleus molecules and
cannot be extended to larger systems.
A comparison of the variationally lowest energies ever

obtained in calculations for the hydrogen molecule at the
equilibrium distance is shown in Table 2. Among those
energies, there is the result of Kołos and Wolniewicz (KW)121

obtained with generalized JC functions defined in eq 31, which
include more nonlinear parameters than the original JC
functions to better describe the long-range asymptotic behavior
of the wave function. There is also the result obtained by
Nakatsuji et al.122 with the iterative-complement-interaction
(ICI) method which essentially generated a set of basis
functions (exponents times prefactors) depending on elliptic
coordinates. This result was the best energy value at the time it
was published.
In Table 2 we also show the H2 BO energies of Cencek and

Szalewicz75 calculated at RH−H = 1.4 bohr with different
numbers of ECGs. The results are not quite comparable with
the other literature values because most of those values have
been calculated at RH−H = 1.4011 bohr. Based on the ECG basis
set Cencek and Szalewicz obtained for H2 at RH−H = 1.4 bohr,
they generated basis sets for several other internuclear distances
using a procedure that automatically shifts the Gaussian centers
to adjust them for the changing internuclear distance. This
allowed them to calculate an H2 PEC without reoptimization of
the Gaussians at each PEC point, which would be very time-
consuming. Only the linear expansion coefficients in the wave
function were reoptimized by solving the secular equation
problem. They showed that the shifting procedure allows
maintaining the accuracy of the whole PEC at an almost
constant level. This demonstrates that the computational time
for ECG calculations can be significantly reduced if an effective
approach for guessing new Gaussians to be added to the basis
set and for optimizing them is developed.
Another example where an effective approach of this kind

was impelmented is the ECG calculations of Cencek et al.124

concerning the molecular hydrogen dimer, (H2)2. The
approach involved contracting two large H2 ECG basis sets
to form a basis set for the dimer with tens of thousands of
ECGs. The nonlinear parameters in this basis set were not
optimized, but instead some additional ECGs were included to
better account for the interaction between the hydrogen
molecules. The nonlinear parameters of these added ECGs
were variationally optimized in the calculations.
We should stress that, even though the variational

calculations involving all-electron ECGs scale as the factorial
of the number of the electrons, they can be extended to larger
numbers of electrons than two, as the algorithms for calculating
the Hamiltonian and overlap matrix elements are general. This
is not the case for the JC functions, where the integrals need to
be rederived (they have not been yet) to calculate molecular
systems with more than two electrons.

3. EXPLICITLY CORRELATED GAUSSIAN BASIS SETS
As mentioned, the main advantage of using ECGs in atomic
and molecular calculations is due to the simplicity in evaluating
the overlap and Hamiltonian matrix elements and easy
generalization to atoms and molecules with an arbitrary

number of electrons. While ECGs have been shown to form
a complete basis set,125−127 they have improper short-distance
behavior (unable to satisfy Kato cusp conditions115) and too-
fast decaying long-range behavior. Even though these
deficiencies can be effectively remedied by using longer
expansions, they may cause a significant increase in the amount
of computational effort needed for a well-converged calculation.
Certain issues may also arise in the calculations of relativistic
corrections and other properties, where proper short-range
behavior is important.

3.1. Basis Sets for Atomic Calculations with Infinite and
Finite Nuclear Mass

We will first discuss the basis sets we have used in atomic and
molecular calculations performed without assuming the BO
approximation. For atoms, the non-BO calculations are more
often called finite-nuclear-mass (FNM) calculations. Even
though such atomic calculations are only marginally more
difficult (the Hamiltonian includes the mass polarization term,
which is absent when the nuclear mass is set to zero) and
essentially equally as time-consuming as the infinite-nuclear-
mass (INM) calculations, most very accurate atomic calcu-
lations published in the literature have been performed with the
INM approach. However, there have been also atomic
calculations which employed the FNM approach.15−17,128−131

This method not only allows for directly calculating energies of
ground and exited states of different isotopes, thus enabling
determination of isotopic energy shifts, but it also, by setting
the nuclear mass to infinity, allows generation of INM results.
When different isotopes of a particular element are calculated,
one may consider reoptimizing the nonlinear parameters of the
Gaussians in the basis set for each of them. However, as the
numerical experiments show, the change in the mass of the
nucleus can be effectively accounted for by readjusting the
linear coefficients of the basis functions, i.e., by recomputing the
Hamiltonian matrix and solving the eigenvalue problem with
the same basis set. Since the change of the wave function
remains small when the mass of the nucleus is varied (true as
long as the nuclear mass stays much larger than the mass of
electrons), such a simplification has virtually no effect on the
accuracy of the calculations.
In the calculations of atoms with only s electrons the rij

dependency in the Gaussian functions can be limited to the
exponential factor. For an n-electron system these functions
have the following form:

ϕ = − ′ ⊗A Ir r r r r( , , ..., ) exp[ ( ) ]k n k1 2 3 (32)

where r is a 3n-component vector formed by stacking r1, r2, ...,
rn on top of each other (ri is the distance between electron i and
the nucleus), Ak is a n × n symmetric matrix, I3 is a 3 × 3
identity matrix, “⊗” is the Kronecker product symbol, and the
prime indicates vector (matrix) transpose. In some of the
expressions in this review we will use a shorter notation for the
Kronecker product of a matrix and I3: Ak ≡ Ak ⊗ I3. In general,
Ak does not have to be a symmetric matrix. However, one can
always rearrange its elements in such a way that it becomes
symmetric without changing the quadratic form r′Akr. Since
dealing with symmetric matrices has certain practical
advantages in further considerations, we will always assume
the symmetry of Ak.
As the basis functions used in describing bound states must

be square integrable, some restrictions must be imposed on the
elements of Ak matrices. Each Ak matrix must be positive
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definite. Rather than enforcing the positive definiteness of Ak,
which usually leads to cumbersome constraints, we use the
following Cholesky factored form of Ak: Ak = LkLk′, where Lk is a
lower triangular matrix. With this representation, Ak is
automatically positive definite for any values of Lk ranging
from ∞ to −∞. Thus, the variational energy minimization with
respect to the Lk parameters can be carried out without any
restrictions. It should be noted that the LkLk′ representation of
Ak matrix does not limit the flexibility of basis functions,
because any symmetric positive definite matrix can be
represented in a Cholesky factored form.
In order to improve the quality of the atomic s-type ECGs

(eq 32), particularly in terms of providing a better description
of the short- or long-range behavior, one can include in those
functions preexponential factors similar to those present in the
Hylleraas functions defined in eq 28:

∏ϕ = − ′ ⊗
>

r A Ir r r r r( , , ..., ) ( ) exp[ ( ) ]k n
i j

n

ij
n

k1 2 3
ij

(33)

From a practical point of view, it is easier to use even powers of
the interelectron distances in such factors (nij even), or just
their squares (nij = 2), because the evaluation of the
Hamiltonian integrals is then more straightforward. By
including the rij

2 prefactors in Gaussians,32 one obtains the
following exponentially and preexponentially, explicitly corre-
lated Gaussian functions:

∏ϕ = − ′ ⊗
>

r A Ir r r r r( , , ..., ) ( ) exp[ ( ) ]k n
i j

n

ij k1 2
2

3
(34)

Even though, in principle, all interelectron distances should be
included in ∏i>j

n rij
2, a simpler approach with only a limited

number of those distances can also be considered. In such an
approach the Gaussian basis set would comprise the following
subsets of functions:

− ′ ⊗ − ′ ⊗

− ′ ⊗

A I r A I

r r A I

r r r r

r r

{{exp[ ( ) ]}, { exp[ ( ) ]},

{ exp[ ( ) ]}, ...}

k ij k

ij kl k

3
2

3

2 2
3 (35)

In particular, one can consider a basis set that only includes the
two first subsets:

− ′ ⊗ − ′ ⊗A I r A Ir r r r{{exp[ ( ) ]}, { exp( ( ) )}}k ij k3
2

3

(36)

Such a basis set was recently tested,132 and it was shown that
placing rij

2 factors in front of the Gaussian exponents leads to a
noticeable improvement of the energy convergence.
There is another issue that arises in atomic calculations,

particularly in those concerning excited states. It is related to
describing radial nodes and angular nodes in the wave
functions. In dealing with the radial nodes, for example, in
the calculations of 1S excited states of the beryllium atom, the
radial flexibility of the Gaussians is a key factor. For lower lying
states, the standard correlated Gaussians, eq 32, provide a
sufficiently flexible basis set to describe the few radial nodes.
However, for higher lying states with more radial nodes the
standard Gaussians may need to be modified to facilitate more
radial flexibility. This can be accomplished using the following
complex Gaussians:128,133,134

ϕ = − ′ ≡ − ′ + ⊗A B Ir C r r rexp[ ] exp[ (( i ) ) ]k k k k 3 (37)

where Ak and Bk are n × n symmetric matrices that represent
the real and imaginary parts of Ck, respectively.
Considering ground states of atoms with more than four

electrons (for example, the boron atom) or some excited states
of even smaller atomic systems requires that angular factors are
placed in front of the exponents of the Gaussian basis functions
(more details on the rotational symmetry of the basis functions
will be given in section 4.3). For the states corresponding to a
dominant configuration with just one p electron, the following
form of Gaussians can be used:

ϕ = − ′ ⊗z A Ir rexp[ ( ) ]k m k 3k (38)

Here mk is an integer that depends on k and may take values
from 1 to n. It is convenient to represent functions 38 as

ϕ = ′ − ′v r r A r( ) exp[ ]k
k

k (39)

where vk is a vector whose components are all 0, except the
3mkth component, which is set to 1.
For the case of states with two p electrons (for example, the

ground 1s22s22p2 state of the carbon atom) or one d electron,
one can use Gaussians with two electron coordinates placed in
front of the exponent:135−139

ϕ ξ ξ= − ′ ⊗A Ir rexp[ ( ) ]k i j k 3k k (40)

where ξik and ξjk can either be x, y, or z coordinates of electron
ik and jk, respectively, with ik and jk either equal or not equal to
each other.
In particular, in describing states with two p electrons (for

example, in the calculations of the 3Po ground and first excited
states of the carbon atom) the following Gaussian basis
functions135

ϕ = − − ′ ⊗x y x y A Ir r( ) exp[ ( ) ]k i j j i k 3k k k k (41)

were used. In calculating D states involving one d electron, the
Gaussians had the form138,139

ϕ = + − − ′ ⊗x x y y z z A Ir r( 2 ) exp[ ( ) ]k i j j i i j k 3k k k k k k (42)

where electron indices ik and jk are either equal or not equal to
each other.
It is convenient to use an alternative form of the angular

preexponential multiplier. It involves the general quadratic
form, r′Wkr, that represents the preexponential factor. This
form allows for a more generalized approach in deriving the
matrix elements. For example, the Gaussians with the factor
xikxjk + yikyjk − 2zikzjk) can be written as

ϕ = ′ − ′ ⊗A Ir W r r r( ) exp[ ( ) ]k k k 3 (43)

where Wk is a sparse 3n × 3n symmetric matrix that for ik = jk
comprises only three nonzero elements: W3(ik−1)+1,3(ik−1)+1 = 1,

W3(ik−1)+2,3(ik−1)+2 = 1, and W3(ik−1)+3,3(ik−1)+3 = −2, and for ik ≠ jk
it comprises six nonzero elements: W3(ik−1)+1,3(jk−1)+1 =

W3(jk−1)+1,3(ik−1)+1 = 1/2, W3(ik−1)+2,3(jk−1)+2 = W3(jk−1)+2,3(ik−1)+2 =

1/2, and W3(ik−1)+3,3(jk−1)+3 = W3(jk−1)+3,3(ik−1)+3 = 1. It should be
noted that, in general, we could have used a nonsymmetric
matrix Wk (for ik ≠ jk) with only three nonzero elements
(yielding the same quadratic form) since there are only three
terms in eq 42. However, as already mentioned, it is much more
convenient to deal with symmetric matrices in practice. The
main reason for this is that the derivation of matrix elements
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becomes considerably simpler. In a similar manner, one can
devise forms of Gaussians even for states with higher total
orbital angular momenta (or higher than 2 number of non-s
electrons). These forms, however, become progressively more
complex.

3.2. Basis Sets for Non-BO Calculations on Diatomic
Molecules

After separating the center-of-mass motion from the laboratory-
frame Hamiltonian of a molecule, the Hamiltonian that
describes the intrinsic motion of the system, the internal
Hamiltonian, is isotropic (i.e., spherically symmetric). Eigen-
functions of such a Hamiltonian form an irreducible
representation of the fully symmetric group of rotations.
Thus, those functions are atom-like functions, which, besides
being eigenfunctions of the Hamiltonian, are also eigenfunc-
tions of the square of the total orbital angular momentum
operator and the operator representing its projection on a
selected axis. As such, the Hamiltonian matrix calculated with
eigenfunctions of the square of the total orbital angular
momentum is a block-diagonal matrix. This allows for
separating the calculations of states corresponding to different
total orbital angular momentum quantum numbers. In
particular, when spherically symmetric basis functions are
used in the calculations, the so-called rotationless states are
obtained. Those states correspond to the ground and excited
“vibrational” states of the system. We put “vibrational” in
quotation marks because, if the BO approximation is not
assumed in the calculation, the electronic and vibrational
degrees of freedom mix and the wave function for a particular
“vibrational” state may contain contributions from products of
different electronic wave functions and different vibrational
wave functions. Due to this coupling of the vibrational and
electronic motions the vibrational quantum number is no
longer a good quantum number. It should be, perhaps more
correctly, regarded as a number which numbers consecutive
states in the manifold corresponding to the particular total
orbital angular momentum quantum number.
In the fully non-BO ECG calculations for diatomic molecules

performed so far only rotationless states, i.e., states represented
by spherically symmetric wave functions, have been consid-
ered.7,140,141 In the calculations of those states the following
explicitly correlated Gaussians multiplied by even powers of the
internuclear distance, r1 (the powers usually range from 0 to
250), have been used:

ϕ = − ′r r A rexp[ ]k
p

k1 k (44)

where it is assumed that the center of the internal coordinate
system is placed on the first nucleus (usually the heaviest one),
the first pseudoparticle represents the second nucleus, and the
remaining pseudoparticles represent the electrons.
As one notices, function 44 is spherically symmetric with

respect to the center of the coordinate system. All particles are
explicitly correlated in the Gaussian exponent (i.e., the
exponent explicitly depends on all interparticle distances).
There is also an additional correlation factor for the two nuclei
that depends on powers of the internuclear distance, r1

pk. The
purpose of this factor is to effectively separate the nuclei from
each other and to describe the oscillations of the wave function
resulting from vibrational excitation. In the vibrational ground
state the wave function should have a maximum for r1 around
the vibrationally averaged ground state internuclear distance.
The combination of the r1

pk factors with different pk powers and

the Gaussian exponent can very effectively generate such a
maximum. In the first vibrational excited state the wave
function has a single node and it can also be very well described
by Gaussians (44). Moreover, as the calculations of the
complete vibrational spectra for such systems as H2

+ and its
isotopologues,142−144 H2 and its isotopologues,145−149

HeH+,150,151 and larger systems21,152,153 have demonstrated,
the Gaussians can very effectively describe even the highest
vibrational excitations with multiple nodes.
The Hamiltonian integrals involving function 44 are more

complicated than integrals with functions without premulti-
pliers. With that the integrals take considerably longer to
compute. Also, we should note that the powers of the
internuclear distance in the basis functions used to calculate
the ground state are smaller than those needed to calculate
excited states.
In order to describe the vibrational states corresponding to

the first rotational excited states, one needs to use the following
Gaussians in expanding the wave functions of those states:

ϕ = − ′z r r A rexp[ ]k
p

k1 1 k (45)

Here we assume that the contribution of basis functions where
z1 is replaced by xi, where i ∼ 1, is unimportant. This
assumption may be not be strictly correct for higher states near
the dissociation threshold, for which z1 in eq 45 should be
replaced with zmk

, where mk ranges from 1 to n.

3.3. Basis Sets for Non-BO Calculations on Systems with
More Than Two Nuclei

Let us first consider a molecule with three nuclei (the simplest
such molecule is the H3

+ ion). Applying the same arguments as
used to justify the use of Gaussians eq 44 in non-BO diatomic
calculations, the appropriate basis set of correlated spherically
symmetric (one-center) Gaussians to describe rotationless
states of a triatomic molecule, such as H3

+, should consist of the
following functions:

ϕ = − ′r r r r A rexp[ ]k
p q t

k1 2 12k k k (46)

As one notices, the preexponential multipier of the functions in
eq 46 includes not one, as in eq 44, but three factors. The
factors are powers of all three internuclear distances in the
molecule. The presence of the powers allows for effectively
separating the nuclei and placing them at relative distances
which are on average equal to the equilibrium distances for the
state which is being calculated. The powers are also important
in generating radial nodes in the wave function in excited
vibrational states. Unfortunately, the Hamiltonian and overlap
matrix elements with the basis functions given in eq 46 become
more complicated. While the expressions for them were derived
in a closed algebraic form,154 an efficient numerical
implementation is problematic due to a large number of
summation loops in the integral formulas which results from
the powers of the internuclear distance in the preexponential
factor.
A Gaussian basis set which, in principle, can be used for

rotationless states of triatomic molecules and even of molecules
with more than three nuclei is the basis of complex Gaussians in
eq 37. An appropriate linear combinations of these Gaussians
should generate sine/cosine type oscillations in the wave
function which are needed in describing vibrational excited
states. Future tests will show how effective Gaussians (37) are
in describing those oscillations.
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3.4. Basis Sets for Non-BO Molecular Calculations in the
Presence of External Electric Field

Let us consider an isolated diatomic molecule without the BO
approximation. Such a consideration has many fundamental
aspects and also provides a procedure for describing asymmetry
in the charge distribution in molecular systems due to isotopic
substitution (such an effect takes place, for example, in the HD
molecule). As mentioned, the ground state (L = 0) wave
function of the molecule is a spherically symmetric function.
Let us now expose the molecule to a static electric field. If a
calculation performed with the BO approximation shows that
the molecule has a nonzero dipole moment or an anisotropy of
the polarizability, the interaction with the field will result in the
molecule orienting itself in space to minimize the interaction
energy. When the field is small this orientation is only partial,
but as the field increases the dipole moment axis of the
molecule or the axis of its highest polarizability essentially
becomes fully aligned with the direction of the field. It usually
takes a very small field to achieve this full alignment. One can
call this effect the orientational polarizability. When this
happens, the non-BO wave function of the molecule loses its
spherical symmetry and acquires an axial symmetry.
In addition to affecting the rotational state of the molecule

(in a way one can say that the field excites the molecule to a
high rotational state when the molecular dipole aligns with the
direction of the field), the field also affects the vibrational and
electronic motions. The field essentially polarizes the molecule
vibrationally and electronically. To describe the field-induced
deformation of a molecule in its ground state, the following
correlated Gaussians with shifted centers were used:155,156

ϕ = − − ′ −r s A r sexp[ ( ) ( )]k k k k (47)

where sk are the shifts of the Gaussian centers. Functions in eq
47 are also called explicitly correlated shifted Gaussians or
floating ECGs. The shifts allow for deforming the molecular
wave function to a cylindrical (oval) shape in the presence of
the field. ECG basis eq 47 is, in principle, also capable of
describing the ground state of the molecule in the absence of
the field. It is not the most optimal basis for such a case, but
with all the Gaussian centers being located at the origin of the
coordinate system, it has the right symmetry of the system
without the field. In refs 155 and 156 the non-BO dipole
moments of isotopologues of H2 and LiH were also evaluated
using an approximate procedure employing the finite-field
approach. Good agreement with the experimental values was
achieved. The reader may also review the recent paper by
Fernandez,157 where the procedure used in refs 155 and 156
and the results obtained there were put into question.

