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Abstract 
Supercomputers and multi-node computer clusters have started to offer com

puter power sufficient to undertake projects in the area of molecular structure 
calculations that a few years ago were not at all feasible. This particularly ap
plies to very accurate calculations concerning small molecular systems in iso
lation. In recent years we have carried out development and implementation 
of methods allowing very accurate quantum mechanical calculations of ground 
and excited stationary states of molecule-positron systems without assuming the 
Born-Oppenheimer (BO) approximation regarding the separability of the nu
clear, electronic, and positronic motions. In this review we describe the current 
progress in the area of positron-molecule calculations, we review our approach 
and show our recent non-BO calculations of the ground state of the e + LiH sys
tem, and we mention some of our future projects in this area. 

The matter-antimatter interaction is an issue much debated in modern sci
ence. An understanding of the structure and chemistry of molecules and clusters 
containing positrons can reveal new ways in which matter-antimatter transfor
mations can be accomplished and controlled. The application of computational 
tools to study positron molecules and to predict their structures and chemical 
behavior featured in this article may inspire new experimental research in the 
area. Of particular interest to us is the study of positron molecules in highly 
excited states without resorting to the clamped-nucleus model. The work may 
lead to discovery of long-lived positron bound states in polar molecules. This 
discovery may have important consequences in the development of molecular 
positron "storage" capabilities and also to our fundamental understanding of the 
positron chemistry. 
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1. Introduction 
The work of Lowdin on fundamental problems concerning the application 

of Quantum Mechanics to atoms and molecules has been an inspiration to 
our research group at Arizona, which, in recent years, has undertaken the de
velopment and implementation of very accurate methods-which depart from 
the Born-Oppenheimer approximation-for describing the coupled electron
nuclear motion in molecules. The use of one-center and multi-center explicitly 
correlated Gaussian functions as the basis of the wave function expansion has 
been the centerpiece of this development. We have recently demonstrated that 
the method reproduces very precisely the vibrational excitations and electrical 
properties of small diatomic systems [1]. The accurate predictive ability of the 
approach has been also recently employed to determine the structures and life 
times of molecular systems containing positrons [2]. 

Low-energy positrons have become more readily available in the laboratory 
leading to increased experimental activity concerning their interaction with mat
ter. Thus understanding of this interaction becomes an increasingly important 
problem for both theoretical and experimental considerations. More accurate 
models of positron-molecule interactions could benefit research in such ar
eas as interpretation of astrophysical gamma-ray spectra [3], positron-induced 
fragmentation of molecules [4], and characterization of thin films and mate
rial surfaces [5,6]. In addition, positron-matter interactions pose a number of 
challenges to our fundamental understanding of atomic and molecular physics 
[7,8]. Much recent research has been directed toward finding methods to treat 
electron-positron correlations and positronium formation as either an open or 
a closed channel problem in the theoretical calculations of elastic and inelastic 
cross sections, as well as annihilation rates [9-13]. 

In recent paper [14] Barnes et al. considered a question in the area of 
positron-molecule interaction which had remained unanswered for nearly four 
decades. In 1963, measurements by Paul and Saint-Pierre indicated unusually 
high annihilation rates for positrons incident on certain large molecules even 
though the positron energy was below the energy threshold for positronium 
formation [15]. While several explanations had been proposed to explain this 
phenomenon, clear experimental confirmation of the predictions generated by 
any model had been lacking [10,11,14,16-20]. To explain the unusually high 
annihilation rates Barnes et al. [14] studied the annihilation rate for positrons 
incident on a sampling of molecules resolved as a function of positron energy. 
The measurements were made using a new technique allowing generation of 
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a positron beam tunable in energy from 50 me V to several e V with an energy 
spread of ~25 me V full width at half maximum [12,21]. This beam had previ-
0usly been used to study elastic and inelastic scattering of positrons [13,22-24]. 
The Barnes et al. study [14,25] provided evidence that molecular vibrations 
are intimately connected with the observed large annihilation rates, and they 
pointed to the vibrational-excitation-mediated trapping into positron-molecule 
bound states, i.e., vibrational Feshbach resonances, as the specific mechanism 
of the enhancement. The study provided important guidance for theoretical 
attempts to explain the mechanism responsible for the large annihilation rates 
and lead to a better understanding of positron-molecule interactions. 

Annihilation rates for positrons in molecular gases are typically expressed 
in terms of the dimensionless parameter, Zejj, given by: 

(1.1) 

where r is the measured annihilation rate for positrons in the test gas, ro is the 
classical electron radius, c is the speed of light, and nm is the molecular density. 
If the correlations between the positron and molecular electrons were neglected, 
r would be equal to the Dirac rate, 7fr6cnmZ, with Z being the number of 
electrons in the molecule, and Zeff=Z. However, near room-temperature 
(300 K) measurements for positrons at energies near 0.025 e V show that, there 
are cases where Zejj is orders of magnitude larger than Z [15,20]. Forexample, 
for octane with 66 electrons (Z equal to 66), Zej j was estimated to be 6 x 105 . In 
general, it was found that the annihilation rates increase rapidly with molecular 
size. Large annihilation rate values of Z ej j= 10 7 have been observed for alkanes 
with only twice as many electrons as in octane. Explanation of this almost 
resonance behavior has been a subject of several theoretical models which have 
attempted to explain this phenomenon in terms of a vibrational or electronic 
resonance or a positron-molecule bound state [16,20]. The common feature in 
these models has been the assumption that a long-lived quasi-bound state can 
increase the overlap of the positron and electron wave functions and enhance the 
probability of annihilation. In other models explanations have been proposed 
involving the excitation of virtual positronium and other mechanisms involving 
very strong positron-electron correlations [10,11]. 

