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Variational calculations of excited states with zero total angular momentum
(vibrational spectrum ) of H, without use of the Born—Oppenheimer
approximation
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Very accurate, rigorous and fully variational, all-particle, non-Born—Oppenheimer calculations of
the vibrational spectrum of the Hnolecule have been performed. Very high accuracy has been
achieved by expanding the wave functions in terms of explicitly correlated Gaussian functions with
preexponential powers of the internuclear distance. An indicator of the high accuracy of the
calculations is the new upper bound for thg hbnrelativistic nonadiabatic ground state energy
equal to—1.164 0250300 hartree. @003 American Institute of Physics.
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We recently introduced a new correlated Gaussian basitons” to the BO approximation. The present high-accuracy
set suitable for high accuracy nonadiabatic calculations omesults may also be used in the future to estimate the relativ-
diatomic moleculesand showed that the basis is capable ofistic effects in the vibrational spectrum of,Hs a difference
providing the most accurate ground-state nonadiabatic eneof the transition energies and the experimental energies.
gies of H (Ref. 2 and LiH2 In this article we continue the In the nonadiabatic molecular approach that does not
validation of our approach by presenting highly accuratejnvoke the BO approximation regarding the separability of
variational, non-Born—Oppenheimémnon-BO nonrelativis-  the electronic and nuclear motions, all particlescclei and
tic calculations of the “vibrational spectrum” of the,Hnol-  electrong are treated equally. Without invoking any approxi-
ecule. Although we use the term “vibrational spectrum,” the mations, the total nonrelativistic Hamiltonian can be sepa-
states we have calculated can be better characterized as stdi@&d into an operator representing the translational motion
with the zero total angular momentum that is the sum of theof the center of mass and an operator representing the inter-
angular momenta of the electrons and the nuclei. We calcu?@l energy. For B we perform this separation by making
late these states by using totally spherically symmetric wavéransformation to an internal reference frame with the origin
functions dependent on the coordinates of both nuclei andt one of the two nuclei,
electrons in an internal coordinate system that excludes the

three coordinates describing the motion of the center of mass ry R,—R;

of the molecule. By describing our method as “variational” r=|r,|=| Rs—Ry|, (1)

we mean that the energies of the ground and excited states in rs R4s—R;

our calculations are obtained by direct diagonalization of the

Hamiltonian matrix. where theR; are the original Cartesian coordinates in the

Such direct calculations of the whole vibrational spec-|aboratory coordinate system. This transformation to the in-
trum have not previously been reported in the literature. S@ernal coordinates together with the conjugate momentum
far the only direct nonadiabatic calculation of Mbrational  transformation yields the nonadiabatic Hamiltonian for the
levels has been the early work of Wolniewitavhich only internal energy of K expressed in terms of coordinates of

considered the ground and the first excited state. three pseudoparticles as
A by-product of the calculations is a new variational
upper-bound for the ground state energy of thenkblecule. 3 3 3
. - 1 1_, 1_, JoQ;i
This new upper-bound, as well as the variational upper- H=-_|> —VZ+> ——V/V, +>)
bounds to the excited vibrational energies, should provide a 2\ =1 mi 7 My =1 N
very accurate reference for future nonadiabatic molecular 3 aid
calculations and for evaluating the quality of methodologies +> = 2)
i<i T

where the nonadiabatic effects are determined as “correc-

a o L whereu;=MM;/(M+M,) is the reduced mass associated
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son, AZ 85721. 1 (the reference nucleusThe potential energy is the same as
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in the total Hamiltonian but is now written using internal In the present calculations we used a mixed approach.
distance coordinates. The charges are mapped from the oridrirst we optimized a wave function for each state in the basis
nal particles a$Q1,Q,,Q3,Q.4}—{00,91,92,03}. Inthe in-  of 128 functions(175 functions for the highest, fourteenth,
ternal coordinates, the interparticle distances aye=|r; excited statgusing the procedure based on analytical gradi-
—1i|=|Ri+1—Rj4+1| with rj=|r;|=|R;;1—Ry|. More in-  ents to obtain a good first approximation. Then we continued
formation on the nonadiabatic Hamiltonian and eliminatingthe optimization using the stochastic variational meth6th
the coordinates of the center of mass motion can be found ithis step we enlarged the basis set for each state by including
Ref. 1. additional basis functions with randomly selected nonlinear
Explicitly correlated spherical Gaussians multiplied by parameters and powers of the internuclear distance, and by
powers of the internuclear distance were used as basis funstubsequently optimizing these parameters of the functions in
tions in the present calculations. As we showed befdritie  one-dimensional optimizations. After each addition of 100—
preexponential powers of the internuclear distance allow ug00 new functions to the basis we carried out a cyclic one-
to describe the nuclei correlation effects. They are also imdimensional optimization of each nonlinear parameter of ev-
portant in generating nodes in the wave functions of the viery function in the basis set. Although the approach, unlike
brational excited states. The general form of the basis functhe approach based on the analytical gradient, does not usu-
tion is (the prime represents vector/matrix transposition andilly provide a very well optimized set of parameters, it al-