3.5. Basis Sets for Molecular BO Calculations

In molecular BO calculations, there is no need to transform the
coordinate system into an internal coordinate system
representation. That is because the nuclei are fixed in space
and therefore the center of mass does not move. A
consequence is that the coordinates can be represented in the
laboratory frame without any effect on the outcome of the
calculation. In BO calculations ECGs become functions of the
electronic coordinates only, expressed in the laboratory frame.
The simplest Gaussians used in the BO calculations are those
given in eq 47, with Lk, I3, and sk having the same meaning as in
eq 47, but with r containing only the electronic coordinates in
the laboratory frame stacked similarly to the definition in eq 7.

Gaussians 47 can only be used to describe states whose wave
functions do not have nodes on the nuclei.
Equations in sections 2.2 and 2.3 show how in BO

calculations the nuclear positions are formally present in the
wave functions as parameters. In most of the available quantum
chemistry software packages this parametrical dependence is
explicitly accounted for by centering the atomic orbitals to the
positions of the nuclei in a molecule. Deformations of the wave
function needed to describe the directionality of chemical
bonds are then obtained by employing Gaussian orbitals
containing premultipliers (usually powers of Cartesian
coordinates). Angular momentum functions with up to l = 5
are typically used.
The ECG-type functions defined in eq 47 do not include any

angular momentum factors. Employing such angular momen-
tum factors would be impractical as the formulas for calculating
matrix elements of the clamped-nuclei Hamiltonian sandwiched
by functions of the type in eq 47 quickly become complicated
when L ≥ 2. The problem is readily circumvented by avoiding
the use of angular momentum functions and making up for that
by allowing the centers of the ECGs to float. Technically, that is
achieved by not equating the sk vectors with the nuclear
positions. Using floating ECGs means that the basis functions
do not display any explicit parametrical dependence on the
nuclear positions. Instead their Gaussian centers, sk, are
considered to be adjustable parameters in the variational
optimization. It is important to note that employing a floating
centers basis set maintains an implicit parametrical dependence
with respect to the nuclear positions. This can be understood if
one realizes that the variationally optimized wave function is
found using a Hamiltonian that is explicitly dependent on the
nuclear positions, such as the CN Hamiltonian (11) used in the
BO calculations.
To summarize, the use of floating ECGs allows the

description of chemical bonds through the deformations of
the electron density that are described by basis functions that
float away from a nucleus. This choice of basis functions
enables employing numerically sound overlap and Hamiltonian
matrix elements at the expense of having to optimize 3Ne × K
nonlinear parameters, in addition to the Gaussian exponents
(Lk) and the linear expansion coefficients (ck) in eq 26, where
Ne and K are the number of electrons and the number of basis
functions employed.

3.5.1. Use of Premultipliers in ECG Basis Sets for
Molecular BO Calculations. ECGs with floating centers
defined in eq 47 perform best when used in the calculations of
states with nodeless wave functions at the nuclei. A node in the
wave function can only be described with floating ECGs by a
superposition of Gaussians that have opposite signs. Depending
on the nature of the node, such an “arithmetical” generation of
the node can lead to numerical instabilities. This does not
happen when the node lies, for example, on the imaginary line
interconnecting two nuclei, which is the case of Σu

+ excited
states in He2

92,158 and H2.
159 In this situation the node occurs

in a region away from where the electron density peaks (at the
nuclei); therefore, the arithmetic node generation is less likely
to incur into a numerical instability. Different is the case of
nodes occurring at the position of an nucleus. Such cases take
place in many excited states of small molecules and atoms, and
in some cases also in the ground state, as in the CH+ molecular
ion. To effectively describe a node at a nucleus, it is sufficient to
append a proper angular function as a premultiplier to the ECG
basis functions, namely
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ϕ = − − − ′ −Y r r r s A r s( ) exp[ ( ) ( )]k i k k k
nucl

(48)

where Y(ri − rnucl) is some angular momentum function such as
a spherical harmonic multiplied by the (ri−rnucl)l factor.
3.5.2. Ionic and Covalent Basis Functions. When atom-

centered atomic orbitals (AOs) are used in molecular BO
calculations, the wave function is expressed as an antisymme-
trized product of molecular orbitals (MOs) and spin functions.
The MOs are linear combination of AOs having proper spatial
symmetry. The wave function obtained with the outlined
procedure can then be decomposed into several antisymme-
trized products of atomic orbitals and spin functions. As an
example, consider the ground state of the hydrogen molecule in
the minimal AO basis constituted by two 1s orbitals centered
on either hydrogen atom, 1sA or 1sB, respectively. The spatial
electronic wave function becomes a product of doubly occupied
MOs denoted as σg:

σΨ =H g
2

2 (49)

The above product expanded in terms of the (unnormalized)
AOs (σg = 1sA + 1sB, where “A” and “B” refer to the atoms),
after some rearrangement, takes the form

Ψ =

+

+

+

r r

r r

r r

r r

1s ( ) 1s ( ) ionic

1s ( ) 1s ( ) covalent

1s ( ) 1s ( ) covalent

1s ( ) 1s ( ) ionic

H A 1 A 2

A 1 B 2

B 1 A 2

B 1 B 2

2

(50)

where the electronic coordinates in the laboratory frame of the
two electrons are included explicitly. In eq 50, labeling of
“ionic” and “covalent” products has been assigned to those
products of AOs that involve AOs centered on the same atom
or on different atoms, respectively. Similarly to the above case,
the application of ECGs to the calculation of the electronic
wave function of the hydrogen molecule involves basis
functions of the type

− −
−

−

⎡
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(51)

which also can be labeled as “ionic” and “covalent” depending
on whether the centers sk

1 and sk
2 are in the neighborhood of the

same or different atoms. In the simplified case of eq 50 the
minimal AO basis set for the H2 molecule generated a wave
function having 50% ionic and 50% covalent products. This
hints that when using ECGs the ratio of ionic/covalent
functions must be optimized to achieve a better energy
convergence with respect to the number of basis functions
employed.
The simple example of eq 50 also shows how the ratio of

ionic/covalent basis functions must change as the internuclear
distances of a molecule are varied. Consider the spatial wave
function of the H2 molecule in its minimal AO basis when the
molecule is completely dissociated. Because the dissociation
limit consists of two noninteracting hydrogen atoms, the spatial
wave function becomes

Ψ = +s s s sr r r r
1
2

(1 ( ) 1 ( ) 1 ( ) 1 ( ))H A 1 B 2 A 2 B 12 (52)

which consists of a 100% covalent AO product and has no ionic
components. Therefore, when the H2 molecule is calculated

with ECGs, as the internuclear distance stretches, some basis
functions must convert from ionic to covalent. Such a
conversion may require migration of some Gaussian centers
by several atomic units and usually overcoming an energy
barrier, which is unlikely to occur during the variational energy
minimization. This problem will be tackled later in this review
when the details of the optimization of the nonlinear
parameters in BO calculations are discussed in sections 7.1.1
and 7.2.

4. SYMMETRY OF THE WAVE FUNCTION

The Hamiltonian of a few-particle Coulombic system always
possesses certain symmetries, or in other words, it commutes
with the wave function transformations that belong to certain
groups. Among these groups there may be continuous groups
such as the group of 3D rotations, or point groups, such as the
symmetric group Sp. In this section we briefly consider what the
possible implications of these symmetries are and how to
perform calculations that take them into account.

4.1. Permutational Symmetry

Practically any atomic or molecular system consisting of more
than two particles contains some subsets of identical particles in
it. Most commonly, we think of electrons in this regard.
However, the identical particles could also be nuclei and even
such exotic particles as positrons and muons. According to the
Pauli principle, the total wave function (including the spin
degrees of freedom) of such quantum systems must either be
symmetric or antisymmetric with respect to permutations of
identical particles. Any approximation to the exact wave
function, which aspires to be accurate, should take this
requirement into account. In variational calculations this puts
a constraint on the symmetry of the basis functions that can be
used. It should be said that in some cases, such as when we are
interested in the ground state of a bosonic system, we might in
principle use a basis that does not possess any symmetry. If the
state of interest is the lowest (or one of the very lowest) in
energy among the states of any symmetry, the total trial wave
function will eventually converge to the form corresponding to
the proper permutational symmetry as the basis size goes to
infinity. For any finite basis set, however, there is a big
likelihood of the presence of some symmetry contamination.
More importantly, such calculations are usually far less efficient
in terms of CPU time and memory requirements as the number
of basis functions necessary to achieve the same accuracy as in
the case of properly symmetrized basis is significantly larger.
Thus, even in those few special cases it is a good idea to use
basis functions of the proper symmetry. When we deal with
systems consisting of fermions (i.e., electrons), enforcing the
proper permutational symmetry on the basis functions is not
only a matter of the computational efficiency, it is essentially a
strict requirement. Even the ground state variational calcu-
lations of fermionic systems are not possible without a properly
antisymmetrized basis.
In general, in order to build properly (anti)symmetric wave

functions, one has to deal with both the spatial and spin
coordinates. Due to the fact that the Hamiltonian of a
nonrelativistic Coulomb system does not depend on the spin of
particles, it is possible to completely eliminate the spin variables
from consideration. The corresponding mathematical formal-
ism has been well developed (see, for example, monographs of
Hamermesh160 and Pauncz161). In this formalism projection
operators for irreducible representations of the symmetric
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group (called Young operators) are obtained in a straightfor-
ward manner from their corresponding Young tableaux. A
Young tableau is created from a Young diagram (sometimes
called Young frame), which, for a system of p particles is a
series of p connected boxes, such as

The shape of the Young diagram corresponding to the desired
irreducible representation of the symmetric group is
determined by the nature of the particles in the system
(bosons or fermions, and their spin). For a set of fermions with
spin 1/2 (i.e., electrons) the Young diagram for the spatial wave
function must contain no more than two columns. For
fermions with spin 3/2 the maximum number of columns
would be four. The number of columns for bosons is not
limited.
A Young tableau is created by filling a Young diagram with

numbers from 1 to p so that they increase when going from left
to right and from top to bottom, such as

Generally, there is more than one way to write a Young tableau.
The number of ways determines the dimension of the
representation. In the actual calculations we may restrict
ourselves with the use of basis functions corresponding to any
of the equivalent diagrams (the equivalent ones are those that
have the same shape). The shape of the diagram also
determines the multiplicity of the state. The tableaux in eq
54 would correspond to a doublet (a single unpaired electron),
while the following ones

correspond to a singlet and triplet, respectively.
Once we have an appropriate Young tableaux, the Young

operator can be written as Ŷ = S ̂Â, where

∏ ∏̂ = ̂ ̂ = ̂A A S S,
c

c
r

r
(56)

are the product of antisymmetrizers over each column and the
product of symmetrizers over each row, respectively.
The symmetrizers and antisymmetrizers can be conveniently

represented by compact expressions that involve transpositions
(pair permutations of particles), which we will denote P̂kl. For
example, if we have two particles whose numbers are 1 and 2,
then the symmetrizer is

̂ = + ̂S P112 12 (57)

The antisymmetrizer over particles 1 and 2 also has a simple
form:

̂ = − ̂A P112 12 (58)

For the sake of simplicity we dropped the normalization factor
in both expressions 57 and 58 as it not essential here. In the
case of larger than 2 number of particles over which the
symmetrization or antisymmetrization needs to be done, the

corresponding expressions can be given in a factorized form.
Let us assume that the number of particles in a subset is k and
their numbers range from 1 to k. Then the symmetrizer and
antisymmetrizer would look as follows:

̂ = + ̂ + ̂ + ̂ ··· + ̂ + + ̂ −S P P P P P(1 )(1 ) (1 ... )k k k k1,..., 12 13 23 1 1,

(59)

̂ = − ̂ − ̂ − ̂ ··· − ̂ − − ̂ −A P P P P P(1 )(1 ) (1 ... )k k k k1,..., 12 13 23 1 1,

(60)

Again, the normalization factors (1/√k!) were dropped for
convenience. As an illustration, let us write the Young operator
for a doublet state of five identical particles with spin 1/2
(corresponds to the first Young tableau in eq 54). We
symmetrize over rows 1 and 2 by applying 1 + P̂12 and 1 + P̂34.
Then we antisymmetrize over columns 1 and 2 by means of
operators (1 − P̂13)(1 − P̂15 − P̂35) and 1 − P̂24. The final
expression for the Young operator is then

̂ = − ̂ − ̂ − ̂ − ̂ + ̂ + ̂Y P P P P P P(1 )(1 )(1 )(1 )(1 )24 13 15 35 12 34
(61)

The operators whose matrix elements are needed in the
variational calculation (such as the Hamiltonian, etc.) usually
commute with all the permutation operators involved in the
projector Ŷ, and thus, they commute with Ŷ itself. Moreover, we
can restrict ourselves to the implementation of only those cases
where the permutational operators are applied to the ket,
because

ϕ ϕ ϕ ϕ⟨ ̂ | ̂| ̂ ⟩ = ⟨ | ̂| ̂ ̂ ⟩†Y O Y O Y Yk l k l (62)

Here Ô denotes an operator representing the quantity of
interest. Operator Y†Ŷ can be simplified so that it contains only
p! elemental terms (permutations), where p is the number of
identical particles.
Now let us consider how each of those permutations of

particles act on primitive ECG basis functions. A permutation
of the real particles (i.e., not the pseudoparticles) involved in a
permutational operator, P̂, can be represented as a linear
transformation of the laboratory-frame coordinates, R, of the
particles. Since the relation between the laboratory coordinates,
R, and the internal coordinates, r, is linear, the transformation
of the internal coordinates under the permutation of the
particles is also linear. Therefore, it can be described by a
permutation matrix, P = P ⊗ I3. The application of P̂ to the
simplest basis functions in eq 32 gives

ϕ̂ = ̂ − ′

= − ′

= − ′ ′

P P r A r

Pr A Pr

r P A P r

exp[ ]

exp[ ( ) ( )]

exp[ ( ) ]

l l

l

l

As can be seen from the above expression, the symmetry
transformation of ϕl is equivalent to a similarity transformation
of the matrix of the nonlinear parameters for that basis function
(Al → P′AlP). Based on this, a procedure that implements the
permutational symmetry in calculating matrix elements with
symmetry-projected basis functions can be developed. Evaluat-
ing these matrix elements involves a summation of integrals,
whose actual numerical values depend on transformed matrices
Ak and Al.
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4.2. Permutational and Spatial Symmetry in BO
Calculations

When employing all-electron basis functions, spatial symmetry
and permutational symmetry in BO wave functions are treated
on a similar footing. Generally, the basis functions in eq 47 do
not possess the proper permutational or spatial symmetry. As
mentioned above, in the general case, the approach usually
chosen is to project away the part of the basis functions that
does not have the proper symmetry. This is achieved by using
tensor products of Wigner-type projectors. The total symmetry
operator, P̂, acts on an ECG function as follows:

ϕ̂ = ̂ − − ′ −

= − − ′ ′ − ′

= − − ′ ′ ′ − ′

P P r s A r s

Pr PP s A P r PP s

r P s P A P r P s

exp[ ( ) ( )]

exp[ ( ) ( ( ))]

exp[ ( ) ( )( )]

l l l l

l l l

l l l (63)

The symmetry operator contains a product of operations
belonging to the group of permutations of n particles, if n are
the electrons in the studied molecule, and elements of the point
symmetry group the molecule belongs to. The general form of
the P̂ operator is

∑ ∑̂ = ̂ ⊗ ̂ =
!

̂ ̂
α

α α
Γ

=

!

∈

P P P
n g

D D OO
1

S
i

n

i
S

iG
G

G

1
n

n

(64)

where “⊗” stands for tensor product operation, G is the label of
a point group, Γ a specific irreducible representation of that
point group, and g is the number of elements in the point group
G. The coefficients Di

Sn and Dα
G can be the characters of a

specific irreducible representation of either the symmetric
group or the point group, or an element of the matrices that
constitute the irreducible representation. When calculating the
molecular electronic ground state, the irreducible representa-
tion to use is fully symmetric with every Dα

G = 1. Excited states,
instead, may have negative values of Dα

G, or values in magnitude
different from unity. As an example, consider the H3

+ molecular
ion. The point group symmetry for this ion in its ground state
equilibrium geometry is D3h. This point group contains six
elements, and for the A1 and E states, the projection operators
onto the respective point group symmetry irreducible
representation can be written as

σ σ σ̂ = + ̂ + ̂ + ̂ + ̂ + ̂P C C1D
A

3 3
2

1 2 3h3

1
(65)

σ σ σ̂ = − ̂ − ̂ + ̂ − ̂ − ̂P C C2 2D
E

3 3
2

1 2 3h3 (66)

respectively. The operator in eq 66 was obtained after noticing
that C3v is isomorphic with the permutation group of three

particles, S3, and by employing the Young tableau. It is

interesting to notice that at the ground state equilibrium
geometry of H3

+ there is a conical intersection of two
degenerate E states (the E representation is two-dimensional).
For the second of the two states the symmetry projector can be

generated using the Young tableau.

4.3. Spatial Symmetry in Non-BO Calculations

In the case when there are no clamped particles in the system
and no external fields are present, the Hamiltonian commutes
with the total orbital angular momentum operator, L̂2.
Therefore, the exact solutions of the corresponding Schrö-
dinger equation must also be the eigenfunctions of L̂2. For this

reason, basis functions for a variational calculation of a given
system/state need to possess certain rotational symmetry
properties. It should be said that in some cases the proper
rotational symmetry of basis functions is not strictly required.
For example, when one deals with the ground state of the
system and does not impose any rotational symmetry of the
wave function in the calculation, the total non-BO trial wave
function should converge to the ground state provided the basis
functions have sufficient flexibility and one performs a thorough
optimization of the linear and nonlinear parameters involved in
the trial function. The trial wave function will eventually
approach the right rotational symmetry of the ground state in
the limit of a complete basis set. Nonetheless, even in such a
case it is a good idea to use basis functions of the correct
symmetry as this yields a much faster convergence rate. For
consideration of excited states, the use of correct rotational
symmetry is usually not optional. If the symmetry is not
imposed, the trial wave function will simply converge to a
wrong state when the linear coefficients and nonlinear
parameters are optimized. To remedy this, one may include
some penalty terms in the variational energy functional which,
even without strictly imposing the right rotational symmetry,
would force the wave function to effectively assume this right
symmetry in the process of the basis set optimization.
In addition to the Hamiltonian commuting with L̂2, it also

commutes with the projection of the total orbital angular
momentum operator on a selected axis, L̂z (again, assuming no
clamped nuclei are involved in the system). Due to the
degeneracy of the energy levels corresponding to different
quantum numbers M (eigenvalues of L̂z), it is not required that
basis functions must correspond to a particular M value. In
principle, one can use any linear combination of basis states
with different M’s (and the same L and other quantum
numbers). However, for efficient numerical implementation, it
is desirable that the basis functions be real. This is automatically
satisfied when M = 0.
For states with L = 0 (even those that arise from the coupling

of the nonzero angular momenta of separate particles) the wave
function of the system is rotationally invariant. Thus, any
spherically symmetric Gaussian exp[−r′(Ak ⊗ I3)r] multiplied
by an arbitrary function of the absolute values of ri, rij, or their
dot products, is a suitable basis function. The actual choice of
the premultiplier is dictated by the structural peculiarities of the
considered system and its state, so that the convergence of the
variational expansion is sufficiently fast. For example, for the
ground state of an atom with s electrons only, it is usually
sufficient to use the premultipliers that are equal to unity. For
excited Rydberg states of atoms the calculation may benefit
from using in some of the basis functions factors of the form ri

2

or even higher even powers of the electron−nucleus distances
to better describe the radial nodes in the wave functions of
these states. For a diatomic molecule, where particles 1 and 2
are nuclei, premultipliers need to be introduced to describe the
spatial separation of these particles. As mentioned before, these
premultipliers can have the form of powers of the internuclear
distance, ri

2m = R12
2m, where m is an integer which in typical

non-BO calculations may range from 0 to 100.
To obtain a proper functional form of the basis functions

suitable for the calculations of states with a given L and
corresponding to a given coupling scheme (i.e., a certain set of
intermediate total angular momenta) of the orbital angular
momenta of the constituent particles, one can use the well-
known rules of the addition of the angular momenta. The case
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of an L = 1 state, in which all particles but one have zero
angular momentum (i.e., li = 1, lk = 0, k ≠ i; here lj is the orbital
angular momentum quantum number of particle j), is trivial
and leads to a prefactor in the form riY10(ri), where Ylm(ri)
denotes spherical harmonics. Since Y10(ri) is proportional to zi/
ri, the following basis functions are generated:

ϕ = − ′ ⊗z A Ir rexp[ ( ) ]k i k 3 (67)

In a slightly more sophisticated case of two particles with
nonzero angular momenta (li, lj) the expression for the
premultiplier is evaluated as the following sum:

∑| ⟩ = | | ⟩| ⟩

+ =

r r L M r r L M l m l m l m l m( )i
l

j
l

i
l

j
l

m m
m m M

i i j j i i j j
,

i j i j

i j

i j (68)

where (L M|li mi lj mj) are the Clebsch−Gordan coefficients,
and |li,mi⟩ are shorthand for spherical harmonics Ylimi

(ri). The
mathematical functions given by eq 68 without the ri

lirj
lj factor

are often called the bipolar harmonics.162

When many or all particles in the system have nonzero
orbital angular momenta, their coupling into multipolar
harmonics, which may symbolically be represented as

··· | ⟩| ⟩ | ⟩ ···| ⟩r r l m l m l m l m[[[ , , ] , ] , ]l
n
l

L M L M n n L M1 1 1 2 2 , 3 3 , ,
i n

12 12 123 123

(69)

becomes progressively more complicated as the number of
particles increases. Nonetheless, for any relatively small number
of particles, the exact form of the proper Gaussian premultiplier
can be easily determined with the use of modern computer
algebra packages. For very complicated cases one may also
employ the approach proposed by Varga, Suzuki, and
Usukura,5,163 which avoids the coupling of orbital angular
momenta completely. This approach can be particularly useful
in calculations of states with very high L. The spatial basis
functions in this approach have the following form:

ϕ = − ′ v Yr A r vexp[ ]( ) ( )k k
k p

LM
k2 k (70)

where vk = uk′r ≡ ∑i=1
n ui

kri, pk is a nonnegative integer
parameter, and ui

k are a set of additional nonlinear parameters.
Both pk and uk are subject to optimization. Only the total
angular momentum L appears in eq 70, while the coupling
scheme of the individual angular momenta of the particles is
not strictly defined. In general, it is a linear combination of
different coupling schemes corresponding to the same final L
value and this linear combination (or the weights of the
different coupling schemes) may change continuously during
the energy minimization. The energy minimization performed
with respect to uk amounts to finding the most suitable angle or
a linear combination of angles defined by the vk/vk unit vector,
in terms of which the wave function is expanded.