In an important development Gribakin proposed a model [19,20] that ex
plains some of the key features of the observed high annihilation rates in 
molecules. Gribakin's model distinguishes two mechanisms for the enhance
ment of Zejj. The first mechanism called direct annihilation can contribute 
to Zejj up to ~1000 and the enhancement of the direct annihilation rate (first 
considered in Ref. [16]) occurs when a shallow bound state or low-energy vir
tual state of the system exists. In this case, an increase of the positron density 
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in the vicinity of the target occurs and it is proportional to 1/ ( E + I EO I), where E 

is the incident energy and EO is the energy of the weakly bound or virtual state. 
The annihilation parameter Zel I increases by the same factor. In the case of 
positrons with finite energy, the direct annihilation mechanism is limited by the 
presence of E in the denominator. Thus for positrons at room-temperature, the 
direct annihilation can only enhance Zell by no more than :::::;1000. [19] 

According to Gribakin's model the second type of enhancement, resonant 
annihilation (i.e., Feshbach resonance enhancement), occurs when the sum of 
the energy of the incident positron and the energy of the ground state neutral tar
get molecule matches the energy of an excited quasi-stable positron-molecule 
bound state. This quasi-stable bound state has to involve an electronic or vibra
tional excitation of the target molecule in order to absorb the energy given up by 
the positron localizing into a bound state. When such a positron capturing oc
curs, due to the resonance conditions present in the event, the overlap between 
the positron wave function and those of the target electrons is significantly in
creased resulting in a large value of Zel I. If one assumes that the presence of 
the positron has little effect on the excited e.g., vibrational states of the target, 
[19] the condition on the incident positron energy for such a resonance to occur 
is: E = Eex - Eo - Eb, where E is the incident positron energy, Eex is the 
energy of the excited state of the target, Eo is the energy of the ground state of 
the target, and Eb is the binding energy of the positron to the target. 

There have also been proposals [26-28] and further discussion [29-31] of 
models that do not involve vibrational resonances. These models were mo
tivated, in part, by the observation that large values of Zel I correlate with 
the energies of the electronic states of the molecules [32]. The models have 
involved such concepts as highly correlated electron-positron states, the exci
tation of virtual positronium, and generic behavior at inelastic thresholds. All 
these effects are expected to increase, at least to some degree, the overlap of 
the positron and electron wave functions leading to an increase of Zel I. 

For alkane molecules, Barnes et al. [14] data showed large vibrational res
onance peaks that are down-shifted from the vibrational mode energies by an 
amount ~E, which increases with the molecular size. These observations are 
consistent with the predicted large enhancements of Zel I due to vibrational 
Feshbach resonances in the model proposed by Gribakin. Since the model 
requires the existence of positron-molecule bound states, Barnes et al. in
terpreted the quantity ~E as a measure of this binding energy. ~E increases 
linearly with the number of carbons for alkane molecules from ethane (C2H6) 
to dodecane (C12H26). Interestingly, single fluorination of alkane molecules 
drastically reduces the annihilation rate at the C-H stretch mode even for 
fairly large alkanes despite a very little change in the binding energy. Also, 
a comparison of pentane and isopentane indicated that changes in molecular 
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shape had no effect on either the position, magnitude, or shape of Zef f at the C-H 
stretch peak. Furthermore, to make the situation even more puzzling, for smaller 
molecules such as methane and carbon tetrafluoride no resonances have been 
observed, although methyl fluoride, difluoromethane, and trifluoromethane ex
hibited resonances. Experimental data collected for two-carbon hydrocarbons 
showed that in going from ethane (H3C-CH3) to ethylene (H2C=CH2), and 
then to acetylene (HC:=CH) reduces the magnitude of the C-H stretch peak, 
but enhances Zef f at lower energies. These measurements have provided im
portant guidance for theoretical calculations of Zef! for smaller molecules. In 
general, it can be concluded that the measurements of Zef!(f) for the larger 
alkanes reasonably agree with the predictions obtained from Gribakin's model. 
Furthermore, these measurements provide unquestionable evidence for positron 
binding to alkanes. There are, however, many issues that are puzzling and re
main to be addressed both experimentally and theoretically. One such issue 
concerns making a closer connection between values of Zef! (300 K) mea
sured for room-temperature positrons and measurements of Zef!(f) at higher 
energies. Furthermore, understanding of the possible role of intramolecular vi
brational energy redistribution in the annihilation process, particularly in larger 
molecules, is another important question awaiting explanation. Also under
standing the role of chemical structure in determining the magnitude and energy 
dependence of Zef!(f) is a question that needs to be addressed. 

The physical picture ofthe electron-positron annihilation in small molecules 
is, at present, less well developed and understood. Experimental data indicate 
that the annihilation rate in many small molecules is also much larger than 
expected on the basis of simple collisions. However, it is not clear how the 
magnitude of Zef!(f) and its changes correlate with changes in chemical com
position of the target molecule. In their work Barnes et al. [14] expressed a 
hope that quantitative Zell(f) spectra measured using the cold positron beam 
will motivate new calculations for small molecules. They wrote that the calcu
lated results, when compared with the experimental data, will help to elucidate 
the operative annihilation mechanism in small molecular systems. This under
standing becomes increasingly important as antimatter becomes more readily 
available in the laboratory. The understanding of the phenomena related to 
the molecular electron-positron annihilation is also expected to become more 
important as the realizing of the range of new scientific and technological ca
pabilities in this field increases. These new capabilities range from studies of 
fundamental symmetries of nature to the selective ionization of biomolecules 
and the characterization of materials. 