5. EVALUATION OF MATRIX ELEMENTS
The derivations of the Hamiltonian and overlap matrix
elements with ECGs can be conveniently carried out with the
use of the formalism of matrix differential calculus (MDC).
While this formalism is often employed in the field of
econometrics and statistics, it has not been well-known in
chemistry and physics. It has proven to be a very suitable tool
to work with all types of ECGs. A detailed introduction to the
subject of MDC can be found in ref 164. In this section we will
supply the reader with most important definitions and briefly
describe the general procedures for evaluating the Hamiltonian

and energy gradient matrix elements. For a complete
description and explanation of all technical details, we refer
the reader to refs 7, 91, 128, 134−137, and 166.
5.1. vech Operation

In some situations, such as when computing derivatives of
matrix elements, it is handy to make use of the operator vech. It
transforms a matrix into a vector by stacking the columns of a
matrix, one underneath the other, but for each column only the
elements located on and below the diagonal of the matrix are
used in the stacking. Hence, vech transforms an n × n matrix
into a n(n + 1)/2-component vector. For example, if X is a 3 ×
3 matrix with elements Xij, then

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

X

X

X

X

X

X

X

vech

11

21

31

22

32

33 (71)

The vech operator is particularly useful in the case of symmetric
matrices; then vech X contains only independent elements of X.
5.2. Gaussian Integral in p Dimensions

In the evaluation of the Hamiltonian and overlap matrix
elements the following p-dimensional Gaussian integral is used
most often:

∫ π− ′ + ′ =
| |

′
−∞

+∞
−x Ax y x x

A
y A yexp[ ] d exp[ ]

p/2

1/2
1

(72)

where x is a p-component vector of variables, A is a symmetric
p × p positive definite matrix, and y is a p-component constant
vector.
5.3. Evaluation of Integrals Involving Gaussians with
Angular Preexponential Factors

Let us start with the simplest n-particle ECG basis function that
is used to construct the basis for calculating bound states of
atoms with only s electrons:

ϕ = − ′r A rexp[ ]k k (73)

By directly applying eq 72, we obtain the expression for the
overlap integral between two basis functions given by eq 73:

ϕ ϕ π⟨ | ⟩ =
| |Ak l

n

kl

3 /2

3/2
(74)

where Akl = Ak + Al. In deriving integrals over Gaussian basis
functions representing atomic states with higher angular
momenta, the so-called “generator” functions are used. Let us
consider angular Gaussians generated by multiplying eq 73 by
one or two single particle Cartesian coordinates. For the former
case the generator Gaussian function is

ϕ α= − ′ + ′r A r v rexp[ ( ) ]k k k
k

(75)

where αk is a parameter and vk is a vector whose components
are all 0, except the 3mk component, which is set to 1. For the
latter case one can choose the generator Gaussian to be

ϕ α= − ′ + ′r A r r W rexp[ ]k k k k (76)
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where Wk (which will define the preexponential factor xikyjk −
xjkyik or a similar one) is a sparse 3n × 3n symmetric matrix
comprising only four nonzero elements, two of which have
values of 1/2 and the other two have values of −1/2. The 1/2
elements are placed in the (3ik − 2, 3jk − 1) and (3jk − 1, 3ik −
2) positions, while the −1/2 elements are placed in (3jk − 2, 3ik
− 1) and (3ik − 1, 3jk − 2) positions.
The generator Gaussians are used to generate Gaussian basis

sets for expanding wave functions with different angular
momenta. For example, the basis function zi exp[−r′Akr] is
generated from eq 75 by differentiating with respect to αk and
setting αk to 0. In this case the elements of the vk vector are all
0 except for the 3ith element, which is set to 1. In the same
manner, in order to generate the basis function (xikyjk − xjkyik)
exp[−r′Akr], one needs to differentiate the generator in eq 76
with respect to αk and set αk to 0. This approach, in principle,
can be extended to generate any angular preexponential factor
for a Gaussian basis function.
As an example, let us consider the overlap integral between

functions of the following type:

ϕ = − − ′x y x y Ar r( ) exp[ ]k i j j i kk k k k

It can be obtained as

∫

ϕ ϕ
α α

φ φ

α

α
α α

⟨ | ⟩ = ∂
∂

∂
∂

⟨ | ⟩

= ∂
∂

∂
∂

− ′ + +

α α

α α

= =

−∞

+∞

= =
r A W W r rexp[ ( ) ] d

k l
k l

k l

k

l
kl k k l l

0

0

k l

k l

(77)

This approach can be used to evaluate all other types of
integrals that appear in the calculations with ECGs containing
Cartesian prefactors.
In non-BO calculations of diatomic molecules a suitable basis

set consists of ECGs multiplied by powers of the internuclear
distance. Even in a simpler case of atomic calculations one
needs to deal with powers of the internuclear distance when
evaluating the matrix elements of the potential energy. To
obtain these matrix elements it is convenient to use an
approach employing the Dirac delta functions.The expression
for the matrix element of the Dirac delta function, δ(rij−ξ),
where ξ is some three-dimensional vector (parameter), allows
one to evaluate the matrix element of an arbitrary function
f(rij), which depends on a single pseudoparticle coordinate or a
linear combination of the coordinates. For the case of a simple
(no premultipliers) spherical Gaussians we have:

∫

∫

ξ ξ

ξ ξ

ϕ ϕ ϕ δ ϕ

ϕ ϕ
π

⟨ | | ⟩ = ⟨ | − | ⟩

= ⟨ | ⟩ ξ
−

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

f f

f
A J

r r r( ) ( ) ( ) d

1
tr[ ]

e d

k ij l ij k ij l

k l
kl ij

3/2 1 1/2

2

(78)

with Jij being a symmetric matrix with 1 in the ii and jj diagonal
elements and −1 in the ij and ji off-diagonal elements. When f

depends only on the absolute value of the interpseudoparticle
distance, this formula becomes

∫ϕ ϕ ϕ ϕ
π

ξ ξ ξ⟨ | | ⟩ = ⟨ | ⟩ ξ
∞

− −f r f A J( )
4

(tr[ ] ) e dk ij l k l kl ij0

1 1/2 2 2

(79)

The above integral is easily evaluated analytically for many
common forms of f(rij) (including 1/rij). In the worst case
scenario it can always be computed with quadrature formulas.

5.4. Analytic Gradient of the Energy

A very important aspect of the atomic (and molecular)
calculations with ECGs is that achieving high accuracy is
possible only when the nonlinear exponential parameters of
Gaussians are extensively optimized based on the minimization
of the energy. This process usually takes large amounts of
computer time. To accelerate the basis set optimization in the
ECG calculations, one can derive and implement the analytic
gradient of the energy with respect to the nonlinear parameters
of the Gaussian basis functions. The term “analytic” here means
that the components of the gradient are not evaluated using
finite differences of the energy (which is a very costly procedure
since the number of those components may reach many
thousands for large basis sets). Instead, they are evaluated
numerically using analytic expressions. The use of the analytic
gradient has enabled the performance of very accurate BO and
non-BO calculations of various atomic and molecular systems
with accuracy unmatched by previous calculations.
Below we outline the approach used in calculating the

gradient. We start with the differential of the secular equation
(eq 27):

ε ε ε ε− = − − + −d(H S)c (dH)c (d )Sc (dS)c (H S) dc
(80)

Multiplying this equation by †c from the left, we obtain:

ε ε= −†d c (dH dS)c (81)

To get eq 81, we utilize eq 27 and assume that the wave
function is normalized, i.e., =†c Sc 1. For generality we also
assume that the basis functions and their linear coefficients may
be complex. The relation in eq 81 constitutes the well-known
Hellmann−Feynman theorem.
Now let αt be a nonlinear parameter, which basis function φt

depends on. As the tth row and tth column of matrices H and S
depend on αt, the derivative of any arbitrary element belonging
to that row or that column of either of the two matrices can be
written as

α α
δ δ δ δ

∂
∂

=
∂
∂

+ − =k l K
H H

( ), , 1, ...,kl

t

kl

t
kt lt kt lt

(82)

and

α α
δ δ δ δ

∂
∂

=
∂
∂

+ − =k l K
S S

( ), , 1, ...,kl

t

kl

t
kt lt kt lt

(83)

Next, applying relations 81−83, the derivative of the total
energy, ε, with respect to parameter αt is
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By calculating all such derivatives for each αt, the complete
energy gradient is obtained. The total number of the gradient
components is equal to the product of the basis size and the
number of nonlinear parameters contained in each basis
function.
To make the calculations efficient, it is best to evaluate all

derivatives of ε with respect to the entire vech Lk vector (and
other nonlinear parameters if any) in a single step rather than
performing separate differentiations for individual parameters
(Lk)11, (Lk)21, ..., (Lk)nn because many of the operations in
calculating the derivatives are identical. With that, the
calculation of expression 84 requires knowledge of the
following derivatives of the H and S matrix elements:

∂
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∂
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∂
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,
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kl

k

kl

l

kl

k

kl

l (85)

The explicit expressions for these derivatives for different types
of ECGs were derived and presented in several pa-
pers.90,91,128,132,135−137,165−168

5.5. Evaluation of Matrix Elements for Molecular BO
Calculations

There are many similarities in the derivation of the integrals
used in BO calculations and the ones used in the non-BO
calculations. This is particularly the case in the derivation of the
overlap and the kinetic energy integrals. In the derivation of the
potential energy integrals, i.e., the electron repulsion and the
nuclear attraction integral, the following transformation and
identity can be employed.7

∫
π

μ μ= −
∞

r
r

1 2
exp[ ] d

ij
ij1/2 0

2 2

(86)
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(87)

Here the square of the interelectron distance can be
represented as a quadratic form:

= ′r r J rij ij
2

(88)

Following Kinghorn,165 the gradient of the molecular
integrals with respect to the nonlinear variational parameters
(i.e., the exponential parameters Ak and the Gaussian centers
sk) are also derived using the methods of MDC. The gradient of
ε now involves the derivatives of the overlap and Hamiltonian
matrix elements with respect to not only vech Lk, but also with
respect to the coordinates of shift vectors sk:
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(89)

Details concerning the derivation of the gradient matrix
elements and the corresponding algorithms can be found in
refs 7 and 91.

6. VARIATIONAL OPTIMIZATION OF THE GAUSSIAN
NONLINEAR PARAMETERS IN ATOMIC AND
MOLECULAR NON-BO CALCULATIONS

6.1. Solution of the Generalized Eigenvalue Problem

Using quick and stable algorithms for solving the generalized
symmetric/Hermitian eigenvalue problem (GSEP/GHEP)
given by eq 27 is very crucial for the overall efficiency of the
variational calculations with ECGs. This is particularly
important when the size of the ECG expansion of the wave
function is large (thousands of terms). It is worthwhile to note
that, in principle, one can vary the linear coefficients of the basis
function without resorting to the solution of the generalized
secular equation at all. It is possible to simply minimize the
Rayleigh quotient based on some nonlinear optimization
algorithm (with appropriate orthogonality constraints imposed
on the wave function in excited state calculations). In practice,
however, using numerical algorithms of linear algebra is much
more convenient and computationally efficient.
The most straightforward approach to solving for all or some

of the eigenvalues in eq 27 is based on the reduction of the
GSEP/GHEP to the standard (i.e., nongeneralized) eigenvalue
problem. Due to positive-definite nature of S, it can be
factorized in the Cholesky form, = ′S LL . Then, after applying
the inverse of L on the left and the inverse of ′L on the right,
one obtains the standard eigenvalue problem. This scheme is
implemented in many numerical linear algebra packages, such
as LAPACK. However, this general algorithm has several
drawbacks, one of which is a relatively low speed. For large
matrix dimensions, K, the solution of eq 27 becomes quite
expensive, and for smaller atoms and molecules, it may even
take more computer time than the evaluation of the S and H
matrix elements. This happens because the solution of the
GSEP/GHEP with dense matrices requires ∝K3 arithmetic
operations, while the evaluation of matrix elements requires
only ∝K2 operations. Although the proportionality constant is
much larger in the latter K2 term than in the K3 term, as K
increases the time required to solve eq 27 may start to exceed
the time needed for the evaluation of matrix elements. For this
reason it is very important to use an eigensolver which is
efficient for large dimensions of the basis.
It should also be noted that in the calculations that involve

optimization of nonlinear parameters, eq 27 usually needs to be
solved a very large number of times (thousands, if not
millions). In addition to that, high relative accuracy of the
eigenvalues/eigenvectors is desirable in the calculations.
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Perhaps the most important factor in choosing the most
suitable algorithm is its ability to obtain the solution by
performing a quick update of the previous solution in the case
when just one or a few basis functions have been changed, i.e.
when only one or few rows/columns of matrices S and H have
been modified. One such computationally cheap scheme is
given by Varga and Suzuki.169 In their works they perform the
Gram−Schmidt orthogonalization, which reduces the general-
ized eigenvalue problem with already diagonalized (K − 1) ×
(K − 1) submatrices (this diagonalization needs to be carried
out only once if the first K − 1 basis functions are kept
unchanged) to the conventional form. Another option is to use
the inverse iteration method.170 In the vast majority of cases
one is usually interested in determining only a single
eigenvalue/eigenvector and a good approximation, εappr, to
the eigenvalue in usually known. The idea of the method is
simple and consists in performing the following iterations:

ε− =+(H S)c Scj j
appr

( 1) ( )
(90)

The initial vector to start the iteration process, c(0), can be
chosen randomly if no better guess is available. Another option
is to take the solution obtained in the previous step of the
optimization procedure and update it for the changed matrices
S and H. Such an approach works particularly well if the
changes in matrices S and H are small and limited to only a few
rows/columns of these matrices. The iteration process (90)
converges as long as the desired eigenvalue is closer to εappr
than any other eigenvalue. The rate of convergence depends on
the ratio (εappr − εnc)/(εappr − εi), where εi is the desired
eigenvalue and εnc is the next closest (after εi) eigenvalue.
Typically, just a few iterations are needed to obtain the desired
eigenvalue and the corresponding eigenvector with sufficiently
high accuracy. In each iteration one has to perform a matrix−
vector multiplication and solve a system of linear equations
with a symmetric (Hermitian) matrix ε−H Sappr . In the case
when the calculated state is the ground state of the system and
εappr is chosen to be below the actual eigenvalue, one can use
the Cholesky method (note that the matrix factorization
requiring ∝K3 operations needs to be performed only once
regardless of the number of iterations). In the general case,
however, the matrix ε−H Sappr is not positive definite and
instead of the Cholesky factorization one should use another
type of factorization, such as LU, QR, or LDLT (LDLH is used
for complex matrices). The LDLT factorization is probably the
best choice as it takes advantage of the symmetry of the matrix
and requires the least amount of computational work.
The above-described algorithm of solving the generalized

eigenvalue problem is rather robust and accurate despite an
apparent problem with the matrix ( ε−H Sappr ), which may
become ill-conditioned when εappr lies close to the actual
eigenvalue. As discussed by Partlett,170 the error which may
occur when solving the system of linear equations with a nearly
singular matrix is concentrated in the direction of the
eigenvector and therefore does not lead to a failure of the
algorithm.
A very important feature of the algorithm with LDLT

(LDLH) factorization is the fact that, upon changing the last
row and column (or a few last rows and columns) of matrices S
and H, the updated solution can be obtained by performing
only ∝K2 operations. Even in the case when one must obtain
the solution of GSEP/GHEP from scratch, the inverse iteration

scheme given by eq 90 is several times faster than the usual
reduction of GSEP/GHEP to the standard eigenvalue problem.
Besides that, the inverse iteration scheme generally exhibits
better numerical stability.

6.2. Generating the Initial Guess for Nonlinear Parameters

The convergence of the wave function expansion in terms of
correlated Gaussians strongly depends on how one selects the
nonlinear parameters in the Gaussian exponentials, as well as
other parameters present in the basis functions (including
integer parameters, such as the values of powers in
preexponential polynomials and the indices referring to the
coordinates of particles involved in those polynomials). In
order to reach high accuracy in the calculations, it is necessary
to perform optimization of those parameters. The key
component here, as was discussed before, is the use of the
analytic gradient. Another possible method, which can also be
very capable, is based on the stochastic selection of the
nonlinear parameters. The idea and the potential of this
conceptually simple yet very powerful approach (often called
SVM, stochastic variational method) was first demonstrated by
Kukulin and Krasnopol’sky171 and then further developed by
Varga and Suzuki.5,169,172 Some calculations based on stochastic
generation of the nonlinear parameters were also performed by
Alexander et al.,173,174 and others. It should be noted that even
if one heavily relies on the direct optimization with the use of
the analytical gradient, it is still very important to be able to
generate a good initial guess, where the optimization can start
from. As the numerical experience shows, a totally random
guess may lead to a convergence to a very shallow local
minimum and/or result in very slow progress of the
optimization. Unfortunately, the hypersurface of the objective
function (which is the total energy in our case) becomes
extremely complicated when the number of basis functions
exceeds a few tens. For this reason, generating a good initial
guess of the nonlinear parameters for a basis consisting of
thousands of functions is a nontrivial task. Usually the following
strategy works quite well. The basis set is grown incrementally
and the initial values of the nonlinear parameters of new basis
functions are selected using an approach similar to SVM. That
is, the selection procedure is based on the distribution of the
nonlinear parameters in the basis functions already included the
basis set. In its simplest version, the generation of each
nonlinear parameter of new random candidates can be done
using a linear combination of normal distributions centered at
the values defined by the nonlinear parameters of those already
included basis functions. For example, if each basis function, ϕk,
contains m continuous nonlinear parameters α1

k,...,αm
k , and the

current basis size is K, then the ith nonlinear parameter of the
candidates for the next basis function, ϕK+1, is obtained from
the following distribution:
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In the above equation σi
k are some constants whose magnitude

is comparable to the magnitude of αi
k. Usually a large number of

basis function candidates (hundreds if not thousands) is
generated and then tested against the total energy lowering.
The candidate which lowers the energy the most is then
included in the basis as ϕK+1. After that (or after including
several more basis functions), the nonlinear parameters of the
new basis function(s) are further optimized using the gradient-
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based approach. This procedure is repeated until the size of the
basis reaches the desired value. At the end of the procedure one
gets relatively good initial values of the nonlinear parameters.
Using these initial values, it is then possible to use algorithms
for direct minimization of the energy functional to continue the
optimization of the nonlinear parameters of basis functions
until the desired level of convergence is achieved.

6.3. Dealing with Linear Dependencies of the Gaussians
during the Variational Energy Minimization

In some cases thorough optimization of the nonlinear
parameters may lead to linear dependencies between basis
functions. The reason for the appearance of linear depend-
encies varies from case to case. Often the linear dependencies
arise as a result of poor ability of the basis functions to
effectively describe certain features of the wave function of the
system under study. In any case, the linear dependencies
between basis functions may cause numerical instabilities in the
calculation, particularly when solving the secular equation. It
should be noted, however, that the presence of linearly
dependent functions as such does not automatically lead to
numerical instabilities in the computed eigenvalues. Some linear
dependencies, such as those randomly generated, might not
cause any harm at all, provided a proper algorithm for solving
the generalized eigenvalue problem is chosen. On the other
hand, the linear dependencies that arise during optimization of
the nonlinear variational parameters may cause problems in the
calculation. This happens, for example, when the linear
coefficients of two (or more) basis functions are large, close
in magnitude, but have opposite signs. Let us assume that basis
functions ϕi and ϕj are almost identical (i.e., almost linearly
dependent). Remembering that each eigenvalue of eq 27 can be
represented as a simple Rayleigh quotient, it is not difficult to
realize that a cancellation of leading digits will occur in the
course of subtraction ⟨ϕi|Ô|ϕi⟩ + ⟨ϕj|Ô|ϕj⟩ − ⟨ϕi|Ô|ϕj⟩ − ⟨ϕj|Ô|
ϕi⟩, where Ô is either the Hamiltonian or the identity (overlap)
operator. Therefore, the “contributions” to the final eigenvalue
due to the linearly dependent basis functions will be of reduced
accuracy and, depending on the overall importance of those
basis functions, the last several digits of the computed energy
eigenvalue may be inaccurate. In the case of severe linear
dependencies the associated numerical inaccuracy may not only
affect the quality of the optimization of the nonlinear
parameters (which is sensitive to the accuracy of the computed
eigenvalues), but may even lead to completely unreliable
results. Therefore, it is generally a good practice to avoid severe
linear dependencies in the variational calculations.
There are several ways to keep the linear dependency

problem under control. The most straightforward approach is
to remove linearly dependent functions from the basis set. This
may be of particular use when new basis functions are
generated during the process of growing the basis set. The
criterion of linear dependency can be adopted from the Gram−
Schmidt orthogonalization process. Our experience has shown
that by far most often linear dependencies occur as pair linear
dependencies; i.e., one basis function becomes very close to
another one. When this happens, the magnitude of their
normalized overlap, Sij, becomes very close to unity. In this
case, testing for linear dependency amounts to checking all
current overlap matrix elements. When a new basis function is
added to the basis, the test is reduced to checking a single row
of the overlap matrix, which takes very little computational
time.

Rejecting a new basis function whose overlap matrix
elements exceed a certain threshold can be easily implemented
and works very well when a stochastic selection of new basis
function candidates is performed. The situation becomes
somewhat more complicated when one needs to optimize the
nonlinear parameters of the existing basis functions. One
possible way to proceed here is to simply discard any changes
of the nonlinear parameters that result in the basis function
becoming too linearly dependent with another function in the
basis set. However, this strategy cannot be easily adopted in
actual calculations, as it is the optimization procedure/software
that picks the values of the nonlinear parameters in each given
optimization step. A better approach is to use a penalty
function, which adds a certain positive value to the minimized
function (the total energy) whenever the overlap of two or
more basis functions is larger than the assumed threshold. Since
one wants to keep the objective function smooth, it narrows the
choice of possible expressions for the penalty function. One
can, for example, use the following form of it:

∑= ij (92)

where the sum is over all monitored basis function pairs and
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In eq 93, t is the value of the overlap threshold and β controls
the magnitude (i.e., maximum) of the penalty for each pair
overlap. The choice of t and β is usually based on experience
and may differ depending on the system and the size of the
basis. The value t = 0.99 can be a reasonable choice in most
cases, while β should normally be taken as a small fraction of
the total energy of the system. Excessively large values of β tend
to cause failures in the optimization, because then the objective
function exhibits very sharp “jumps”, which are inconsistent
with the assumption of a smooth, differentiable function. On
the other hand, too tiny values of β may not result in efficient
elimination of pair linear dependencies.

7. VARIATIONAL OPTIMIZATION OF THE GAUSSIAN
NONLINEAR PARAMETERS IN ATOMIC AND
MOLECULAR BO CALCULATIONS

7.1. Optimization Approach Used in the BO Molecular
Variational Calculations

A practical BO PES calculation involves (at least) two steps:
building the basis set for the wave function expansion at the
equilibrium structure of the molecule and generating the PES
for different geometrical structures. Both steps usually require a
significant computational effort. The computational resources
needed for the calculation increase rapidly with the number of
electrons (n! dependency). In general, three factors determine
the amount of the computational time needed for the
calculation. The first factor is the number of exponential
parameters involved in each ECG has, which is [(n(n + 1))/2]
+ 3n, where n is the number of electrons. The second factor is
the number of ECGs needed to reach the adequate level of the
energy convergence.95 This number increases with the increase
of the number of electrons in the system. The time needed for
the calculation of the Hamiltonian and overlap matrices scales
as K2 with the number of ECGs, K. Also, the calculation time
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for each primitive matrix element (before symmetrization)
increases as n3 with the number of electrons. The third factor is
related to satisfying the Pauli principle and implementing the
correct permutational symmetry of the wave function. It
involves acting with an appropriate symmetry operator either
on the ket or bra basis function in calculating each Hamiltonian
or overlap matrix element. As the symmetry operator includes
n! terms, the computational time of each matrix element scales
as n!. This is the factor which makes the calculation time
increase most rapidly when a larger system is considered.
There are also other factors that influence the calculation

time. One of them is the efficiency of the optimization of the
ECG exponential parameters. This efficiency usually decreases
as the number of electrons and the number of ECGs increase,
because more parameters have to be optimized. Therefore, the
development of more effective optimization strategies has
become particularly important as the molecules considered in
the calculations become larger. One of the goals of making the
optimization more effective has been the reduction of the
number of ECGs by better optimizing them. Optimization
approaches are discussed in sections 7.1.1 and 7.1.2.
7.1.1. Building the Basis Set. In building a larger basis set,

new ECGs need to be guessed. At the beginning of the basis
building process, an initial small set of functions is usually
randomly chosen using Gaussian exponents taken from a
standard orbital basis set. After this initial set is optimized, the
calculation proceeds to grow the basis set larger. One way to
guess new Gaussians is to employ the free iterative-comple-
ment-interaction (FICI) preoptimization procedure.175 More
details of the procedure are described in section 7.2. We should
note that the procedure adjusts the positions of the Gaussian
centers more efficiently than the procedure based on the energy
minimization where such center adjustment has to often
overcome significant energy barriers. After the basis set is
enlarged in this manner to a certain target number of functions,
a variational, gradient-based reoptimization can be applied to
the whole basis set.
In the optimization of the whole basis set, either one can

choose to optimize all nonlinear parameters simultaneously, i.e.,
perform the full optimization, or one can choose to optimize
only a part of the nonlinear parameters at a time. We call the
latter approach “partial optimization”. Usually the energy
converges significantly faster (in terms of the basis size) in
the full optimization than in the one-function-at-a-time
optimization.
In Table 3 we show the energy convergence with the number

of ECGs in BO calculations of the LiH molecule performed at
the equilibrium internuclear distance with the optimization
procedure employing the analytical energy gradient and the full
optimization approach.95 The results are compared with the
results of Cencek and Rychlewski81 obtained in the
optimizations performed without the gradient and employing
the one-function-at-a-time optimization approach. The compar-
ison shows the advantage of using the gradient-based full
optimization in this case. At the same basis sizes the energies
obtained by Tung et al.95 are considerably lower than those of
Cencek and Rychlewski. However, to be fair, it needs to be
mentioned that the calculations of Cencek and Rychlewski were
done 10 years before Tung et al.’s and certainly the improved
computer hardware has also contributed to the increased
accuracy of the results obtained in ref 95. Full optimization
does have certain drawbacks. They are the frequent appearance
of linear dependencies between the optimized basis functions

and, possibly, large memory demands. These limit the
usefulness of the approach.
As linear dependencies frequently appear in the basis set

optimization, particularly at earlier stages of the basis set
building (when K is small), they need to be continuously
eliminated in the course of the procedure in order to maintain
the numerical stability of the calculation. The progress made by
the basis set enlargement could be significantly hampered or
even put on hold by this phenomenon. As for the memory
demands, they occur because of the use of the analytical energy
gradient in the optimization. The gradient comprised the
derivatives of the Hamiltonian (and overlap) matrix elements,
eq 89. The size of the Hamiltonian matrix derivative is equal to
the number of nonlinear parameters in a single function times
the square of the size of the Hamiltonian matrix, K2([(n(n +
1))/2] + 3n). When thousands of ECGs are generated in the
calculation, the size of the Hamiltonian matrix derivative may
exceed the amount of random access memory available. It
should be mentioned that in principle it is possible to organize
calculations without storing the entire matrix derivative.
However, this comes at a cost of additional complexity and
somewhat increased computational time.
Though the linear-dependency problem can be easily

handled by switching to the one-function-at-a-time partial
optimization approach (called “partial optimization”), the use
of the full optimization is more desirable in the calculations.
Besides the better energy convergence (as shown in Table 3),
there are two other reasons. First, to build a molecular PES, the
basis sets at different geometries of the molecule have to be
reoptimized to ensure a similar accuracy level at all PES points.
This can be accomplished in the full optimization by
monitoring the norm of the analytical gradient vector and
always converging the calculation to a value of the norm below
a certain assumed threshold. This is not possible in the partial
optimization, because a small value of the gradient norm for
individual ECGs does not guarantee that at the end of the
optimization the norm of the total gradient is also small.
Second, as the molecular geometry is deformed from the
equilibrium in the PES calculation, the nonlinear parameters
require less adjustment. In such a case, it only takes a few
iterations for the full optimization approach to converge.
The procedure for handling linear dependencies between

basis functions in the BO calculations performed by Pavanello
et al.176 comprise four steps. They are called to identif y, to
replace, to avoid, and to bypass. At different stages of the
calculation (i.e., different sizes of the basis set) different
procedures are usually used to achieve the best overall

Table 3. Comparison of the Convergence of the BO Energy
with the Number of Basis Functions, in hartrees, for the
Ground State of the LiH Molecule at R = 3.015 bohr

basis size Tung et al.95 Cencek and Rychlewski81

75 −8.068 104 2 −8.066 975
150 −8.069 654 1 −8.069 481
300 −8.070 336 2 −8.070 221
600 −8.070 494 9 −8.070 452
1200 −8.070 529 4 −8.070 512
2400 −8.070 547 3 −8.070 538
estd −8.070 548a

aThe estimated nonrelativistic BO energy at R = 3.015 bohr made by
Cencek and Rychlewski81 using the BO energy of atoms, adiabatic
corrections, and the experimental equilibrium dissociation energy.
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computational performance. The four steps involve the
following:
1. To identif y.176 At various stages of the calculation the

overlap for each pair of basis functions is checked. Two
functions, ϕk and ϕl, are considered linearly dependent if the
following criterion is met:

ϕ ϕ

ϕ ϕ ϕ ϕ

|⟨ | ⟩|

⟨ | ⟩⟨ | ⟩
≥ tk l

k k l l (94)

If the absolute value of the overlap is close to 1 and higher than
a certain assumed threshold, t (typically 0.99 is used for t), this
pair of functions is marked as linearly dependent and further
treatment is applied to resolve the problem.
2. To replace.94 It is sufficient to replace one of the functions

in the linearly dependent pair to remove the linear dependency.
Nonlinear parameters of the replacement function, ϕ, are
generated by maximizing the overlap between the function and
the linear combination of the functions, ϕk and ϕl, of the
linearly dependent pair taken with the linear coefficients with
which the pair enters the wave function,
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After the optimization, the linearly dependent pair is replaced
by a pair comprising the newly generated function and one of
the old functions of the pair. After the replacement, the
optimization of the basis set is restarted.
3. To avoid.7,95 The replace procedure was proven to be

effective in the PES calculations of two-electron systems, (i.e.,
H3

+). However, the efficiency drops for four-electron systems.
Furthermore, any basis function replacement requires restarting
the optimization. Also, it usually results in some increase of the
total energy. The additional time needed for the energy to
return to the value before the replacement considerably slows
down the optimization process. This causes the function
replacement to be computationally expensive and impractical
when the size of the basis set becomes large. Thus, for larger
basis sets, instead of replacing functions in linearly dependent
pairs, a method that prevents the formation of linear
dependencies altogether in the optimization process was
developed.7,95 It involves adding the penalty term given by eq
93 to the variational energy functional. When the value of the
overlap between a pair of basis functions reaches threshold t,
the penalty term for that pair, which was zero (below the
threshold), becomes positive and its value increases if the pair
becomes more linearly dependent. In the minimization of the
energy functional, which includes the penalty term eq 93 for
each pair of basis functions, the functions automatically stay
linearly independent.
4. To bypass.95 In the case when linear dependency occurs

too frequently, and none of the above procedures is able to
correct the problem, a decoupled approach (partial optimiza-
tion) is applied in the optimization. In this approach, the basis
set is partitioned into subsets and each subset is optimized
separately. This lowers the probability of the linear dependency
occurrence. In extreme cases, each function is optimized
separately. This actually may improve the scalability of parallel
calculations as each processor in this case can carry out the
optimization of a different function and the amount of
interprocessor communication is significantly reduced. Usually,
after enlarging the basis set to a certain size using the partial

optimization, the approach is switched back to the full
optimization to finish the calculation.
As shown by Tung et al.,95 the linear dependency problem

becomes much less severe or even vanishes entirely when the
basis set grows to a large size. At that point, the basis set is
extended enough to describe certain missing features of the
wave function and the appearance of linearly dependent
functions (which would otherwise describe those features) in
the course of optimization is no longer favorable. This
explanation is based on an observation that certain features of
the wave function can be represented either by pairs of almost
linearly dependent functions or, alternatively, by functions
which are not linearly dependent but whose centers are shifted
to the right places. It is unpredictable which representation is
“used” in the basis set optimization. If, however, the
representation with a linearly dependent pair of functions is
selected by the optimization procedure, it can be always
converted to the other representation. This is what the replace
procedure does.

7.1.2. Generating the BO PES. The question in the PES
calculation is how to effectively generate basis sets for different
PES points. It is clear that, instead of regenerating a new basis
set for each PES point from the beginning, a more effective way
would be to generate the basis from the basis set of a nearby
PES point, where the optimization of the basis function
parameters was already performed, and then reoptimize it for
the next point. The high quality of the basis set at each PES
point is crucial for an effective and accurate PES calculation. In
generating the basis set for a PES point from the basis of a
nearby point, it is assumed that the two points are close enough
that the exponential parameters, Lk, for the two points are very
similar. The only parameters that need some adjustment are the
Gaussian shifts, sk. Two methods have been developed to
handle this problem: the spring model94 and the Gaussian
product theorem model.95 Both methods adjust the Gaussian
centers when the PES calculation moves from one PES point to
another.
In the spring model each Gaussian center is assumed to be

attached to every nuclei of the molecule with springlike
connections. If the position of nucleus α changes from Rα to Rα

+ ΔRα, the Gaussian center, sk
i , where i is the index of the

Gaussian, follow the nuclear movement and changes to sk
i +

Δski , where
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and Riα are the distances from a Gaussian center sk
i to the

nuclei.
The other method for adjusting the Gaussian centers is a

reformulation of the procedure by Cencek and Kutzelnigg.159

In brief, the procedure involves transforming each ECG to a
product of ECGs with centers coinciding with the positions of
the nuclei, ϕk = ∏i=1

N φi. A more detailed description of this
method can be found in section 12, where it is used for the
calculation of adiabatic corrections to the BO energy. By
shifting these centers along with shifting the nuclei in the point-
by-point PES calculation and then retransforming the ECG
from the product form back to its original form, the new basis

Chemical Reviews Review

dx.doi.org/10.1021/cr200419d | Chem. Rev. 2013, 113, 36−7958



set is obtained. These approaches work best if the PES points
are close to each other.
Though only the Gaussian centers are adjusted from one

PES point to a neighboring point, in the calculations performed
by Pavanello et al.94 and Tung et al.,95 the exponential
parameters, Lk, are tuned during reoptimization of the basis. It
is worth noting that there are as many as [(n(n + 1))/2] + 3n
nonlinear parameters, where n is the number of electrons, in
each Gaussian and K([(n(n + 1))/2] + 3n) is the number of
parameters in the basis set of K basis functions. Only the use of
the analytical gradient allows for an efficient optimization with
such a large number of variables.
Though the linear dependency is not a concern at this stage,

in the variational energy minimization one can either optimize
all the above-mentioned parameters simultaneously or optimize
them separately to achieve a better computational performance.
Also decoupling the optimization of the Gaussian centers from
the optimization of the Lk exponential parameters can be a
helpful approach. The advantage of decoupling is based on the
fact that the formulas for the first derivatives of the total energy
with respect to the Gaussian centers are much simpler than the
formulas for the derivatives with respect to the Lk exponential
parameters. In the decoupling approach, one usually performs
the optimization of the Gaussian centers first (total of K(3n)
parameters). This is followed by the optimization of Lk.