The experimental capabilities, such as those demonstrated by Gilbert et al. 
[25], to study in detail the behavior of Zef! at vibrational resonances has been 
allowing new and more precise tests of theories of annihilation in molecules. 
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The important prerequisite for such tests is theoretical determination of the 
molecule-positron binding energy with the use of computational methods. The 
ability of various atoms, ions, and neutral molecules to bind a positron or a 
positronium (Ps) atom is now well established by accurate theoretical calcu
lations [33]. So far, the two most successful theoretical methods have been 
the variational calculations employing explicitly correlated Gaussians (ECGs), 
[34] and the quantum Monte Carlo (QMC) techniques [35]. Recently, ab ini
tio configuration interaction (CI) calculations have also attracted interest as 
a promising method for describing positron and positronium interaction with 
one and two atoms (see Refs. [33,34] for a more complete list of references). 
Conversely, for molecules its usefulness in computing bound states of positron 
complexes has still to be fully explored (e.g., see Ref. [36]). As often hap
pens, each of the available methods has advantages and shortcomings, so that 
one should consider them as complementary tools in studying positronic com
plexes. For instance, while the method based on ECGs is undoubtedly the most 
accurate one, the computational effort requested grows faster than for QMC 
upon increasing the number of active particles in the system, therefore setting a 
practical upper bound to their maximum number. Up to now, no systems with 
more than five light active particles were computed. In principle, the limitation 
of ECG may be overcome by the CI approach, whose computational scaling 
with respect to the system size permits treatment of systems with more particles. 

So far, the QMC methods, and especially the DMC method, have been ap
plied to Ps-containing systems [37-41] where they have performed quite well, 
as well as to positron molecules formed by polar diatomic molecules with large 
dipole moments that bind a positron in dipole-bound states [42-44]. Second 
row atoms and their molecules, as well as systems composed of neutral po
larizable fragments and a positron (LiPs, NaPs, e+Be, and e+Mg), have also 
been recently investigated with the all--electron fixed node DMC (FN-DMC) 
[45]. Positron affinity (PA) and positronium binding energy (BE) were com
puted for the LiPs, NaPs, and e+Mg systems using either all--electron ECG or 
frozen-core ECG methods [46] by means of the stochastic variational method 
(SVM). 

With the aim of obtaining information on the energetic and annihilation 
properties of positrons and positroniums interacting with molecules, the ongo
ing project of our group has been to study positron and positronium chemistry 
with the use of methods not assuming the Born-Oppenheimer approximation 
regarding the separability of the nuclear motion from the motions of the elec
trons and the positron and utilizing explicitly correlated one-center and multi
center gaussian functions for expanding the wave function. These functions 
have been shown to recover the majority of the fermionic and bosonic correla
tion energy, [1] and therefore they are expected to consistently deliver accurate 
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results for the energy components of the electron-electron and electron-positron 
interactions. In order to reach our goal, it is mandatory to gain expertise on a 
variety of "model" systems before dealing with more complicated ones. Here, 
the word "model" means a real system for which it is possible to obtain accurate 
results employing different methods in order to make meaningful comparisons, 
rather than "artificial" systems whose Hamiltonian has been invented or con
siderably simplified. Such a model system is, for example, e+LiH, described 
later in this review. 

The recently improved estimates of LiPs BE by Mitroy and Ryzhikh [46] 
appear to be of high quality: their accuracy is roughly 1 % or better with respect 
to the exact value, so that there is no apparent fundamental reason to recompute 
its ground state. However this can not be said about excited states which have 
received very little attention. Due the small number of electrons, LiPs represents 
an excellent model for testing the accuracy of approximate methods devised 
to deal with larger systems containing Ps. For many of these systems, the 
electronic structure does not differ much from the structure of the parent atom 
or molecule since the Ps atom is usually weakly bound by means of dispersion 
forces (van der Waals A + B complex). For others, where the ionization potential 
(IP) of the parent system is higher than the electron affinity (EA) of the positron 
(equal to 0.25 hartree) the system is a complex of the parent molecule and a 
positron bound by electrostatic forces (ionic A - + e+ complex). Recently, 
[47] Mella et aL suggested that a study should be conducted of the ground 
states of some homonuclear diatomic molecules, namely e+Li2 and e+Be2, in 
order to explore the possibility of a behavior of the annihilation rate r versus 
R different from the e+LiH case. More specifically, they suggested that there 
should be a range of nuclear distances where r is larger than the one of e+Li 
or e+Be due to the interaction of the positron with the electronic density of 
the two atoms. Also, Mella et al. in their work [47] implicitly assumed that 
the correct dissociation pattern for e+ A2, A=Li, Na, were e+ A plus A, while 
they later showed [45] that the pattern was APs plus A +. Using the BE's 
for LiPs [45] and the BE for e+Li, of 0.002477 hartree from Ref. [34], it 
is easy to compute the energy difference ~E between the two dissociation 
patterns as the energy released in the process: e+Li + Li -+ Ps + Li + Li+ -+ 

LiPs + Li+ as ~E(Li) = BE(LiPs) - BE(e+ A). ~E(Li) obtained in this way 
equal to 0.00986 hartree [45] indicates the e+Li2 asymptotic breakup to be 
similar to the e+LiH one, namely PsH plus Li+. It is still unclear what is the 
asymptotic behavior of r versus R for e+Li2. where the polarization of LiPs, 
induced by Li+, causes a reduction of r upon decreasing the nuclear distance. 
The situation is additionally complicated by possible appearance of the two 
different breakup patterns, e+Li plus Li, and Li plus Li+ plus Ps laying few 
mhartrees above the lowest one. Moreover, the finding of Mella et aL [45] that 
the LiPs plus Li breakup has an energy below the energy ofLi2 at the equilibrium 
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distance also indicates the possibility of forming LiPs upon collision between 
a swarm of positrons and lithium dimer gas. However, since other processes 
are also energetically allowed, e.g., the formation of Li2 plus Ps, numerical 
calculations of the reactive cross sections are needed to determine the relative 
probabilities of the different outcomes. 