7.2. FICI Method and the Multistep Procedure Used in
Growing the Basis Set

Reaching spectroscopic accuracy with BO energy calculations
of molecules containing more than two electrons with floating
ECGs is a challenge.92 An important issue in the variational
optimization of floating ECGs is how to grow the basis set to
achieve a faster convergence of the calculation. In this section
some ideas concerning this topic are discussed. In particular we
describe how to tackle this problem with an approach based on
the free FICI method developed by Nakatsuji and co-
workers.177−179 The method described here has been applied
in calculations of three- and four-electron molecules.95,175,180

For two-electron molecules, such as H3
+, optimization of the

basis set based solely on the principle of minimum energy leads
to excellent results.94,176

The exact BO wave function, Ψ, satisfies the Schrödinger
equation involving the CN or the electronic Hamiltonian
defined in eq 10:

̂ − |Ψ⟩ =H E( ) 0el el (97)

A trial wave function, Φ, is not exact and does not satisfy eq 97.
Instead, it gives

̂ − |Φ⟩ ≠ΦH E( ) 0 (98)

where, for the sake of clarity, we dropped the subscript “el” and
introduced the subscript Φ to denote EΦ = ⟨Φ|H|Φ⟩/⟨Φ|Φ⟩. It
is easy to notice that the result of (Ĥ − EΦ) acting on Φ is a
function orthogonal to Φ:

⟨Φ| ̂ − |Φ⟩ =ΦH E( ) 0 (99)

Let us call function χ = (Ĥ − EΦ)Φ the Nakatsuji function
associated with Φ. If such an orthogonal function is added to
the wave function expansion, the energy would be lowered.
This is because χ has a nonzero off-diagonal matrix element
with the Hamiltonian and Φ, namely

χ⟨Φ| | ⟩ = ⟨Φ| ̂ − |Φ⟩

= ⟨Φ| |Φ⟩ − ≠

Φ

Φ

H H H E
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Thus, the Ĥ − EΦ operator may be used to generate a
correction to the approximate wave function to bring it closer
to the exact wave function Ψ. Following this idea, Nakatsuji177
used the following series to construct Ψ:

∑Ψ = ̂ − Φa H E( )
k

k k
k

(101)

where Ek is the energy associated with the kth truncation of eq
101 and ak are determined variationally. Provided that Φ
satisfies certain conditions,177 eq 97 should monotonically
converge to the exact wave function as k increases. Even though
it is not yet clear whether the FICI method should lead to an
improvement of the convergence of the variational calculation,
it provides a systematic way of improving the variational energy.
In several applications of the FICI model to atomic and
molecular systems, Nakatsuji and co-workers177 showed how
expansions eq 101 obtained with just few iterations (usually k ≤
6) produce nonrelativistic BO energies with a sub-cm−1

absolute accuracy.
Utilizing the orthogonality of the Nakatsuji function

generated in eq 98 and the property in eq 100, Pavanello et
al.175 devised an approach where the floating ECG basis set in
the variational molecular calculation is enlarged by guessing
new Gaussians to best resemble the Nakatsuji function. In the
approach the following procedure based on the first-order term
in eq 101 was used. Let us assume that an approximate wave
function expanded in terms of K0 floating ECGs, ΦK0

, has
already been fully optimized. The procedure for growing the
basis set to K0 + K1 functions comprises the following five
steps:
1. A set of K1 new floating ECGs is constructed. The Ai

matrices of these functions are generated randomly and the
Gaussian centers, si, are placed at the nuclei. With the addition
of the new functions, the basis set now has K0 + K1 functions.
2. The linear expansion parameters of the wave function are

found by a simultaneous diagonalization of the Hamiltonian
and the overlap matrices.
3. Only the nonlinear parameters of the newly added floating

ECGs are optimized (recall that this step was termed partial
optimization before) using a functional that makes the newly
guessed functions to best approximate the Nakatsuji function
for ΦK0

.
4. The whole K0 + K1 basis set is fully optimized, i.e., the

nonlinear parameters of all K0 + K1 basis functions are subject
to variational optimization (recall that this step was termed full
optimization before). In every optimization cycle the linear
parameters are updated.
5. The incremental enlargement routine relabels the K0 + K1

set as the new K0 set, and the procedure returns to step 1.
The functional for the partial optimization of step 3 is

designed to best approximate the k = 1 term in eq 101 by K1
floating ECGs. It involves maximizing of the following
functional:
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The partial optimization in step 3 will be called the FICI
refinement hereafter. In eq 102 the superscript 1 labels ECG
functions, gi

1, belonging to the K1 set. It is straightforward to
notice that the maximization of the F[K1] functional yields an
approximation to the Nakatsuji function (Ĥ − EK0

)ΦK0
. After

the maximization of F[K1], the newly refined K1 set of floating
ECGs is added to the K0 set and a partial variational
optimization of the K1 set is performed. Then steps 4 and 5
follow. The cycle of the five steps is repeated until satisfactory
convergence of the energy is reached.
7.2.1. Implementation. In the actual implementation,175

the maximization of the F[K1] functional is replaced by the
minimization of the following functional:

=
+

G K
F K

[ ]
1

1 [ ]1
1

2
(103)

Having F2 rather than F in the functional simplifies the
calculation, because the functional becomes independent of the
phase of the wave function. Using 1 + F2 instead of F2 prevents
the G functional from reaching a singularity at F ≃ 0, which can
happen if the initial choice of the K1 set is poor. In ref 175 the
minimization of G[K1] was carried out using the truncated
Newton optimization routine (TN) of Nash et al.181 To speed
up the convergence, it is also possible to supply the TN routine
with the analytical gradient of G[K1] determined with respect
to the nonlinear parameters of the functions in the K1 set:
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where ∂K1 represents the partial derivative with respect to the
nonlinear parameters of the floating ECGs belonging to the K1
set.
7.2.2. Improved Function Mobility and Barrier

Tunneling. As pointed out in section 3.5, an important aspect
of the floating ECG basis set is its flexibility in describing
different features of the wave function including its ionic and
covalent components. Usually the ratio of the number of ionic
basis function with respect to the covalent functions is
maintained at a certain level which varies depending on the
specific molecular system.94 If a certain ionic/covalent ratio is
set for a basis set optimized using the variational method, it
remains essentially unchanged during the calculation. This is
because changing it and making some ionic floating ECGs
become covalent or vice versa needs migration of centers of the
floating ECGs between atomic centers, which requires
overcoming energy barriers. This is unlikely to happen in the
variational energy optimization.
An analysis of how the FICI refinement deals with adjusting

the ionic/covalent ratio was carried out in ref 175. The
numerical evidence presented there showed that FICI allows
for a much improved function mobility in terms of a more
pronounced variation of the positions of the Gaussian centers
within each optimization cycle.

8. CALCULATION OF THE LEADING RELATIVISTIC
AND QED CORRECTIONS

Recent theoretical studies of the helium atom that include the
works performed by Morton et al.,23 Korobov,182,183 and
Pachucki26,29,184 have demonstrated that, by systematically
including the finite mass corrections, as well as the relativistic
and QED corrections, to the nonrelativistic energies of the
ground and excited states of this system, one can achieve an

accuracy of the predicted ionization and transition energies that
in some cases exceed the accuracy of the present-day
experiment. The recently published summary of the available
theoretical and experimental results for the bound stationary
states of He by Morton et al.23 demonstrates very well the high
level agreement between theory and experiment achieved in the
calculations. It also shows that for a few states such as 21P1 and
23PJ there is still some noticeable disagreement between the
theoretical and the experimental values.
High-accuracy calculations on the H2 molecule

118,185−187 also
revealed that to achieve a high level of agreement between the
experiment and the theory for electronic and vibrational
transition energies the dominant α2-dependent terms (where α
= 1/c is the fine structure constant), relativistic corrections, and
some higher order corrections have to be included in the
calculations. The effective operators for higher order
corrections are derived within the framework of nonrelativistic
quantum electrodynamics (NRQED). For example, all terms
up to α3 were included in the calculations for the He atom by
Morton et al.23 Also QED terms of the order of α4 were
included for some lower states in the calculations performed by
Korobov and Yelkhovsky,182,188 by Pachucki,29 and by Drake
and Martin.189 Moreover, there have been works where the
terms of the order of α6 for the He atom were calculated.26,184

These make the He atom the most accurately described atomic
system apart from the hydrogen atom. In addition to the
relativistic and QED corrections, some He calculations also
included corrections for finite values of the 3He and 4He
nuclear charge radii of 1.9659 and 1.167 fm, respectively, which
were derived from the isotope shift measured by Shiner et al.
and from the measurements of the Lamb shift of the muonic
hydrogen.190,191

Another system for which the theoretical calculations have
been often used to make a comparison with highly accurate
spectroscopic measurements is the lithium atom.192,193 The
most accurate calculations of this three-electron problem have
been performed using Hylleraas-type functions that are capable
of accurately describing the asymptotic behavior of the wave
function at both the electron and nuclear cusps and at infinity.
There have been several works devoted to very accurate Li
calculations.28,31,109,194−197 They have included the relativistic
corrections of the order of α2, as well as the QED corrections of
the order of α3 and estimates of the α4 corrections.27,198−200

QED which describes the behavior of quantum particles in an
electromagnetic field creates a general theoretical framework
for the analysis of the relativistic and QED effects in bound
states of atoms and molecules. However, even for small atomic
and molecular systems with a few electrons, accurate relativistic
calculations are very hard and too expensive to be carried out
on present-day computers. Furthermore, the QED Dirac−
Coulomb (DC) equation is only fully correct for a single
electron in the Coulombic field and approximations are
introduced when systems with more than one electron are
considered. Also, an additional problem appears due to the lack
of a lower bound for the negative energy spectrum in the DC
equation. Faced with those difficulties, an effort has been made
to develop an effective approach to account for the relativistic
effects in light atomic and molecular systems in the framework
of the perturbation theory. The zero-order level in such an
approach is the nonrelativistic Schrödinger equation. The
perturbation Hamiltonian representing the relativistic effects is
then obtained based on the NRQED theory.201,202 We should
mention that the perturbation approach to account for the
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relativistic corrections can also be developed without using
NRQED, as shown by Bethe and Salpeter.203 The relativistic
corrections can now be routinely computed by some quantum
chemistry packages.
In the NRQED theory the relativistic corrections appear as

quantities proportional to powers of the fine structure constant
α ≈ 1/137 (in atomic units α = 1/c, where c is the speed of
light in a vacuum):

α α α α= + + + +E E E E E( ) ...NR
2

REL
3

QED
4

HQED

(105)

This enables inclusion of increasingly higher order effects in a
systematic way in the calculations. The leading terms of the
expansion in eq 105, i.e., the nonrelativistic energy ENR, the
relativistic correction α2EREL, and the highest-order radiative
correction α3EQED, have been well-known since early works of
Bethe and Salpeter.203 The relativistic and QED corrections are
determined using the perturbation theory with the non-
relativistic wave function as the zero-order function. In addition
to the NRQED corrections, one can also calculate corrections
due to the structure of the nucleus and its polarizability. With
those corrections NRQED is at present the most accurate
theoretical framework for calculating bound state energies of
light atoms and molecules.
In most of the very accurate atomic and molecular

calculations the relativistic corrections are calculated as
expectation values of the appropriate NRQED operators with
the nonrelativistic wave function of the state of interest. If the
BO (i.e., infinite-nuclear-mass) wave function is used, one can
also include in the calculations the so-called recoil effects, which
are finite-nuclear-mass corrections to the relativistic energy.
In the calculations performed by Stanke et al.8−10,12−14,147,204

a somewhat different approach has been used. They started
with the relativistic mass-velocity, Darwin, spin−spin, spin−
orbit, and orbit−orbit operators for all particles involved in the
system expressed in terms of laboratory coordinates and
transformed them to an internal coordinate system. Then they
determined the corrections as expectation values of those
operators with the wave function obtained in a non-BO
calculation that treats the nuclei (or nucleus for an atom) and
the electrons on equal footing. In this way the recoil corrections
were automatically included in the relativistic energy. Such a
procedure allows, for example, direct calculation of how an
isotopic substitution in the system affects the relativistic energy.
The energy calculated this way includes the relativistic
contributions due to the motion of the nuclei, as well as
small relativistic contributions originating from the coupling of
the electronic and nuclear motions. The transformation of the
relativistic operators to an internal coordinate system is
discussed in section 8.4.

8.1. The Relativistic Hamiltonian

A complete account of the interactions between elementary
particles that include the electrostatic and magnetic forces
described by the Lorentz-invariant interaction potential can be
obtained from QED.205,206 Within this model particles interact
by emitting and absorbing virtual photons. Relativistic
corrections have a simple form only for the hydrogen atom.
For atoms and molecules with more electrons the relativistic
problem is much more complicated. To account for the
relativistic effects, a relativistic multiparticle Hamiltonian needs
to be constructed. Such a Hamiltonian can be written for two
interacting fermions described by a wave function consisting of

16 spinor components. However, for a more general case of N
interacting fermions and/or bosons, the construction of the
relativistic Hamiltonian cannot be done without making
significant approximations. This can be best accomplished
with the QED theory where a system of interacting particles in
the relativistic limit is described by a sum of single-particle
relativistic Hamiltonians (Hrel(i)) and two-particle interaction
operators accounting for the Coulombic interactions (Vij =
∑i>j 1/rij) and the relativistic interactions (Bij):

∑ ∑ ∑= + −
> >

H H i
r

B( )
1

i i j ij i j
ijrel

(106)

The Bij term originates from the application of the QED theory
to two interacting particles and is derived by taking into
account single-photon scattering amplitude in the calculation.
As in the non-BO approach one considers all particles on

equal footing, one is forced to make a distinction between the
fermions and bosons in the relativistic Hamiltonian. This
distinction appears at the level of formulating the theory and at
the level of the calculations. The case of the two interacting
particles being fermions (f−f) is well described in the literature.
Less discussed are cases where a fermion interacts with a boson
(f−b) or a boson interacts with another boson. The distinction
at the relativistic level between the fermions and the bosons
seems, perhaps, somewhat artificial and arbitrary, as the
difference in the relativistic treatment of the two types of
particles is small. However, a rigorous, very accurate relativistic
treatment of their interactions requires such a distinction. We
will now discuss the α2 relativistic contributions in two cases.
The first case concerns a system where all particles are fermions
and have spins equal to 1/2 (for example, the 3He atom). In the
second case the system consists of fermions (electrons and
some of the nuclei) and bosons (the other nuclei).
States of a single fermion with spin s = 1/2 (an electron) and

a single boson with spin s = 0 (for example, an α-particle) are
described by the one-particle relativistic Dirac (D) and Klein−
Gordon (KG) equations, respectively. The construction of a
general N-particle quantum relativistic equation is, however,
not as simple as in the case of the nonrelativistic Schrödinger
equation. In the Schrödinger equation, it is sufficient to include
the Coulomb operators to account for the interactions between
the particles. In the relativistic case, apart from the Coulombic
forces, there are interparticle interactions that are related to the
magnetic properties of the particles. Those properties result
from the orbital and spin motions of the particles. Furthermore,
since all the interactions between particles are affected by the
finite velocities of their motions, the so-called retardation
effects appear.

8.2. A System of N Fermions

A system that consists of N fermions in the absence of an
external field can be described using the Dirac−Breit (DB)
Hamiltonian (Hf−f) extended to an N-fermion case. We
consider only the Pauli approximation of this Hamiltonian.
Using the generalized form of the DB Hamiltonian and
expanding each term in powers of α, one gets Hrel

f−f (the Breit−
Pauli (BP) operator) as a sum of the following terms of the
order of α2:
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and

= + + + +− − − − − −H H H H H Hrel
f f

MV
f f
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where HMV
f−f is the mass−velocity Hamiltonian, HD

f−f is the
Darwin Hamiltonian, HOO

f−f is the orbit−orbit interaction
Hamiltonian, HSO

f−f is the spin−orbit Hamiltonian, and HSS
f−f is

the spin−spin interaction Hamiltonian.
8.3. A Fermion−Boson System

As derived by Datta and Misra,207 the fermion−boson
Hamiltonian in the nonrelativistic limit (Hrel

f−b) has to include
the interaction between the boson and the fermions. For a
single electron and a boson these additional terms are the same
as the nonrelativistic-limit Hamiltonian for two fermions with
one small exception. The difference between the two
Hamiltonians is the absence of the term in the Darwin
operator describing the interaction of the boson with the field
generated by the fermions. Let us explain this difference using a
two-particle system. The Darwin operator in the BP equation
for two fermions, 1 (M1,Q1) and 2 (M2,Q2), has the form
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describes the interaction of fermion 1 with the field generated
by fermion 2, and the second term
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is due to the interaction of fermion 2 with the field generated
by fermion 1. In the case of a fermion−boson pair (1 being the
fermion and 2 being the boson), the term describing the
interaction of the boson with the field generated by the
fermion, the term

∇
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is absent in the order of α2. However, it will appear in higher
orders in α.208

8.4. Transformation of the Relativistic Operators to the
Internal Coordinate System

The transformation of the nonrelativistic Hamiltonian to the
internal coordinate system and the elimination of the COM
motion was described in section 2.1. A similar transformation
needs to be applied to the relativistic Hamiltonian. While a full
separation of the laboratory Hamiltonian into the Hamiltonian
describing the kinetic energy of the COM motion and the
internal Hamiltonian can be exactly performed, the separation
of the relativistic Hamiltonian into the internal and external
parts is not exact. In general, the BP Hamiltonian in the new
coordinate system can be written as a sum of three terms, Hrel =
Hrel

CM + Hrel
int + Hrel

CM−int, where Hrel
CM is the term describing the

relativistic effects of the motion of the center of mass, Hrel
int

describes the internal relativistic effects, and Hrel
CM−int describes

the relativistic coupling of the internal and external motions.
The contributions to the energy of the system due to Hrel

CM and
Hrel

CM−int vanish if the center of mass of the system is at rest. The
relativistic corrections to the internal states of the system are
calculated using Hrel

int. For states with the S symmetry, the
transformation of the coordinate system leads to the relativistic
operator in the following form:
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where, for consistency of the notation, we used mi = Mi+1.
8.5. QED Effects in Atomic Calculations

In this review we focus on the calculations of QED effects in
atoms with more than three electrons, because very accurate
energies of such systems can only be obtained with the use of
ECGs. An effective way for calculating atomic QED corrections
proportional to α3 and α4 was described in the work of
Pachucki et al.198 Let us consider a four-electron atom. The
leading QED correction that accounts for the two-photon
exchange, the vacuum polarization, and the electron self-energy
effects can be expressed as198
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The above expression does not include the recoil contributions,
which are usually much smaller than the leading contributions.
The last term in eq 112 is the so-called Araki−Sucher
distribution.196,209−211 This contribution is determined as the
following limit:
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where Θ is the step function and γ is the Euler constant. To
overcome the usually slow convergence of the highly singular
P(1/rij

3), one can use the so-called expectation value identity
approach implemented by Pachucki et al.212

The term involving the so-called Bethe logarithm, ln(k0), in
eq 112 is more difficult to calculate for an atom with more than
one electron. The Bethe logarithm can be expressed as
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where for a four-electron atom
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High precision calculations of ln(k0) have been done for some
one- and two-electron atoms by Drake213 and Korobov and
Korobov,214 as well as for the three-electron lithium atom by
Yan and Drake197 and Pachucki et al.198 More recently, values
for the Bethe logarithm were also reported for the ground state
of Be+ and Li− and the ground and the first excited states of the
neutral Be atom by Pachucki et al.27,199 The procedure used to
evaluate the Bethe logarithm in those works was based on the
integral representation of ln(k0) proposed by Schwartz215 and
refined by Pachucki et al.199

The α4 QED correction is smaller than the leading α3

correction and can be determined approximately. The
dominant component of the α4 correction usually accounting
for about 80% of its value can be calculated using the following
formula:199
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The remaining α4 QED contributions are more difficult to
calculate because they involve some singular terms.29,182

9. RESULTS FOR ATOMS
The spectra of small atoms are measured with very high
accuracy. Thus they provide an excellent testing ground for
very accurate quantum mechanical methods. Below we will
provide a few examples of recent calculations on atomic
systems with three, four, five, and six electrons. In this we will
particularly emphasize the comparison of the calculated
quantities with the experimental values. The goal of the
comparison will be also to show how involved the calculations
have to be and what effects they need to include to match or
even approach the accuracy of the state-of-the-art experiment.
We will also comment on the role the calculations can play in
refining the spectral energies of small atomic systems.

9.1. Very Accurate Calculations for Three- and
Four-Electron Atoms and Atomic Ions

We will show here three examples of recent atomic calculations.
They concern the lowest five 1S states of the Be atom,14 the
lowest two 1S states of the C2+ ion,16 and the lowest five 2D
states of the Li atom.138,139 We chose these three examples
because they very well represent the interplay between the
experiment and theory in studying the atomic spectra.
The calculations of the five lowest 1S states of beryllium were

performed for the 9Be isotope.14 The basis set of 10 000 ECGs
was generated independently for each state in a process
involving starting with a small randomly chosen set of functions
and gradually adding more functions to the set and optimizing
them with the variational method employing the analytical
energy gradient determined with respect to the nonlinear
parameters of the Gaussians. In all other examples presented in
this section the basis set was grown in this way. After the final
basis sets were generated, the energies of the states were
recalculated for an infinite nuclear mass. The difference
between the finite- and infinite-nuclear-mass energies for each
state gives the mass correction.
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Next, the finite-nuclear-mass wave functions were used
calculate the leading relativistic correction employing the first-
order perturbation theory approach. We also calculated the α3

and α4 QED corrections. With the corrections were added to
the nonrelativistic energies the transition energies between the
adjacent states; i.e., the 21S → 31S, 31S → 41S, 41S → 51S, and
51S→ 61S transitions, were calculated. The results are shown in
Table 4. For each value the numerical uncertainty is shown.
They were determined based on the level of the convergence of
the particular value with the number of basis functions and on
other factors contributing to the numerical noise in the
calculations.
In Table 4 we also show the experimental transition energies

taken from the review paper of Kramida and Martin,216 but
originally measured by Johansson.217 The accuracy of the
experimental results can be estimated based on Johansson’s
statement, which can be found in his paper, that the error in his
transition energy measurement should be less than ±0.05 cm−1.
As each experimental transition included in Table 4 was
determined indirectly from two mP → nS transitions, it is
reasonable to assume the experimental uncertainty is about 0.10
cm−1 (or less).
As one can see in Table 4, the energies for the 21S→ 31S, 31S

→ 41S, 41S → 51S, and 51S → 61S transitions calculated using
the FNM nonrelativistic energies augmented with the
relativistic and QED corrections differ from the experimental
results by 0.12, 0.01, 0.05, and 0.06 cm−1, respectively. This
shows that the accuracy level of the present calculations is very
high. This is the first time higher excited states of a four-
electron atom have been calculated with such an accuracy. Also,
it is clear that including the correction for the finite nuclear
mass, and the relativistic and QED corrections, is necessary to
achieve this level of agreement between the theory and the
experiment.
The next example concerns the lowest two states of the C2+

ion. In an ion with a larger positive charge, such as C2+, the
relativistic and QED corrections are significantly larger than in
neutral atoms with the same number of electrons. For this
reason these corrections have a larger effect on of the transition
energies. Carbon is also an interesting system because it has
three stable isotopes, 12C, 13C, and 14C, and thus the nuclear
mass effects on its transition frequencies can be studied. In
presenting the results for C2+, we start with showing in Table 5
the convergence of the transition 21S0 → 31S0 energy as a
function of the number of basis functions for 12C2+, 13C2+, and
14C2+, as well as ∞C2+. As one can see, to achieve the
convergence of about 0.01−0.02 cm−1 of the transition energy,
a 10 000 function basis set was needed. This is a typical
convergence pattern for a transition energy of a small atom.
In Table 6 we show the convergence of the 21S0 → 31S0

transition energy of the three isotopes of C2+ as increasingly

higher level of theory is employed in the calculations. As one
can see, the inclusion of the finite mass correction changes the
transition energy by about 20 cm−1, adding the relativistic
correction has a much larger effect of about 300 cm−1, and the
QED correction adds about 20 cm−1. When all of the above
corrections are accounted for, the calculated transition energy
for 12C2+ becomes 182 519.031(1000) cm−1, which is only less
than a wavenumber off the experimental value of 182 519.88
cm−1.218

The third example concerns the most recent calculations
performed on the five lowest 2D Rydberg states of the lithium
atom.138,139 The results presented in Table 7 concern the
energies of the transitions between adjacent states of 7Li. The
calculated values are compared with the experimental results.218

Results obtained for 6Li, which has not yet been measured, as
well as the ∞Li results, are also shown. For 7Li, the results
obtained with different numbers of ECGs are also presented in
Table 7 to show the energy convergence pattern and
demonstrate that the transition energies obtained with 4000
basis functions are very well converged.
As the relativistic and QED effects can be expected to be very

similar for all five 2D states, the energy differences agree very
well with the experiment. The 1s24d → 1s25d and 1s25d →
1s26d transitions only differ from the experiment by 0.01 cm−1.
However, for 1s26d → 1s27d there is a more noticeable
difference mainly caused by a less accurate experimental energy
value for the 1s27d state. The results of the calculations allow
for a refinement of this energy. This can be done by taking the
experimental energy of the 1s26d state of 40 437.31 cm−1 and
adding to it the very well converged 1s26d−1s27d energy
difference of 809.33 cm−1. Due to a negligible contribution of
the relativistic and QED effects, the energy value of 41 246.64
cm−1 obtained this way should be quite accurate. This value is
slightly different from the experimental value of 41 246.5
cm−1.218 The same procedure can be applied to determine the
energies of the 2D states of 6Li, once the energy of the 1s23d
level becomes available from the experiment.
Finally, we should note that performing separate variational

calculations for the different isotopes of the same element is not
the way these types of calculations are usually performed.
Usually, for atoms heavier than hydrogen one first computes
the wave function with an infinite nuclear mass and
subsequently includes the finite-mass effects by adding the
first-order perturbation correction for the mass-polarization
operator. There are two reasons for using the finite-mass
approach in atomic calculations. First, as mentioned earlier, the
basis functions need to be optimized for just one isotope
(usually the main one) and in the calculations of other isotopes
only the linear expansion coefficients in the wave function are
allowed to adjust. The effort involved in such an adjustment
(done by solving the secular equation) is similar to the effort

Table 4. Transition Energies between Adjacent 1S States of the Be Atom Computed Using Finite- and Infinite-Nuclear-Mass
Nonrelativistic Energies and Then Corrected by Accounting for the Leading Relativistic and QED Effectsa

transition 21S → 31S 31S → 41S 41S → 51S 51S → 61S

ΔEnonrel (INM) 54 674.677(2) 10 568.242(3) 4077.009(6) 1998.997(30)
ΔEnonrel (FNM) 54 671.219(2) 10 567.627(3) 4076.765(6) 1998.876(30)
ΔErel 54 677.907(20) 10 568.090(30) 4076.915(40) 1998.994(70)
ΔEQED 54 677.401(24) 10 568.059(36) 4076.918(50) 1999.016(85)
ΔEHQED 54 677.378(30) 10 568.057(38) 4076.918(50) 1999.015(85)
experiment216,217 54 677.26(10) 10 568.07(10) 4076.87(10) 1998.95(10)

aThe results are taken from ref 14. All values are in cm−1.
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involved in calculating the first-order perturbation correction
accounting for the change of the nuclear mass. However,
performing the calculations variationally automatically allows
for accounting for higher-order mass effects. Second, the mass-
dependent wave function generated in FNM calculation can
subsequently be used to calculate relativistic corrections, as well
as other expectation values. Thus, these quantities automatically
include the mass dependency (for example, the recoil effects in
the case of the relativistic corrections), which in the
conventional calculation can only be accounted for by a
laborious perturbation procedure.
Finally, having compared the results for some 2D states of

lithium with the experiment, we should comment on the
accuracy one expects to achieve in variational calculations with
explicitly correlated Gaussians in comparison to the best
calculations performed with Hylleraas functions. Such a
comparison can be made, for example, for the lowest 2S and
2P states of Li because high-accuracy results obtained with the
Gaussians and Hylleraas functions exist for these states. The
comparison is shown in Table 8. As one can see, the Hylleraas
results are noticeably more accurate due to larger number of
basis functions used. However, the data in Table 8 also
demonstrate that when the nonlinear parameters of the
Gaussians are thoroughly optimized one can achieve very
high accuracy that is good enough for most applications that
require high precision. In fact, the convergence in terms of the
number of basis functions can be even better in the case of
Gaussians than in the case of the Hylleraas functions if
sufficient effort is invested in the optimization of the nonlinear
parameters of the Gaussians.

9.2. Calculations for Atomic Systems with Five Electrons

Precise calculations on five and more electron systems are of
particular importance as no calculations of spectroscopic
accuracy for such systems exist at the present time. Due to
increased complexity and much larger computational demands,
most methods exhibit a huge deterioration of the accuracy for
such relatively large systems. At the same time, these larger
systems are of great significance since they serve as an
important test for developing and tuning less accurate
quantum-chemical approaches.
As an example of the high level of accuracy achievable for a

five-electron atomic system with ECGs, we can consider the
results obtained for the ground and low-lying P and S states of
the boron atom.130 This example aims to demonstrate that, if
sufficient computational resources are used in the calculations,
ECGs are capable of producing results for the ground state and
some lower lying excited states which almost match the
accuracy achieved before for four-electron systems.
In Table 9 we present the results of the ECG calculations for

the two lowest L = 0 states and two lowest L = 1 states of the
boron atom.130 The convergence of the total nonrelativistic
energies of all four states is shown. A quick look at the
convergence patterns suggests that the uncertainty of the total
nonrelativistic energies does not exceed 2−3 μhartrees. In
Table 10 the ground state energy obtained with ECGs is
compared with some of the best literature data. As can be seen,
the ECG variational upper bound of −24.653 866 08 hartree for
the ground state energy lies noticeably lower than the best
recent upper bound of −24.653 837 33 hartree obtained in a
state-of-the-art CI calculation220 with the following very
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24s23p22d21f20g19h18i17k16l15m14n13o12q11r10t9u8v7w6-
x5y4z.
Another illustrative example of the calculations of a five-

electron system with ECGs is the singly ionized carbon atom.
The results of the recent ECG calculations for this system131

are shown in Table 11. Similar to the boron atom calculations,
the accuracy currently achievable with the variational method
employing ECGs is significantly higher than that of the best-to-
date literature values obtained with other methods. It is
interesting to note that the estimated accuracy for the excited
2S state of C+ is roughly twice lower than that for the ground 2P
state. In contrast, calculations on the B atom yielded the energy
of the first excited 2S state that was approximately 5 times more
tightly converged than the energy of the ground state. Such an
order of magnitude difference in the accuracy of the first excited
2S states of C+ and B does not result from a lower quality of the
C+ calculations, however. The main reason for a somewhat
worse convergence of the energy in the case of C+ is the fact
that the wave function of the lowest excited 2S state of this
system is dominated by the 1s22s2p2 configuration. This

Table 6. Convergence of the 21S0 → 31S0 Transition Energies (in cm−1) for 12C2+, 13C2+, and 14C2+ Including Increasingly
Higher Level Corrections (Finite-Mass, Relativistic, and QED) to the Energies of the Two Statesa

contribution included ΔE (12C2+) ΔE (13C2+) ΔE (14C2+)

Enonrel (INM) 182 264.940(20) 182 264.940(20) 182 264.940(20)
Enonrel (FNM) 182 242.205(20) 182 243.959(20) 182 245.458(20)
α2Erel 182 540.245(170) 182 542.000(170) 182 543.498(170)
α3EQED 182 520.583(170) 182 522.338(170) 182 523.836(170)
α4EHQED 182 519.031(1000) 182 520.785(1000) 182 522.283(1000)
experiment218 182 519.88

aThe values in parentheses indicate the remaining uncertainty due to finite size of the basis. In the case of α4 correction the uncertainty is due to an
approximate treatment of that correction. The results are taken from ref 16.

Table 7. Energy Differences (in cm−1) between Adjacent 2D
States of 7Li, 6Li, and ∞Lia

basis 1s23d−1s24d 1s24d−1s25d 1s25d−1s26d 1s26d−1s27d
7Li

1500 5340.25 2471.52 1342.44 809.56
2000 5340.27 2471.54 1342.40 809.39
2500 5340.27 2471.54 1342.39 809.35
3000 5340.27 2471.54 1342.39 809.34
3500 5340.27 2471.54 1342.39 809.33
4000 5340.27 2471.54 1342.39 809.33
expt218 5340.30 2471.55 1342.38 809.2

6Li
4000 5340.20 2471.50 1342.37 809.32

∞Li
4000 5340.69 2471.73 1342.49 809.39

aFor 7Li, the convergence of the differences with the basis set size is
shown. For 6Li and ∞Li only the results obtained with 4000 Gaussians
are shown. For 7Li, the results of the calculations are compared with
the experimental values. The results are taken from ref 139.

Table 8. Comparison of the Nonrelativistic Variational Energies of the 1s22s(2S), 1s23s(2S), and 1s22p(2P) States of ∞Li
Obtained in ECG Calculations with the Best Literature Values Obtained in Calculations That Used the Hylleraas Basisa

state source method basis size energy

1s22s(2S) Puchalski et al.113 Hylleraas 4172 −7.478 060 323 845 785
Puchalski et al.113 Hylleraas 13 944 −7.478 060 323 909 560
Puchalski et al.113 Hylleraas ∞ −7.478 060 323 910 10(32)
Wang et al.192 Hylleraas 3910 −7.478 060 323 880 889 238
Wang et al.192 Hylleraas 26 520 −7.478 060 323 910 134 843
Wang et al.192 Hylleraas ∞ −7.478 060 323 910 143 7(45)
Stanke et al.13 ECG 10 000 −7.478 060 323 81
Bubin219 ECG 3600 −7.478 060 323 884 4

1s23s(2S) Puchalski et al.193 Hylleraas 4172 −7.354 098 421 004 0
Puchalski et al.193 Hylleraas 9576 −7.354 098 421 379 9
Puchalski et al.193 Hylleraas ∞ −7.354 098 421 426(19)
Wang et al.192 Hylleraas 3910 −7.354 098 421 345 692 670
Wang et al.192 Hylleraas 26 520 −7.354 098 421 444 310 034
Wang et al.192 Hylleraas ∞ −7.354 098 421 444 316 4(32)
Stanke et al.13 ECG 10 000 −7.354 098 421 13
Bubin21 ECG 3600 −7.354 098 421 382 4

1s22p(2P) Puchalski et al.193 Hylleraas 4172 −7.410 156 532 150 2
Puchalski et al.193 Hylleraas 9576 −7.410 156 532 628 6
Puchalski et al.193 Hylleraas ∞ −7.410 156 532 665(14)
Wang et al.192 Hylleraas 4824 −7.410 156 532 310 89
Wang et al.192 Hylleraas 30 224 −7.410 156 532 650 66
Wang et al.192 Hylleraas ∞ −7.410 156 532 651 6(5)
Bubin219 ECG 3600 −7.410 156 532 553 2

aInfinite basis size stands for an extrapolated value.
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configuration is different from the dominant configuration
(1s22s23s) in the wave function of the lowest 2S state of B. The
latter configuration is easier and more effectively described with
the basis functions (32) than the 1s22s2p2 configuration which
results from a coupling of two p electrons to an S state. The
convergence in the calculations of the states dominated by the
1s22s2p2 configuration can probably be improved if prefactors
in the form of dot products ri′·rj are included in some basis
functions.
9.3. Calculations for Atomic Systems with Six Electrons

The carbon atom (12C) has been the largest system considered
so far in calculations performed with all-electron correlated
Gaussians.135,136 The calculations focused on the ground and
first excited 3P states of this six-electron system. As six-electron
basis functions are used in these calculations, there are 21
exponential parameters in each function to be optimized. Also,
each Hamiltonian or overlap matrix element involves
integration over 18 Cartesian coordinates. Even with the aid

of the analytic gradient in the variational optimization, such
calculations represent a daunting task. As only 32 processors
were used in the calculations, after investing a considerable
amount of computer time, a basis set of only 1000 Gaussians
was generated for each of the two states. Even though the
lowest ever variational energies have been obtained for both
states with that many functions, their number is clearly not
enough to determine the transition energy between the two
states with an accuracy even close to what we achieved for
smaller atoms. It would take a dedicated computer system with
hundreds of processors to reach high accuracy in the carbon
calculations.
However, even with up to 1000 basis functions in the basis

set, it is interesting to examine the convergence of the total
energies of the two states, as well as the convergence of the
transition energy. The data for such an analysis are shown in
Table 12. As one can see, only at best four digits in the total
energies are converged. The transition energy shows the right
convergence trend, but it is still off from the experimental value
in the third digit after the decimal point.

10. RESULTS FOR DIATOMIC MOLECULES OBTAINED
WITHOUT THE BORN−OPPENHEIMER
APPROXIMATION

The non-BO approach utilizing ECGs has been so far
implemented only for rotationless states (i.e., vibrational states)
of diatomic molecules. In this review we present examples of
those applications that best illustrate the accuracy level that the
approach can deliver.

Table 9. Convergence of the Total Nonrelativistic Energies (in hartrees) for the Main Isotope of Boron Atom, 11Ba

isotope basis 2Po (1s22s22p) 2S (1s22s23s) 2Po (1s22s23p) 2S (1s22s24s)
11B 1000 −24.652 494 17 −24.470 106 32 −24.430 979 54 −24.401 841 39

2000 −24.652 598 09 −24.470 136 27 −24.431 073 08 −24.401 923 14
3000 −24.652 615 70 −24.470 140 92 −24.431 088 39 −24.401 936 14
4000 −24.652 621 14 −24.470 142 33 −24.431 093 26 −24.401 939 96
5000 −24.652 623 43 −24.470 142 90 −24.431 095 31 −24.401 941 47
5100b −24.652 623 87(250) −24.470 143 16(50) −24.431 095 74(250) −24.401 941 83(150)

10B 5100b −24.652 500 24(250) −24.470 018 76(50) −24.430 971 75(250) −24.401 817 83(150)
∞B 5100b −24.653 866 08(250) −24.471 393 06(50) −24.432 341 44(250) −24.403 187 67(150)

aEnergies obtained for 10B and ∞B with the largest basis set of 5100 functions are also shown. The values in parentheses are estimates of the
remaining uncertainty due to finite basis size used in the calculations. The results are taken from ref 130. bBasis set was generated with a more
extensive optimization of the nonlinear parameters.

Table 10. Comparison of the Available Literature Results for
the Ground State Energy (in hartrees) of ∞B Atom

energy method (year)

−24.653 93 configuration interaction + experimental data (1991)221

−24.653 91 configuration interaction + experimental data (1993)222

−24.653 62(3) diffusion quantum Monte Carlo (2007)223

−24.653 79(3) diffusion quantum Monte Carlo (2011)224

−24.653 840 ECG, 2000 basis functions (2009)225

−24.653 837 33 selected configuration interaction (2010)220

−24.653 866 08 ECG, 5100 basis functions (2011)130

−24.653 868 5 estimate of the exact nonrelativistic energy130

Table 11. Total Nonrelativistic Energies (in hartrees) for the Lowest S and P States of C+ Iona

isotope basis 2Po(1s22s22p) 2S(1s22s2p2) 2Po(1s22s23p)
12C 1000 −37.429 043 99 −36.989 923 74 −36.828 842 62

2000 −37.429 146 64 −36.990 141 16 −36.828 982 35
3000 −37.429 162 43 −36.990 176 48 −36.829 004 48
4000 −37.429 167 20 −36.990 187 14 −36.829 011 34
4500 −37.429 168 35 −36.990 189 85 −36.829 013 05
5100b −37.429 169 55(250) −36.990 192 98(500) −36.829 014 78(350)

13C 5100b −37.429 301 59 −36.99032209 −36.82914677
14C 5100b −37.429 414 35 −36.990 432 34 −36.829 259 49
∞C 5100b −37.430 880 49 −36.991 865 91 −36.830 725 08

DMC,c −37.43 073(4)

aThe ECG results are taken from ref 131. bBasis set was generated with a more extensive optimization of the nonlinear parameters. cDiffusion Monte
Carlo, ref 224.
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10.1. Diatomics with One and Two Electrons: Charge
Asymmetry Induced by Isotopic Substitution

Two examples will be shown here. The first concerns the
calculations of the complete spectrum of vibrational states of
the HD+ molecule.143 As the calculations were performed

without invoking the BO approximation and the nuclei in them
possessed finite masses, it is interesting to analyze what effect
this has on the wave function and, in particular, on the
probability that the electron is on average closer to one end of
the molecule than to the other. The second example concerns
the HD molecule and its pure vibrational spectrum.
The HD+ pure vibrational spectrum has been studied by

many researchers, and very accurate, virtually exact calculated
nonrelativistic energies have been published in the litera-
ture.226,227 This includes the energy for the highest vibrational v
= 22 state, which is only about 0.4309 cm−1 below the D + H+

dissociation limit. In Table 13 we compare the ECG variational
energies for all 23 states143 with the values of Hilico et al.227 As
one can see, the values agree very well. The agreement is
consistently very good for all the states calculated.
The wave functions for all 23 states were used to calculate

the average internuclear distances and the average distances
between the nuclei and the electron. Also, averages of the
squares of the distances were calculated. The results are shown
in Table 13. As can be expected, the average internuclear
distance increases with the rising level of excitation. This
increase becomes more prominent at the vibrational levels near
the dissociation threshold. For example, in going from v = 21 to
v = 22 the average internuclear distance increases more than 2-
fold from 12.95 to 28.62 au. In the v = 22 state the HD+ ion is
almost dissociated. However, the most striking feature that
becomes apparent upon examining the results is a sudden
increase of the asymmetry between the deuteron−electron and
proton−electron average distances above the v = 20 excitation
level. In levels up to v = 20 there is some asymmetry of the
electron distribution with the p−e distance being slightly longer
than the d−e distance. For example, in the v = 20 state the d−e

Table 12. Convergence of the Total Nonrelativistic Energies
of the Ground and First Excited 3P States (2s22p2 and
2s22p3p) of 12C and the Corresponding Transition Energy
with the Number of Basis Functionsa

basis size 2s22p2 3P 2s22p3p 3P
transition
energy

12C
100 −37.810 501 −37.471 762 74 344.61
200 −37.828 749 −37.499 146 72 339.61
300 −37.834 300 −37.506 665 71 907.57
400 −37.837 008 −37.509 750 71 824.83
500 −37.838 416 −37.511 548 71 739.20
600 −37.839 692 −37.513 040 71 691.82
700 −37.840 423 −37.513 989 71 644.03
800 −37.840 982 −37.514 684 71 614.21
900 −37.841 364 −37.515 233 71 577.38
1000 −37.841 621 −37.515 565 71 561.08
experiment218 71 352.51

∞C
1000 −37.843 333 −37.517 279 71 560.65
DMCb 224 −37.844 46(6)
estimated
exact222

−37.845 0

aTotal energies of 12C and ∞C are in hartrees and transition energies
are in cm−1. The results are taken from ref 136. bDiffusion Monte
Carlo.