Turning now to e+Be2: the overall picture for this system appears much 
less complicated than for e+Li2 thanks to its larger IP. This makes any ionic 
dissociation pattern much higher in energy than the e+Be plus Be possibility. 
Although there is high probability that the e+Be2 system is bound, the mech
anism responsible for the binding might be quite involved since the binding 
energy of the Be2 dimer is very small (0.00360 hartree). Due to the fact that 
the atomic PA is of the same or larger order of magnitude of the dimer binding 
energy, one should not expect such a mechanism to be a simple sum of the 
different energetic contributions, but a more complicated dynamical interplay 
between different effects including the non-adiabatic coupling of the nuclear 
and positronic motions (i.e., electron-positron correlation). More accurate cal
culations are needed to study this problem. Thus, it is clear that even for small 
molecular systems containing positrons there are still many unanswered ques
tions which may be explored with theoretical calculations. 

In positron and positronium chemistry and physics, the two-photon annihila
tion rate, r 2')', plays an important role since it correlates with many aspects of the 
local environment where the positron annihilates. For instance, "pick-off" an
nihilation in solutions and in solid materials, "on the fly" annihilation in atomic 
and molecular gases, and bound state annihilation of positronic compounds are 
just few of the experiments where r2,), can be measured and interpreted. Al
though these experiments are relevant with respect to both the fundamental and 
practical standpoints, [48,49] only few theoretical studies have been devoted to 
accurately compute annihilation rates for realistic atomic and molecular systems 
in order to compare with the available experimental data or with the predicted 
trends [46,50-57]. Moreover, the studies have been mostly restricted to deal 
with systems with at most four active electrons. 

Calculation of r 2')' requires calculation of the expectation value of the Dirac's 
delta function, (fJ(r _+)) = I:i (fJ(ri+)), where ri+ is the distance between the 
i electron and the positron and the summation run over all electrons in the sys
tem. Most of the studies of the annihilation rate of molecule-positron systems 
have been performed for e+LiH employing QMC methods [43,57] and explic
itly correlated Gaussian (ECG) functions, [52,53,58] However, a description 
of r 2,), in highly excited of molecular vibrational states with a method depart
ing from the Born-Oppenheimer approximation is still lacking. If the Born
Oppenheimer approximation is assumed, the r 2')' is first calculated for different 
internuclear distances and then it is averaged over the ground and excited state 
vibrational wave functions. If the calculation is carried out without assuming 
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the Born-Oppenheimer (BO) approximation, f2,), is calculated directly as the 
expectation value for the total non-BO wave functions representing the ground 
or excited states of the whole system. 

For e+LiH there are several calculated results available for the quantity 
(<5(r_+)) = (<5(r1+)) + (<5(r2+)) + (<5(r3+)) + (<5(r4+))' DMC simulations 
[57] calculated at R=3.015 bohr give a value of 0.02408 and ECG calculations 
[52] at the same geometry give 0.024992. At the estimated equilibrium dis
tance of R = 3.348 bohr the ECG calculations give a value of 0.027252 [53]. 
The nonadiabatic results of Mitroy and Ryzhikh are 0.034016 and 0.032588 
[58]. These last values were obtained using ECG and the stochastic variational 
minimization (SVM) and the frozen-core SVM (FCSVM) methods, and are 
roughly 15%-20% larger than the ECG [52,53] and DMCII clamped-nuclei 
values. This unexpected result led Strasburger [52] to consider the possibility of 
flattening of the potential energy curve of e +LiH at larger R with respect to the 
LiH curve - a feature that would allow the positronic molecule to access a larger 
internuclear distance region where the average value of the Dirac delta function 
is expected to be larger. However, Mitroy and Ryzhikh [58] pointed out that 
their results may not be sufficiently converged due to their ECG basis inability 
to describe the vibrational motion of the molecule leading to their vibrational 
averaged nuclear distances being probably too large. 

In recent work [59] Mella et aL used the DCM method and the BO approach 
based on vibrational averaging to calculate the annihilation rate in e+LiH as a 
function of vibrational excitations. The calculations were done by averaging 
the Dirac delta function calculated as a function of the internuclear distance over 
the first 15 vibrational levels of e+LiH. (<5(R)) showed a steady increase on 
going towards larger v indicating that the annihilation rate does depend on the 
vibrational state of the molecule. Although the trend of these results could be 
specific to the e+LiH system and, perhaps, to other similar polar molecules as 
well, it indicates that any theory formulated to describe "on the fly" annihilation 
of e+ due to Feshbach resonances must include the vibrational effect in order 
to accurately predict the annihilation rate. It should be noted that the work of 
Mella et aL [59] was based on the Born-Oppenheimer approximation and, thus, 
it did not describe the coupling of the motion of the nuclei with the motions 
of the electrons and the positron. Including the coupling of these motions may 
be important in highly excited states and may affect the annihilation rate. Our 
study will explore this point. 

2. Outlook 
One of the aims of our studies of e+LiH and e+LiD is to search for long

lived bound positron states in these polar molecules. As mentioned, the cal
culations have been conducted with the use of the non-Born-Oppenheimer 
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quantum-mechanical approach we have developed in our laboratory for cal
culating nonadiabatic ground and excited states of molecular systems. In the 
approach we use explicitly correlated n-particle gaussian functions multipled 
by powers of inter-nuclear distances. As we have shown the use of these func
tions allow to achieve very high accuracy in calculations of vibrational states 
of diatomic molecular systems [60]. 

The posibility that positrons may occupy long-lived states in the e+LiH and 
e+LiD systems is related to the nature of their binding to the LiH and LiD 
molecules which is based on the positron-dipole moment interaction. In the 
positron bound states resulting from this interaction, the positron wave function 
is located mostly outside the frame of the LiH or LiD molecule and the overlap 
between this function and the electron wave function is relatively small. This 
small overlap may lead to reduction of the anihilation rate and facilitate the 
long-livedness of these states. Thus, the general focus of the project is to 
model dipole-bound positron states in polar molecules and to determine their 
life-time. Similar states exist for electrons as has been demonstrated by a 
number of workers including our group. For example, in the studies of anions 
of LiH, LiF and some other polar diatomics [61] performed with the use of the 
numerical Hartree-Fock (HF) and numerical MCSCF methods we calculated 
not only ground dipole-bound states of excess electrons in those systems, but 
also excited dipole-bound states located very close to the electron dissociation 
threshold. The term "numerical" means that the molecular orbitals in those 
calculations were represented as numerical functions on a 3-D grid and not 
as linear expansions in terms of some analytical basis functions. The use of 
numerical orbitals, which were essentially exact solutions of the HF or MCSCF 
Fock equations, allowed us to accurately describe the very diffuse character of 
the ground and excited dipole-bound states of excess electrons in the anions. 
We have demonstrated that, particularly in the excited states, these electrons are 
located far away from the parent molecules and overlap very little with the core 
electrons. More recently we have also studied electronic dipole-bound states in 
polyatomic molecules and clusters (see, for example, studies on dipole-bound 
anions of nucleic acid bases and their clusters [62]) and bound electronic states 
resulting from interaction of an excess electron with two or more molecular 
dipoles [63]. These type of states may also be relevant to the positron chemistry. 

In analogy to excess electrons, positrons should also form diffuse dipole
bound states with polar molecules. The ionization potential of the polar molecule 
should be higher than the binding energy of the electron-positron pair (equal 
to -0.25 hartree) in order for the positron-molecule complex not to transform 
into a weakly bound (molecule) + -Ps complex. Also, analogically to the excess 
electrons, there should exist excited dipole-bound states for excess positrons 
in positron-polar-molecule systems. As mentioned, in these states the overlap 
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between the electronic wave function and the wave function of the positron, 
though larger than in excited dipole-bound states of an dipole-bound excess 
electron, should be small leading to a relatively low positron-electron annihi
lation rate and to a long-lived positron-molecule complex. 

In our approach we use the variational method and perform the calculations 
in the state specific manner optimizing the basis set of correlated gaussians 
individually for each root. The one-center gaussian basis functions we have 
used so far in calculating positron molecules are fully spherically symmetric 
and can describe only states with the total angular momentum equal to zero. 
Thus, the calculated states, both ground and excited, correspond to vibrational 
and electron-positron excitations of the ground rotational state of the system. 
We should, perhaps, more correctly call them vibrational-electronic-positronic 
states since the calculations have been carried out without assuming the Born
Oppenheimer approximation. The discrete spectrum of bound states of the 
e+LiH system is complicated by the non-adiabatic coupling between the vi
brational states and the dipole-bound positron states and by the fact that those 
latter states are embedded in the vibrational spectrum. The degree of coupling 
is expected to rise with the excitation level. This effect presents a challenge 
for the calculations because the non-adiabatic coupling effect is defficult to 
describe. 

The importance of the search for long-lived positron bound states in polar 
molecules is related to the possibility of "storing" positrons in those states for 
relatively long times. However, before this aim can be accomplished one needs 
to demonstrate that non-adiabatic high-accuracy calculations can be performed 
on the e+LiH system where these types of "storing" states can be determined. 

3. The Method 
In this work we employ explicitly correlated gaussian functions in varia

tional calculations to determine energies and wave functions of non-adiabatic 
quantum states of systems consisting of nuclei, electrons and a positron. The 
procedure for non-adiabatic molecular calculations is derived from the non
adiabatic approach, which our group has pursued for the last few years, and 
based on several past applications of correlated gaussians in BO and non-BO 
calculations on atomic and molecular systems [1,60,64-70,70-95]. There are 
also elements in the procedure that has been derived from the important works 
ofPoshusta and Kinghorn concerning non-BO calculations [96-99]. The major 
challenge which our group is now pursuing is the extension of this method to 
describe molecules with two and more nuclei in ground and excited electronic 
and ra-vibrational states. 
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3.1 Hamiltonian 
One can express the non-relativistic Hamiltonian for the system of N par

ticles interacting with the isotropic potential (e.g., Coulombic two-particle at
traction and/or repulsion), V, in terms of the coordinates of particles and their 
relative distances as: 