Table 13. Total Energies, Expectation Values of the Deuteron−Proton Distance, rd−p, the Deuteron−Electron Distance, rd−e,
and the Proton−Electron Distance, rp−e, and Their Squares for the Vibrational Levels of HD+ at the Rotational Ground Statea

v E, Bubin et al.143 E, ref 227. ⟨rd−p⟩ ⟨rd−e⟩ ⟨rp−e⟩ ⟨rd−p
2⟩ ⟨rd−p

2⟩ ⟨rp−e
2⟩

0 −0.597 897 968 5 −0.597 897 968 6 2.055 1.688 1.688 4.268 3.534 3.537
1 −0.589 181 829 1 −0.589 181 829 6 2.171 1.750 1.750 4.855 3.839 3.843
2 −0.580 903 700 1 −0.580 903 700 3 2.292 1.813 1.814 5.492 4.169 4.173
3 −0.573 050 546 4 −0.573 050 546 8 2.417 1.880 1.881 6.185 4.526 4.531
4 −0.565 611 041 8 −0.565 611 042 3 2.547 1.948 1.950 6.942 4.915 4.921
5 −0.558 575 520 0 −0.558 575 521 1 2.683 2.020 2.022 7.771 5.339 5.346
6 −0.551 935 948 2 −0.551 935 949 3 2.825 2.095 2.097 8.682 5.804 5.813
7 −0.545 685 913 7 −0.545 685 915 6 2.975 2.175 2.177 9.689 6.318 6.329
8 −0.539 820 639 4 −0.539 820 641 9 3.135 2.259 2.261 10.81 6.888 6.902
9 −0.534 337 011 0 −0.534 337 013 9 3.305 2.348 2.351 12.06 7.527 7.545
10 −0.529 233 631 7 −0.529 233 635 9 3.489 2.445 2.448 13.48 8.250 8.272
11 −0.524 510 905 9 −0.524 510 910 6 3.689 2.549 2.554 15.09 9.074 9.105
12 −0.520 171 137 4 −0.520 171 148 2 3.909 2.664 2.670 16.96 10.03 10.07
13 −0.516 218 698 8 −0.516 218 710 3 4.154 2.791 2.799 19.16 11.15 11.21
14 −0.512 660 176 7 −0.512 660 192 6 4.432 2.934 2.946 21.79 12.49 12.57
15 −0.509 504 627 0 −0.509 504 651 7 4.754 3.099 3.116 25.01 14.13 14.26
16 −0.506 763 834 4 −0.506 763 878 1 5.138 3.292 3.319 29.11 16.20 16.41
17 −0.504 452 646 6 −0.504 452 699 1 5.611 3.527 3.572 34.55 18.92 19.30
18 −0.502 589 181 5 −0.502 589 234 0 6.227 3.821 3.910 42.25 22.66 23.47
19 −0.501 194 732 3 −0.501 194 799 3 7.099 4.198 4.421 54.35 28.13 30.38
20 −0.500 292 401 7 −0.500 292 454 3 8.550 4.569 5.516 77.74 35.66 46.64
21 −0.499 910 333 9 −0.499 910 361 5 12.95 2.306 12.19 176.0 12.94 168.2
22 −0.499 865 777 5 −0.499 865 778 5 28.62 1.600 28.55 910.0 4.266 911.4
D atomb −0.499 863 815 2 1.500 3.002

aAll quantities are in atomic units. bD atom in the ground state.
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average distance is 4.569 au and the p−e distance is 5.516 au.
The situation becomes completely different for the v = 21 state.
Here the p−e distance for this state of 12.19 au is almost equal
to the average value of the internuclear distance, but the d−e
distance becomes much smaller and equals only 2.306 au. It is
apparent that in this state the electron is essentially localized at
the deuteron and the ion becomes highly polarized. An
analogous situation also occurs for the v = 22 state. Here, again,
the p−e average distance is very close to the internuclear
distance while the d−e distance is close to what it is in an
isolated D atom. One can say that in the low vibrational state
the HD+ ion is covalently bound, but in the highest two states it
becomes ionic.
The second example concerns the non-BO calculations of all

17 rotationless vibrational energies of the HD molecule.228 For
each state 10 000 ECGs were used in those calculations. The
total energies were used to calculate the v → v + 1 transition
energies, which are presented in Table 14. In Table 14 the ECG
transition energies obtained with and without the relativistic
corrections of the order of α2 are compared with the transitions
determined using the results of Pachucki and Komasa (PK).20

They performed their calculations using the standard approach
where the potential energy curve was calculated first and, after
being corrected for the adiabatic and nonadiabatic effects, as
well as relativistic effects, it was used to calculate the vibrational
frequencies. The comparison shown in Table 14 includes
vibrational frequencies calculated by the two methods with and
without the relativistic corrections.
First let us focus on the nonrelativistic transitions in Table

14. As one can see, the ECG non-BO results agree very well
with the PK values. The difference for the transitions between
low-lying states, as well as for the states in the middle of the
spectrum, is consistently less than 0.005 cm−1. As one can see
from the comparison with the experimentally derived
transitions, the difference between the ECG non-BO results
and those of PK is much smaller than the expected contribution
due the α3 QED and higher order corrections. For the three top

transitions the difference increases to about 0.01 cm−1. While
the exact reason for this discrepancy is not immediately clear, it
is possible that it arises as a result of the perturbation approach
used by PK and not accounting for the finite-nucleus-mass
effects for those two states as accurately as it is done in the
direct variational non-BO approach.

10.2. Diatomics with Three Electrons

As stated, the application of the non-BO ECG approach for
diatomic molecules is currently limited because of the form of
the basis set to pure vibrational states and to molecules with σ
electrons. However, it is not limited with respect to the number
of the electrons the molecule has. Hence, this is the first
accurate non-BO method available that allows performing
calculations of molecules with more than two electrons.
An example of non-BO ECG calculations performed for a

molecule with more than two electrons is the work on all five
pure vibrational transitions of the 7LiH+ ion.153 Up to 10 000
ECGs for each state were used in the calculations. Table 15
shows the convergence of the transition frequencies calculated
with and without the relativistic corrections with the number of
the basis functions. One can see that the third digit after the
decimal point for all transitions expressed in wavenumbers is
essentially converged. The significance of these calculations lies
in the fact that the pure vibrational spectrum of the 7LiH+ ion
has not been measured yet, and the very accurate predictions of
the vibrational transitions generated in the calculations can
guide the future experiment where such a measurement is
attempted.

10.3. Diatomics with More than Three Electrons

The major bottleneck in the non-BO calculations with all-
particle ECGs is their n! scaling with the number of identical
particles (electrons). As mentioned before, n! is the number of
permutations in the symmetry operator that needs to be
applied to each basis function to enforce the right permuta-
tional symmetry of the wave function. For example, in the

Table 14. Comparison of All Pure Vibrational Transition Energies (in cm−1) of HD Calculated with the ECG Non-BO
Approach and with (rel) and without (nonrel) Including the α2 Relativistic Corrections with the Transitions Reported by
Pachucki and Komasa (PK)20 a

transition Enonrel
v+1 − Enonrel

v Erel
v+1 − Erel

v Ev+1 − Ev

v → v + 1 Bubin et al. PK Bubin et al. PK experiment

0 → 1 3632.1586(4) 3632.1583 3632.1802(4) 3632.1792 3632.1595(17)229

1 → 2 3454.7187(5) 3454.7173 3454.7368(5) 3454.7341 3454.735(50)230

2 → 3 3280.7571(5) 3280.7573 3280.7690(5) 3280.7700 3280.721(49)230

3 → 4 3109.2661(5) 3109.2657 3109.2742(5) 3109.2740 3100.264(16)230

4 → 5 2939.1564(10) 2939.1548 2939.1604(10) 2939.1586 2948.149(17)230

5 → 6 2769.2297(10) 2769.2282 2769.2288(10) 2769.2272 2769.199(36)230

6 → 7 2598.1395(20) 2598.1399 2598.1324(20) 2598.1337
7 → 8 2424.3442(20) 2424.3411 2424.3333(20) 2424.3292
8 → 9 2246.0106(30) 2246.0103 2245.9915(30) 2245.9920
9 → 10 2060.9653(30) 2060.9616 2060.9417(30) 2060.9362
10 → 11 1866.5168(50) 1866.5167 1866.4822(50) 1866.4832
11 → 12 1659.3318(50) 1659.3302 1659.2894(50) 1659.2872
12 → 13 1435.1376(50) 1435.1373 1435.0828(50) 1435.0832
13 → 14 1188.3926(70) 1188.3918 1188.3246(70) 1188.3241
14 → 15 911.7483(70) 911.7379 911.6628(70) 911.6536
15 → 16 595.4111(70) 595.4216 595.3069(70) 595.3165
16 → 17 231.5728(70) 231.5815 231.4462(70) 231.4559

aThe values in parentheses indicate the estimated remaining uncertainty due to finite basis size used. The ECG non-BO results are derived from the
work of Bubin et al.149 The last column lists several transition frequencies derived from experimental data.
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calculations of the BH molecule there are 720 such
permutations.
The BH molecule is the largest system ever calculated with

the non-BO ECG approach.225 The aim of the calculations was
to determine the dissociation energy of this system. The results
are shown in Table 16 with the ECG FNM results obtained for
the boron atom also included. As can be expected, the energy
for the B atom converges significantly faster than for BH. With
2000 basis functions the nonrelativistic non-BO energy of B is
essentially converged within five significant figures while the
BH energy is converged within four figures. The better
convergence for the B atom than for BH assures that the BH
dissociation energy calculated as the difference between the
total energy of BH and the sum of the energies of the B and H
atoms is a lower bound to the true dissociation energy of this
system. We should add that, even with only 2000 basis
functions, the non-BO energies of the B atom and the BH
molecule shown in Table 16 are the best variational upper
bounds ever calculated for these systems. However, 2000 basis
functions is only enough to ensure convergence of two
significant figures in the dissociation energy. Our best result
for this energy is D0 = 28 083 cm−1 (28 074 cm−1 after adding
the relativistic corrections). An approximate extrapolation to an
infinite number of basis functions increases the dissociation

energy to D0 = 28 400 ± 150 cm−1. This result agrees with the
experimental value recommended by Bauschlicher et al.231 of
28 535 ± 210 cm−1. However, it is clear that in order to match
the experimental accuracy with the calculations the energies of
both B and BH will have to be computed with higher accuracy
and much larger ECG basis sets approaching or even exceeding
10 000 functions.

11. HIGHLY ACCURATE BO MOLECULAR
CALCULATIONS

11.1. Hydrogen Clusters

In this section we show that it is possible to reduce the
computational time needed for an ECG BO PES calculation by
avoiding costly optimization of the ECG nonlinear parameters
at every PES point and still maintain high accuracy of the
results throughout the whole PES. The approach developed for
this purpose will be described and illustrated through its
application in the calculations of the potential energy curve
(PEC) of the (H2)2 dimer in the linear geometrical
configuration keeping the monomer at the frozen internuclear
separation of 1.4 bohr.
An essential part of a very accurate ECG calculation is

growing the basis set from a small number of functions to a
large one that assures the desired accuracy of the results. In the
process of building the basis set is usually initiated with a set of
ECGs generated using contraction of basis sets of the
monomers.124 For (H2)2 this is

ϕ φ φ= ·k i j,(H ) ,H ,H2 2 2 2 (118)

where φi,H2
and φj,H2

are ECGs obtained for a hydrogen

molecule. As mentioned, the Gaussian centers of φi,H2
and φj,H2

are placed at the same monomer or different monomers to
produce the so-called ionic or covalent basis function. Next, the
basis set is enlarged by adding subsets of ECGs followed by
their partial or global optimization depending which of these
two procedures is more computationally efficient in the
particular case. As shown in Table 17,95 at RH2−H2

= 6 bohr
99.6% of the binding energy is recovered with the 5000 ECG
basis set.
In the calculations reported in ref 95 the procedure was used

to generate 5000 ECGs for (H2)2 for varying intermonomer
distances. With that, when moving to the next PEC point, only
the linear expansion parameters had to be recalculated.
However, as PEC points got further separated from the point
where the full basis set optimization was performed (at the
equilibrium), the procedure became increasingly less accurate.
To remedy this and to reduce the error, 2000 additional ECGs
were generated at each PES point with the FICI method and
added to the basis set. In this way a 7000 ECG basis set was
obtained for each PEC point. To verify if the FICI-optimized

Table 15. Convergence of the Pure Vibrational Transition
Energies of 7LiH+ Ion Determined with and without the
Inclusion of the Leading Relativistic Correctionsa

v′ → v″ basis size ENR
v″ − ENR

v′ EREL
v″ − EREL

v′
1 → 0 8000 355.051 355.072

9000 355.031 355.053
10000 355.015 355.037
10000b 355.011 355.034

2 → 1 8000 261.748 261.774
9000 261.757 261.778
10000 261.766 261.787
10000b 261.765 261.786

3 → 2 8000 169.991 170.000
9000 169.986 170.000
10000 169.981 169.998
10000b 169.980 169.997

4 → 3 8000 89.825 89.837
9000 89.821 89.821
10000 89.820 89.819
10000b 89.819 89.818

5 → 4 8000 35.260 35.265
9000 35.258 35.271
10000 35.258 35.260
10000b 35.259 35.260

aAll values are in cm−1. The results are taken from ref 153. bResults
obtained by performing several additional cyclic optimizations of the
nonlinear parameters.

Table 16. Nonrelativistic and Relativistic (Erel = Enonrel + α2⟨HMV⟩ + α2⟨HD⟩) Energies of B and BH in aua

basis size Enonrel(B) Erel(B) Enonrel(BH) Erel(BH) D0
nonrel D0

rel

500 −24.652 069 −24.659 230 −25.270 646 −25.277 747 26 084 26 070
1000 −24.652 494 −24.659 659 −25.277 313 −25.284 438 27 454 27 444
1500 −24.652 573 −24.659 733 −25.279 332 −25.286 461 27 880 27 872
2000 −24.652 598 −24.659 758 −25.280 280 −25.287 408 28 083 28 074

aValues for D0 are the corresponding dissociation energies expressed in cm−1. The results are taken from ref 225 with the exception of the last
column, D0

rel, which contains corrected data (ref 225 has an error in this quantity).
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additional set is capable of efficiently correcting the error, full
optimization of the 5000 ECG basis set was performed at some
selected PEC points. A comparison of the results obtained in
those optimizations95 with the energies obtained with the 7000
function basis sets is shown in Table 18.

Although the energies calculated with the full optimization
procedure are lower than the energies obtained without
reoptimizing the ECG nonlinear parameters, the energy
difference is nearly constant (about ∼0.19 K) as the
intermonomer distance increases beyond 8 bohr. Therefore,
one can conclude that the absolute error of the FICI-optimized
PEC is just under 0.15 K at RH2−H2

= 6 bohr and sub-0.3 K for
larger intermonomer distances. This validates the approach
used in the (H2)2 calculations and shows that the floating ECGs
are capable of representing the ground state wave function of
this four-electron four-center molecule with high accuracy.

11.2. Molecules with One Atom Other Than Hydrogen

In this section we describe high-accuracy, state-of-the-art PEC
ECG calculations of the LiH molecule.180 The PEC includes
finite-mass adiabatic corrections added to the BO energy. The
PEC accuracy is better than 0.3 cm−1, showing once again that
the variational method with ECGs complemented with the use
of the analytic gradient is a very high accuracy approach for
generating PEC/PESs for small molecules.
The ECG calculation of the LiH BO PEC of Tung et al.180

started with the 2400 ECG basis set (see Table 3) built using
the full optimization approach at the equilibrium internuclear
distance (RLi−H = 3.015 bohr). Using this basis set, the basis
sets for the adjacent PEC points were generated by applying
the Gaussian center shifting procedure. After shifting, the basis
sets were fully reoptimized using the full optimization
approach. This procedure was repeated until the target
internuclear distance of RLi−H = 40 bohr was reached. Similarly
to the (H2)2 ECG calculations, a concern one may have is
related to possible accumulation of error which may arise at
each PEC point due to its initial basis set not being generated
from “scratch”, but being extrapolated from the previous PEC
point. Such an accumulation would likely produce the largest
error for the longest internuclear distance (in the calculations it
was RLi−H = 40 bohr). In Table 19 the magnitude of this error is

examined by comparing the energy obtained at 40 bohr with
the estimated accurate energy obtained as a sum of the atomic
energies (the BO energy in Table 19 at RLi−H =∞ is the sum of
the BO energies of the Li and H atoms). As one can see, the
error is only about 10−6 hartree. Thus, no significant
accumulation of error had occurred.
As mentioned, the BO PEC generated in the calculations of

Tung et al.180 was corrected for the adiabatic effects to partially
overcome the deficiency of the BO approximation. At the
equilibrium distance the adiabatic correction lowers the depth
of the PEC well by 10.7 cm−1. Because the correction varies
with the internuclear distance, the shape of the corrected PEC
differs slightly from the PEC without the correction. This in
turn affects the energies of the vibrational levels, as can be seen
in Table 20. In the calculations of Tung et al.180 these levels
were obtained using Le Roy’s Level 8.0 program.233 In Table 20
we also compare the results from ref 180 with recent orbital-
based calculations of Holka et al.234 The first observation one
can make upon examining the results of Holka et al. shown in
Table 20 is that they were unable to obtain converged values
for the two highest transitions and had to resort to
extrapolation to determine them. Second, the root-mean-square
deviation (from experiment) for the best set of transitions
obtained by Tung et al., which were generated with the BO
ECG PEC corrected for the adiabatic effects, is half those by
Holka et al. It should be noted that the values by Holka et al.
also included scalar relativistic corrections. Nonetheless, the
comparison between the two sets is valid because those
corrections have a negligible effect on the calculated transitions.

Table 17. Convergence of the (H2)2 Interaction Energy, in
kelvina

basis size interaction energy

600 41.7197
700 39.6936
800 38.9714
900 38.6994
1000 38.4557
1500 37.2085
2000 36.3622
2500 35.6462
3000 35.3227
4000 35.0380
5000 34.9311
exact 34.785b

aThe interaction energy is determined with respect to the exact energy
of two isolated H2 molecules each with the internuclear distance equal
to RH2

= 1.448 736 bohr (2EH2
= −2.348 155 753 48 hartree75). The

calculations are performed at the intermonomer separation of 6
bohr.95. bBest literature value obtained using the monomer contraction
method with a 360 000 ECG basis set augmented with additional 2400
ECGs and extrapolated to the complete basis set limit.232 The
estimated standard deviation of the energy value is σ = 0.030 K.