N \72 
Htot = - L MR , + V (11Ri - Rjll ; i < j, i = L.N). (1.2) 

i 2 t 

The particles are numbered from 1 to N with Mi being the mass of particle 
i, Ri = [Xi li Zil' a column vector of Cartesian coordinates for particle i in 
the external, laboratory fixed, frame, \7iti the Laplacian in the coordinates of 
R i, and II ~ - Rj II the distance between particles i and j. The total Hamilto
nian (1.2) is, of course, separable into an operator describing the translational 
motion of the center-of-mass and an operator describing the internal energy. 
This separation is realized by a transformation to the center-of-mass and in
ternal (relative) coordinates. Let R be the vector of particle coordinates in the 
laboratory fixed reference frame: 

(1.3) 

The center-of-mass and internal coordinates are given by the transformation 
T: R I--t [r~, r'l', 

Ml M2 M3. MN 
rna rna rna rna 
-1 1 0 0 

T= -1 0 1 0 0/s, (1.4) 

-1 0 0 1 

where mo = ~f Mi. ro is the vector of coordinates for the center-of-mass 
and r is a length 3n = 3 (N - 1) vector of internal coordinates with respect to 
a reference frame with origin at particle 1 (this particle is usually the heaviest 
particle in the system): 

[ 
rl 1 [R2 - Rl 1 r2 R3 - Rl 

r= . 

rn RN - Rl 

(1.5) 
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Using this coordinate transformation, and the conjugate momentum transfor
mation, the internal Hamiltonian can be written as [96, 97]: 

H = -- "" _\72 + "" -\7 .. \7. + V (r··· i < J. 1 (n 1 n 1 ) 
2 ~ Z ~ M Z J ZJ' , 

i J-Li ii-j 1 
i=O ... n), 

(1.6) 
where the J-Li are reduced masses, Ml is the mass of particle 1 (the coordinate 
reference particle), and \7 i is the gradient with respect to the x, y, z coordinates 
rio The potential energy is still a function of the distances between particles 
but is now written using internal distance coordinates, rij = Ilri - rj II = 

IIRi+l-Rj+IiI withroj =rj = Ilrjll = IIRj+l-Rlll. Although the poten
tial energy term, V (rij; i < j, i = O ... n), is written in the form of a general 
function of inter-particle distances, for particles interacting with the Coulombic 
potential (e.g., nuclei, electrons, and positrons) it is given by the conventional 

expression: ~i>J· z:~j , where Z/s are charges of the particles. 
'J 

3.2 Basis set 

The centerpiece of the method is the use of N -particle explicitly correlated 
gaussian basis functions of the general form, 

N 

1>k = (II r~kij) exp [-r'(Ak ® h)r] (1.7) 
i<j 

which can be represented in a more conventional form as: 

N 

II mkij [ 2 2 
1>k = ( r ij ) exp -Cl:lkrl - Cl:2k r 2 - ... 

i<j 

-Cl:nkr; - f312,k r i2 - f313,k r i3 - ... - f3nn-l,kr;n-l] . (1.8) 

These functions, hereafter referred to simply as "1>k", with the addition of rota
tional components and appropriate symmetry projections, are used as variational 
basis functions for wave functions describing internal non-adiabatic states of 
multi-particle systems consisting of nuclei and electrons (also including other 
particles such as positrons, muons, etc). In 1>k the term Ili<j r~kij is a prod
uct of "distance" coordinates, rij, raised to powers mkij (positive, negative 
[100] or zero). In molecular calculations this term needs to only include the 
inter-nuclear distances. 

The exponential component is an explicitly correlated gaussian (1.7) with 
r representing a length 3n column vector of internal (relative) coordinates (r' 
denotes the transpose ofr, i.e., a row vector), Ak is an N x N symmetric matrix 
of exponent parameters (positive definite). Vector r will be defined later in this 
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section. The Kronecker product of Ak with the 3 x 3 identity matrix, Is, insures 
rotational invariance. For diatomics the (Pk's the pre-exponential factor needs 
to contain only powers of the single inter-nuclear distance, rl: 

(1.9) 

The basis set has been implemented and used in several projects concerning 
diatomic systems including the calculations of e+LiH. However, a better con
vergence and more accurate results we expect to obtain with a basis containing 
powers of the two positron-nucleus distances (r2 and r12) included in the pre
exponential factor: 

(1.10) 

since these types of functions can better describe the reduced probability of 
finding the positron at the nuclei. The functions (1.10) can also be used in non
BO calculations of systems with three nuclei. Functions (1.10) are currently 
being implemented. 

Note that the (Pk'S are angular momentum eigen-functions with zero eigen
value. Multiplying the basis functions by spherical harmonics, Y f:t(Pk, allows 
to describe higher angular momentum eigen-states when the factor Y f:t is cho
sen as an angular momentum eigen-function for the desired state [101,102]. 
This very important property allows to separate variational calculations for 
vibrational-electronic states corresponding to different values of the total an
gular momentum operator (different rotational states). 

An alternative to basis functions (1.7) is to use N-particIe explicitly correlated 
gaussian functions with shifted centers: 

(Pk = exp [- (r - s)' (Ak @ Is) (r - s)] . (1.11) 

This basis allows non-B-O calculation of wave functions for systems with 
more than two nuclei and of systems exposed to symmetry breaking exter
nal perturbations such as an electric field. Though these basis functions are 
not eigenfunctions of the square of the total angular momentum operator as 
are the functions without shifts, ¢k = (TIf:: j r~kij) exp [-r'(Ak @ 13)r], they 
can still be used to obtain very good non-adiabatic wave functions since they 
form a complete set and, in principle, can describe any non-BO bound state of 
the molecular system. However, since they are not eigenfunctions of the total 
angular momentum, it is difficult to use them to calculate excited states in a 
way that would allow separation of vibrational-electronic and rotational exci
tations. Such separation automatically occurs when one uses basis functions 
that are angular momentum eigenfunctions. In order to generate a wave func
tion corresponding to the specific rotational excitation in the basis of shifted 
correlated Gaussians, one would need to project out from the wave function 
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the contributions from angular momenta different from the angular momentum 
of the calculated state. This may not be a practical way to proceed, especially 
if very high accuracy is required. Thus, we plan to use only the basis functions 
(1.11) to calculate the non-BO ground states of positron systems with more 
than two nuclei. 

In some preliminary calculations with the shifted center fuctions we have 
considered the Ht 1R3 system and its isotopomers [103]. An interesting aspect 
of these types of calculations is the way we generate a good starting guess of 
the non-BO wave function. First, a conventional variational BO calculation 
for the system using a basis set of correlated Gaussians with shifted centers is 
performed. For this the method developed recently [70] that allows simultane
ous optimization of the molecular geometry and the non-linear parameters (i.e. 
exponents and centers) of the basis functions is used. Next the converged BO 
wave function is multiplied by Gaussians dependent on the coordinates of the 
nuclei. These Gaussians are centered at the equilibrium positions of the nuclei 
that were obtained in the BO calculation (with the reference nucleus placed at 
the center of the coordinate system). The basis set (1.11) can also be used in a 
hybrid approach where some of the particles are described by the wave func
tion and some are stationary and are represented by point charges. This type 
of approach described recently by us [1] can be used to study the chemistry of 
positron molecules with more than two nuclei, including some "heavy" nuclei. 

3.3 Symmetry 

Our expansion for the basis function, TIi<j r~kij exp [-r'(A k 0 h)rj, is 
written using the scalar "distance" variables {rij} and the internal coordinate 
vector variable r. The expansion of the wave function in terms of <Pk has to prop
erly reflect the permutational symmetry of the considered state. Since the <Pk'S 
are isotropic the problem of how to handle permutational symmetry is taken care 
of by appropriate symmetry projection operators. The operators ensure that the 
wave function obeys the Pauli principle and ensures the correct permutational 
symmetry. We recently described the details of the symmetry-adaptation of 
the non-BO wave function using the Young operator representation [73] (see 
also other references [96-98]). Consider a system of N particles whose per
mutational symmetry is given by the group, G, represented by a set, {PaEG} , 
of N x N permutation matrices. A wave function represented as an expansion 
in <Pk is a function of the n = N - 1 component vectors of r, the relative 
coordinates. The permutation Pa acting on the N particle coordinates induces 
a transformation on the center-of-mass and relative coordinates given by: 

(1.12) 
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where T is the transformation matrix given in Eq.(1.4). The right hand side of 
this expression is the direct sum of the identity acting on the center-of-mass 
coordinates, rQ, and Ta , which is an n x n "permutation" matrix acting on 
the component vectors of the relative coordinate vector r. The action of the 
permutation represented by Pa on 1>k is then, 

mk" 

Pa1>k = II [r'(T~JijTa ® Js)rJ ~ exp [-r'(T~AkTa ® Js)rJ . (1.l3) 
i<j 

The action of a representation of the group G on 1>k is thus induced by the 
projector 2:aEG Ta· 

3.4 Variational Calculations 
An important development in our non-Born-Oppenheimer approach has 

been the derivation and implementation in our group of the analytical gradient 
of the variational energy functional with respect to the non-linear exponential 
parameters of the explicitly correlated Gaussian functions [67,73,78,84,92]. 
In our calculations the wave function for the ground state is obtained by directly 
minimizing the Rayleigh quotient: 

. c' H(a)c 
E(a;c)=mm 'S() 

{a,e} cae 
(1.14) 

with respect to the linear expansion coefficients, c, of the wave function in terms 
of the symmetrized basis functions, and with respect to the non-linear expo
nential parameters, a, of the basis functions. In the ground state calculations, 
the diagonalization of the H matrix is usually not performed since it is believed 
that the energy can be more effectively lowered when the e and a variables are 
considered independent parameters. In minimizing the energies of the excited 
states, which has been done in separate calculations for each excited state, we 
used the diagonalization procedure that provides the eigenvalue only for the 
calculated root. In the minimization of the energy functional the analytical 
gradient of the energy with respect to the linear and non-linear parameters of 
the wave function is used. The energy gradient with respect to the non-linear 
variational parameters can be written as: 

1 oveehH ovechS , ,., 
'Va E = c'Se ( oa' - E oa' ) (vech[2ec - dzagce ]), (1.15) 

where a is a m(n(n + 1)/2) vector of all the non-linear parameters, m is 
the number of basis functions used, and the vech operator vectorizes a sym
metric matrix by stacking the columns of the lower triangular part of the ma
trix (excluding the upper triangular part) on top of each other. The vector a 
is made by stacking, function by function, the lower triangular elements of 
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Lk (where Ak = LkLD. In the case of Gaussians with shifted centers, a 
also includes the elements of the Sk shift vector. The matrices of derivatives 
avechH avechS are sparse since each row has at most 2(n(n + 1)/2) non-zero aa' , aa' , 
elements (2(n(n + 1)/2 + 3n) for shifted Gaussians). The derivatives of the 
Hamiltonian matrix are determined by using the derivatives of the molecular 
integrals: 

ovechH 
oa' 

ovechT ovech V ---+---oa oa' (1.16) 

The integrals and their derivatives were described in the previous papers [67, 
73,78,84,92]. The analytical gradients considerably accelerate the variational 
optimization of the wave function. In our recent calculations we have combined 
the stochastic variational method with the gradient-based optimization and we 
found this hybrid approach to be the most effective. The approach was used in 
the e+LiH calculations described below. 