Table 18. Comparison of the Total and Interaction Energies
of (H2)2 Obtained with 7000 ECGs (5000 ECGs Generated
with the Shifting Procedure and 2000 Generated with the
FICI Method) with the Energies Obtained with Fully
Optimized 5000 ECGsa

RH2−H2
(bohr) E7000

FICI E5000
FO ΔE E5000

FO

6.0 −2.348 045 14 −2.348 045 13 0.002 34.826
7.1 −2.348 202 03 −2.348 202 42 0.123 −14.841
8.0 −2.348 185 31 −2.348 185 89 0.182 −9.622
9.0 −2.348 167 82 −2.348 168 41 0.187 −4.101
10.0 −2.348 159 69 −2.348 160 24 0.174 −1.522
14.75 −2.348 154 53 −2.348 155 08 0.175 0.108
100.0 −2.348 154 87 −2.348 155 42 0.175 0.000

aCalculations have been performed at six selected PEC points
including the RH2−H2

= 6 bohr point. Total energies, E7000
FICI and E5000

FO , are

in hartrees, and the total energy differences, ΔE, interaction energies,
and ΔE5000FO , are in kelvin.95.

Table 19. Comparison of the Estimated and Calculated LiH
BO Energies at RLi−H = 3.015 and RLi−H = ∞180

E, estimated81 E, calculated180

RLi−H = ∞ −7.978 060 −7.978 059 1a

RLi−H = 3.015 −8.070 548 −8.070 547 3
aCalculated at RLi−H = 40 bohr.
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Let us now examine how well Holka et al.’s234 and Tung et
al.’s180 calculations reproduce the experimental dissociation
energy. In Holka et al.’s calculations, the energy at each PEC
point includes three components, i.e., the BO energy, the
diagonal adiabatic correction (DBOC), and the relativistic
(mass-velocity and Darwin) correction. The contributions of
the BO energy, the DBOC, and the relativistic correction to the
BO dissociation energy are 20 305.4, −12.0, and ∼−0.5 cm−1,
respectively. Compared with the results of Tung et al., Table 21
shows that Holka et al.’s results overestimate the BO
contribution by about 6.6 cm−1 and the adiabatic correction

by about 1.3 cm−1. Even though these two errors have opposite
signs and partially cancel each other, there is still a significant
difference of about 5.3 cm−1 between Holka et al.’s and Tung et
al.’s results and the experimental value. This error can be
averaged in the calculation of vibrational levels. The differences
of energies from the orbital calculation are competitive with the
ECG values. It should be noted that the result of Tung et al. is
virtually identical to the experimental value, which has an
estimated root-mean-square deviation of 0.16 cm−1 and a
maximum deviation of −0.79 cm−1.
As the dissociation energy is usually a good indicator of the

accuracy of the calculations, we compare the values of this
energy obtained with different methods with the experimental
energy in Table 22. The comparison shows that the ECG value
obtained by Tung et al.180 best matches the experiment.

Another good test of the quality of the calculations is to
examine the results obtained at the equilibrium internuclear
distance for the system. A large-scale CI [9s8p6d1f] performed
for LiH by Bendazzoli et al.236 gave the energy of −8.069 336
hartree, while the GFMC calculation of Chen et al.237 yielded
−8.070 21(5) hartree. CCSD[T]-R12 coupled-cluster method
with linear r12 terms254 gave E = −8.070 491 hartree. This
energy is close to the energy of −8.070 516 hartree obtained
with the iterative-complement-interaction method by Nakatsu-
ji.238 The first ECG calculations performed with 200 ECGs by
Cencek et al.239 gave the energy of −8.069 221 hartree. This
result, as well as other results obtained with larger ECG basis
sets by Cencek et al.81 were used to make an extrapolation to
the infinite basis set limit, which yielded −8.070 553(5) hartree.
This energy is consistent with and close to the result of −8.070
547 3 hartree obtained by Tung et al.180 with a basis of 2400
ECGs. When the ECG results are compared with the MR-
CISD calculations of Holka et al.,234 one becomes puzzled at a
discrepancy. Holka et al.’s energy obtained at R = 3.000 bohr of
−8.070 792 hartree is 239 μhartrees below the best ECG value
obtained at R = 3.015 bohr and about 50 times outside its
estimated uncertainty. The reason for this discrepancy is
unclear at the moment. It is possible that it is due to an
overestimated value of the size-consistency correction and (or)
flaws in the extrapolation procedure used in Holka et al.’s
calculations. In conclusion, currently only ECG-based ap-
proaches can provide reliable data and at the same time achieve
microhartree-level accuracy in the LiH calculations.

Table 20. Comparison of Calculated and Experimental
Transition Energies of 7LiHa

Holka et al.234 Tung et al.180

v′ → v″ ΔE1b,h ΔE2
c,h ΔEBO

d,h ΔE3
e,h

1 → 0 0.88 0.59 0.53 0.06
2 → 1 0.64 0.37 0.47 0.01
3 → 2 0.53 0.28 0.51 0.08
4 → 3 0.39 0.16 0.51 0.09
5 → 4 0.22 0.01 0.48 0.07
6 → 5 0.07 −0.13 0.41 0.03
7 → 6 −0.06 −0.22 0.40 0.02
8 → 7 −0.13 −0.28 0.41 0.05
9 → 8 −0.20 −0.32 0.41 0.07
10 → 9 −0.23 −0.32 0.44 0.12
11 → 10 −0.26 −0.32 0.40 0.11
12 → 11 −0.30 −0.32 0.36 0.08
13 → 12 −0.31 −0.30 0.35 0.09
14 → 13 −0.32 −0.25 0.31 0.07
15 → 14 −0.27 −0.17 0.30 0.09
16 → 15 −0.19 −0.04 0.37 0.15
17 → 16 −0.09 0.09 0.37 0.11
18 → 17 0.03 0.24 0.17 −0.17
19 → 18 0.16 0.40 0.25 −0.22
20 → 19 0.38 0.62 1.21 0.58
21 → 20 (0.89)f (1.13)f 0.12 −0.79
22 → 21 (2.43)f (2.70)f 1.61 0.60
rmsg 0.35 0.31 0.48 0.16

aThe calculated transitions include those obtained with and without
the adiabatic correction and are given in cm−1. ΔE is the difference
between the experimental and the calculated transitions. bThe BO
PEC includes DBOC, MVD (mass-velocity and Darwin), and
nonadiabatic contributions.234 cThe BO PEC includes DBOC and
MVD contributions.234 dThe BO PEC.180 eThe BO PEC includes
DBOC contributions.180 fValues in parentheses are extrapolated
vibrational levels.234 gThe root-mean-square calculations include the
vibrational transition up to v′ = 20 → v″ = 19. hCalculated transitions
are compared with the empirical values derived by Coxon and
Dickson.235 The uncertainty is smaller than 0.0001 cm−1 for v = 0−5,
smaller than 0.001 cm−1 for v = 6, and smaller than 0.01 cm−1 for v ≥
7.

Table 21. Comparison of the BO Potential Depth and the
Contribution of the DBOC Calculated by Holka et al. and
Tung et al.a

De (BO) ΔDBOC

Holka et al. 20 305.4 −12.0
Tung et al. 20 298.8 −10.7
ΔE 6.6 −1.3

aThe ΔE is the difference of two calculations.

Table 22. Comparison of Values of the LiH Dissociation
Energy Calculated with Different Methods with the
Experimental Energy

authors De (eV) method

Li and Paldus240 ∼2.5006 CCSD-[4R]/cc-pVQZ
Lundsgaard and
Rudolph241

2.492 full CI/all-electron

Gadeá and Leininger242 2.512 CCSD(T)/all-electron
Bande et al.179 2.521 FC LSE
Holka et al.234 2.5159a MR-CISD + Qp/cc-pwCVXZ (X =

Q, 5, 6)
Tung et al.180 2.51540b ECG
Stwalley and Zemke243 2.51535c experiment (±0.000 04 eV)
a7LiH. This value includes BO, DBOC, and MVD (mass-velocity and
Darwin) contributions. b7LiH. This value includes BO and DBOC
contributions. cExperimental value for 7LiH.
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The relativistic correction to the dissociation energy of 0.5
cm−1 (or 0.000 06 eV) calculated by Holka et al.234 indicates
that the accuracy of the calculations of the vibrational
transitions cannot be further improved by only including the
relativistic (and nonadiabatic) corrections to the BO PEC
corrected for the adiabatic effects. It will also need to involve
improving the quality of the PEC BO energies. One should be
able to achieve the accuracy of at least ×10−7 hartree in
calculating these BO energies in order for the relativistic effects
to start to matter. Such an increase of the accuracy is certainly
within the reach of ECG calculations.

11.3. Diagonal Adiabatic Corrections to the BO Energy for
Molecules Containing up to Three Nuclei

In this section we will not discuss specific calculations, but
rather describe how to perform calculations of the diagonal
adiabatic corrections (DBOC) when employing floating ECGs.
Including effects beyond the BO approximation in the
calculations involves the calculation of the gradient of the
wave function with respect to the nuclear coordinates.
Unfortunately, floating ECGs do not explicitly depend on the
nuclear coordinates, and therefore indirect methods to retrieve
that dependency need to be devised. In this section an
approach which is capable of approximately accounting for the
implicit dependency of the floating ECG basis functions on the
nuclear coordinates in calculating the DBOC is described in
mathematical terms. The method was first introduced by
Cencek et al.159 and it is based on the Gaussian product
theorem (GPT). The GPT states that the product of two
Gaussians is a Gaussian. In addition, it is possible to relate the
nonlinear parameters of the two Gaussians in the product to
the ones of the Gaussian being the product of the two.
Unfortunately, to our knowledge, there is no GPT equivalent
for floating ECGs and some approximations need to be made
to represent a floating ECG as a product of other floating
ECGs. Application of the GPT to diatomics is straightforward
and involves minimal approximation. As a testament of this,
there are above-reviewed calculations of the LiH molecule by
Tung et al.180 and calculations on other diatomics by Cencek et
al.,159 which have proven a high accuracy of the GTP-based
procedure.
More problematic is the extension of the GPT algorithm to

triatomics and, more specifically, their linear configurations. In
this section, we describe a general derivation of a GPT-based
approach to calculate the DBOC. The approach reduces to the
procedure of Cencek et al. for the diatomic case, but it also
allows for the calculation of the DBOC for triatomics even in
their linear configurations.
The calculation of the adiabatic corrections is performed by

using the Born−Handy formula:

∑ ∑= ⟨Ψ| − ∂
∂

|Ψ⟩
α α= =α α

E
M Q

1
2

1K

i i
ad

1 1

3 2

2
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where K is the total number of nuclei in the molecule, Mα are
the nuclear masses, and iα denote the Cartesian directions of
the nuclear coordinate displacements. In the above approach,
the partial second derivative with respect to nuclear coordinate
Qiα is evaluated numerically by calculating the ground state BO

wave function at two nuclear configurations, where Qiα is

displaced backward and forward by a small distance, Qiα
+ and Qiα

−,
according to the following formula:159
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where ΔQ = Qiα
+ − Qiα

−, and S = ⟨Ψ(Qiα
+)|Ψ(Qiα

−)⟩. Let us now
describe how the nonlinear parameters of the wave function at
the shifted nuclear configuration can be approximated. As an
example let us consider H3

+. Let us first introduce three 3-
dimensional vectors, Q1, Q2, and Q3, containing the
coordinates of the three nuclei of H3

+. Next, we introduce
three two-electron “ionic” functions, ϕI, ϕII, and ϕIII, that have
the following shifts of the Gaussian centers:

=
⎛
⎝
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⎞
⎠
⎟⎟s

Q

Qi
i

i (121)

where i is equal to either 1, 2, or 3.
In this derivation the subscript i denotes the nonlinear

parameters of the newly introduced, atom-centered functions
ϕI, ϕII, and ϕIII, while the subscript k denotes the nonlinear
parameters of the function we are shifting.
The ϕI, ϕII, and ϕIII functions are called ionic because in eq

121 both Gaussian centers coincide with the position of a
nucleus. With that, we can approximate any floating ECG basis
function (ϕk) by a product of the three ionic functions
introduced above as

∑ϕ ϕ ϕ ϕ= = − ′ + ′ − ′
=

r A r r A s s A sexp[ ( 2 )]k
i

i i i i i iI II III
1

3

(122)

where Ai is Ai ⊗ I3. By equating like terms in eq 122, one gets

∑ =
=

A A
i

i k
1

3

(123)

∑ =
=

A s A s
i

i i k k
1

3

(124)
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where sk is the 3n-dimensional (six-dimensional for H3
+)

Gaussian shift vector. By assuming that Ai = aiAk, eqs 123 and
124 become

∑ =
=

a 1
i

i
1

3

(126)

∑ =
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a s s
i

i i k
1

3

(127)

Notice that eq 127 is actually composed of two independent
equations, one for the x coordinates and one for the y
coordinates. For nonlinear geometries of H3

+ eqs 126 and 127
are sufficient to predict the floating-ECG shift vectors for the
new geometrical configuration of the nuclei. The procedure
involves the following steps.
1. For each floating ECG, the three auxiliary functions, ϕI−

ϕIII, are constructed by using the H3
+ nuclear coordinates as the

shift vectors as shown in eq 121.
2. Three independent equations in eqs 126 and 127 are

solved to obtain the values of the a1, a2, and a3 parameters.
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3. The new Gaussian shift vector sk is computed directly from
eq 127 for the new, changed H3

+ geometry, i.e., Qi ± (1/
2)ΔQi.
However, eqs 126 and 127 are not independent when the

H3
+ geometry becomes linear. The linear case is dealt with by

making use of only those equations in eqs 127 and 125 which
do not zero out in this situation. In addition, eq 125 needs to be
simplified (approximated) by “decoupling” the terms corre-
sponding to different electrons in order to make eqs 123−125
specific to each Gaussian center. In the “decoupling” we assume
that the off-diagonal terms in Ak are small compared to the
diagonal terms. This turns eq 125 into an equation that
constrains the squares of the x-coordinates of the Gaussian
centers to the square of the corresponding x-coordinate of the
α nucleus:

+ + =a a a 11 2 3 (128)

+ + = αa x a x a x x1 1 2 2 3 3 (129)

+ + = αa x a x a x x1 1
2

2 2
2

3 3
2 2

(130)

where it is assumed that the linear H3
+ lies on the x-axis. With

that, even for a linear H3
+ configuration, the system of

equations, eqs 123−125, is nonsingular and can be solved. We
should point out that, strictly speaking, eq 125 (and in turn also
eq 130) is an ad hoc condition as it formally enforces the
product of the three nuclear-centered ECGs to have the same
norm as the original Gaussian.

12. CALCULATING MOLECULAR PROPERTIES WITH
ECGS: THE BO CASE

In addition to the total energy, some molecular properties
calculated with ECGs have also been a focus of recent studies.
Important properties, such as the quadrupole moment,244

dipole and quadrupole polarizabilities,245 one-electron den-
sity,92 electric field gradient at the nuclei,246 and post-BO
corrections to the total energy26,103,212 have been successfully
calculated with the ECG basis set even though ECGs are not
capable of satisfying the Kato cusp condition115 (see section
2.6). The ECGs decaying faster at large interparticle distances
than expected by the asymptotic conditions for the exact
solutions of the SE usually have small effects on the energy, but
may more strongly affect the calculations of some properties.
BO calculations performed with ECGs may need to involve
thousands of basis functions (from about 1000 for two-electron
systems176 to over 5000 for systems having more than four
particles95,180), if convergence of 10 significant digits in the
energy is targeted. In this review we limit ourselves to
describing only one example of property calculations. The
example concerns the electric field gradient (EFG) at the
nuclear positions in the H2 molecule, as well as its
isotopologues involving deuterium.
12.1. EFG at the Nuclei and the Deuterium Quadrupole
Constant

The EFG is an important quantity for many spectroscopies:
molecular beam resonance, nuclear magnetic resonance,247

nuclear quadrupole resonance,248 Mössbauer spectroscopy,249

and electron paramagnetic resonance,250 just to mention a few.
These techniques exploit specific nuclear characteristics (i.e.,
distinct isotopes, decay of excited nuclear states, nuclear spin
transitions, etc.), which may involve the coupling between the
quadrupole moment of a nucleus with the gradient of the

electric field due to the electron and nuclear charges at the
position of that nucleus.
The coupling constant of the nuclear quadrupole/EFG

interaction is defined by first-order perturbation theory as γ =
(2e2Q⟨q⟩)/(4πε0h), where ⟨q⟩ is the vibrationally averaged
anisotropic part of the EFG evaluated at the nucleus whose
quadrupole moment is Q, e and h are the electron charge and
the Planck constant, respectively, and 4πε0 is the usual constant
that appears in Coulomb’s law. γ in HD and D2 has been
obtained with four to five digit accuracy by Ramsey and co-
workers from molecular-beam magnetic resonance measure-
ments.251,252

The fundamental constant Q can be estimated by combining
the measured γ with a calculated value of ⟨q⟩. It is important to
stress that the accuracy of the calculations of ⟨q⟩ determines the
accuracy of the determination of the hyperfine quadrupole
interaction. The ECG calculation of ⟨q⟩ does not come without
complications, as EFG matrix elements over basis functions of
the type shown in eq 48 contain the second derivative of the
error function.246

In Figure 1 a plot of the difference between the EFG
calculated at the nuclei of the H2 molecule obtained by

Pavanello et al.246 and the previously best literature results253

for q as a function of the H−H internuclear distance is shown.
There are two important observations to be made about Figure
1. The first one is that the U-shaped trend of the curve seems to
suggest that the Kołos−Wolniewicz-type basis set used by Reid
et al. is likely not large enough. In addition, the curve shows
that the values calculated by Reid et al. are subject to some
numerical instability. Namely, there are some q values which
seem too high and some which seem too low.
In Table 23 the values of the deuteron quadrupole constant

Q are derived from the vibrationally averaged ⟨q⟩ value and the
experimentally measured quadrupole splitting. The value of Q
of 0.285 783(30) fm2 derived in ref 246 is so far the most
accurate to date. The uncertainty in this value is almost entirely
due to the experimental uncertainty of the quadrupole
interaction constant, γ (and perhaps also to the nonadiabatic
effects).

Figure 1. Difference between the field gradient calculated with ECGs
in ref 246 and the one calculated with the Kołos−Wolniewicz basis
functions in ref 253.
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13. SUMMARY

In this work we have attempted to review the current state of
efforts to use ECGs in calculations of small atomic and
molecular systems with very high accuracy. Such high accuracy
can be achieved either by performing very precise BO
calculations and correcting the results for adiabatic and
nonadiabatic effects or by treating the nuclei (nucleus for an
atom) and electrons on equal footing and explicitly including
their motions in the Hamiltonian and in the wave function. For
high accuracy, the results have to be also corrected for the
relativistic and QED effects. It is shown that by using large basis
sets of ECGs and by variationally optimizing their nonlinear
parameters with a method based on the analytical energy
gradient it is possible to determine the energies of ground and
excited states of these systems with an accuracy approaching
the accuracy of the most precise experimental measurements.
The ECGs seem to be capable of very well describing the
oscillatory nature of the wave function at any excitation level.
In moving forward with the development of ECG techniques

for very accurate BO and non-BO atomic and molecular
calculations, several directions need to be considered. Future
work needs to include extending the non-BO approach
presented in this review to diatomic states with rotational
quantum numbers higher than zero. It will also need to include
extending the non-BO approach to molecules with more than
two nuclei. Furthermore, the work, which is currently already in
progress, needs to concern the development of BO and non-
BO tools to calculate the leading QED effects in ground and
excited molecular states. With that, it is hoped that the
remaining differences between the results of the theoretical
calculations and the data acquired in experiments will be further
narrowed.
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