3.5 Parallel implementation 
Efficient parallel computational implementation of the N-particle non-BO 

code to perform large scale variational calculations on ground and excited states 
of positron molecules has been one of the major tasks in the development we 
have carried out. In the ground-state calculations for the e +LiH described below 
we have used nearly 3000 basis functions and the work has been peformed on a 
64-processor Athlon MP Linux Beowulf cluster. We estimate that it will take 
approximately 5,000-8,000 basis functions per state for the e+LiH or e+LiD 
system to achieve the level of accuracy we need in the calculations. Thus access 
to a computer cluster (e.g. a Beowulf cluster) with 500-1000 processors will 
be necessary. Parallization of our non-BO code to run on a system with that 
many processors is by far not a trivial matter. Although the calculation of 
the Hamiltonian matrix elements can be very effectively parallelized, there are 
some modules in the code that need to be restructured to fully utilize the parallel 
architecture of a computer cluster with a distributed operational memory. These 
tasks are being carried out in our group. 

4. e+LiH 

This project concerning calculations of positron molecules has evolved from 
our previous works where we have used explicitly correlated gaussian func
tions in molecular non-BO and BO calculations of some small atomic and 
molecular systems [1, 64-73, 60, 74-87, 70, 88-95]. The results of the cal
culations shown here concern the ground state of the e+LiH system and its 
fragmentation into HPs and Li+ with our non-BO approach. Since, for both 
e+LiH and HPs systems our non-BO variational energies are better (lower) 
than the energies obtained before, we decided to include them in this review. 
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The improvement was particularly significant for e+LiH which was calculated 
before with the use of non-BO method and explicitly correlated gaussians by 
Mitroy and Ryzhikh [58]. Their total variational energy obtained with 580 
gaussian functions of -8.089010 hartree is significantly higher than not only 
our best results obtained with 2800 gaussian functions of -8.l04684 hartree, 
but also higher than our 580-term result of -8.1020734 hartree. The fragmen
tation energy is also much better converged than that reported by Mitroy and 
Ryzhikh [58] (see Table 1). Their result of 0.020815 hartree is much lower 
than our 0.03649 hartree result which is only about 1 % off from the value of 
0.03683 hartree obtained from extrapolation to an infinite number of the basis 
set. The much lower variational e+LiH energy obtained in our calculations in 
comparison with that obtained by Mitroy and Ryzhikh can be attributed to our 
use of pre--exponential rr;k multipliers in the basis functions which were absent 
in their calculations. The multipliers are necessary to describe the vibrational 
component of the non-BO wave function. 

Though in the calculations of excited states with more complicated node 
structure of the wave functions more basis functions will be needed, there is not 
fundamental reason not to expect the quality of the results to be lower than that 
for the ground state. This gives us confidence that high-quality results will be 
soon generated in our lab concerning the excited spectrum of the e+LiHle+LiD 
system. This data, when available, can be used as a reference in future experi
ments concerning the e+LiHle+LiD spectroscopy and chemistry. 

Table 1.1. Total non-BO energy in hartrees of the HPs and e+LiH systems as a function of the 
number of the explicitly correlated gaussian basis functions. Fragmentation energy corresponds 
to dissociation of e+LiH into HPs and Li+ (ELi+ = -7.279325 hartree [58]). All energies in 
hartrees. 

I No. basis functions 

800 
1200 
1600 
2000 
2400 
2800 

Literature results: 
Mitroy and Ryzhikh [58] 
Mella et ai. [47] b 

a Extrapolated results. 

HPs 

-0.78887050403 
-0.78887063984 
-0.78887067901 
-0.78887069403 
-0.78887070145 
-0.78887070576 

-0.788870 

e+LiH Fragmentation energy 

-8.10307542904 0.03488 
-8.10390578874 0.03571 
-8.10425655075 0.03606 
-8.10447824966 0.03628 
-8.10459855237 0.03640 
-8.10468350271 0.03649 

-8.089010 0.020815 
-8.105 

b Born-Oppenheimer QMC energy obtained for the ground vibrational state. 
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s. Summary and future work 

To summarize, our work on the positron molecular systems has just started. 
The preliminary results have indicated that the methods we developed can de
liver the needed accuracy in the calculations on such systems. However, there 
are a number of tasks that needs to be completed before studies can be extended 
to positron systems with relevance to the experimental studies. Some of the 
immediate tasks include the following: 

1 Implementation of the basis functions 

in non-BO calculations. This will require derivation of the Hamiltonian 
integrals and the integrals involved in the energy gradient. This develop
ment will not only allow more accurate non-BO calculations of ground 
and excited states of diatomic systems containing positrons (e+LiH and 
e+LiD), but, more importantly, it will for the first time enable non-BO 
studies of chemistry and spectroscopy of positron-triatom systems. 

2 Parallel implementation of the non-BO approach on a computer cluster 
with several hundred nodes. 

3 Implementation of basis sets allowing determination of spectra of e+LiH, 
e+LiD and other positron systems involving states with non-zero total 
angular momentum. 

4 Development of methods for determination of possible dissociation path
ways of positron molecules and the corresponding bonding energies. 

5 Feasibility study of utilizing multi-center correlated gaussian functions 
in calculations of molecules with multiple nuclei. 
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