® is the Kronecker product symbol lows one to compensate for this by significantly increasing
my ) , the basis set size. In the present calculations we used 3000
de=rexg —r'(LiLy®lg)r], () pasis functions for each of the 15 calculated states. As will be

shown next, with 3000 basis functions we noticeably low-
ered our previous variational upper-bound of the ground state
energy of H.2 This indicated to us that the stochastic varia-
'tional approach is very effective in the energy minimization.
The non-BO wave functions of different excited states

where for B r is a 9x1 vector of the internal Cartesian
coordinates of the three pseudoparticleg,is 3X 3 rank 3

lower triangular matrix of nonlinear variation parameters
andl s is the 3x 3 identity matrix. To ensure the proper per-

mutational symmetry of the two identical nuclei and the two . :
y y Bave to differ from each other by the number of “nodes” in

electrons, the appropriate symmetry projections were applie . . )
to the basis functions. More details regarding the form of theterms of the internuclear distancg.. To accurately describe

symmetry projection operators can be found in Refs. 1 and Zthe node structures in all 15 states considered in the present

Using only spherical Gaussians we can only describe statfﬂﬁ"?“?ﬁs’ a w|de rar:gel (:f pow?trﬁk, had tg tiet%;ied'
with the zero total angular momentum. In order to conside llein the previous calculations of the lground statethe

rotationally excited states we would need to include in thg?OWer range was 0-40, in the present calc_ulatlons I was
xtended to 0—250. Also, as was the case in the previous

basis functions angular factors. Such factors have been coff? lculati | d
sidered in recent works by Suzuki and Vaigae Ref. V. ca Culfltlons,.we_on y us]f: evzn_ por:/yers. Kh b

Our calculations were performed for the proton—electron . A optlmlzanons performed in this work-have been car-
mass ratio of 1836.152 667 5 taken from the CODATASgg, l€d out using the double precisid64 bit). A peril of sig-

We used the atomic units except where otherwise notedqificantly increasing number of terms in the expansions of
Thus, =1, m,=1, energies are in hartrees, and distancedh€ wave functions in such calculations is the numerical in-
) 1 e 1 )

are in bohrs stability. To verify this point, all results presented in this

The wave functions for the ground state and the exciteqVOrk were recalculated with the quadruple precisidas

states were obtained using the variational method by miniPit)- No numerical inaccuracies have been detected.
The high degree of parallelism of the algorithm that un-

mizing the energy of each state obtained through diagonal-

ization in a separate calculation. The minimization was don&€rlies the stochastic variational method allowed develop-
with respect to the linear expansion coefficients, and ment of a parallel implementation of the procedure. The cal-

with respect to the nonlinear parameters of the basis funcculations described here have been carried out using MPI
tions, i.e., the basis set exponent matridgs, and the pow- (message passing interfaaan several multiprocessor com-
ers of the internuclear distance, . puter platforms. They included our “Beowulf” 16-processor

In our previous non-BO calculations of the ground statesSYN ULTRA 10 cluster, an IBM SP3 computer, and SGI
of H, and LiH*® we employed a procedure where we di- ORIGIN 2000 super-computer. The calculations have been

rectly optimized the Rayleigh quotient with respect to bothcarried out continuously for over four months.

the linear and the nonlinear parameters, Table | contains total variational energies of the lowest
15 states corresponding to the rotational ground stdte (
~ c¢'H(L,m)c =0) calculated with 3000 basis functions each. We also
E(L,m,C)={[anfl}m7 show the expectation values of the internuclear distance and

its square calculated as average values using the optimized
whereH(L,m) and S(L,m) are the Hamiltonian and overlap wave function of each statér(;),(r2)). The energy for the
matrices, respectively. Both are functions of the nonlineaground state of-1.164 025030 0 hartree is noticeably lower
parameters of the basis functions. In the optimization wehan our previously reported  upper-bodnd of
used the analytically calculated gradients of the energy with-1.164 025023 2 hartree. We are certain that for at least a
respect to the linear and exponential nonlinear paramkterstew lowest excited states the quality of the results is very
The powersm,, were optimized separately. similar as for the ground state. However, for the highest
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Excited vibrational states of H,

TABLE I. Nonadiabatic variational energies for 15 states of therélecule with zero total angular momentum

(the ground rotational statesbtained with 3000 basis functions for each state and expectation values of the

internuclear distance and the square of the internuclear distange(r?). Also, the nonrelativistic energies of
Wolniewicz are presented for comparison. All quantities in atomic units.

E (ro)

<

(rd)

E (from Ref. 12

0 —1.164 0250300 1.4487380
1 —1.145065 367 6 1.5453495
2 —1.1271779152 1.646 057 9
3 —1.1103404429 1.751708 2
4 —1.0945391187 1.8634245
5 —1.0797693217 1.9827332
6 —1.066 0370737 2.1117587
7 —1.053 3604890 2.2535349
8 —1.0417726950 24125952
9 —1.0313249454 2.595894 0
10 —1.022091 7849 2.8149490
11 —1.014178260 1 3.0901798
12 —1.0077301951 3.4627010
13 —1.0029493758 4.0342373
14 —1.000 115048 2 52110181
a —0.9994556794

21270459
24739967
2.856817 2
3.2814143
3.755699 5
4.2905417
49013207
5.610516 3
6.452 556 7
7.482 3876
8.794679 6
10.566 922
13.181 814
17.680 148
28.919 890

—1.164 0250185
—1.145065 362 9
—1.127 1779324
—1.1103404855
—1.0945391940
—1.0797694803
—1.066 037 284 9
—1.0533608258
—1.0417731139
—1.0313254708
—1.022092 487 6
—1.0141791536
—1.007 7311979
—1.002 950463 3
—1.000 115976 2

aNonrelativistic threshold.

states, where the number of nodes in the wave function is
much higher, the quality of the calculations decreases, but we
believe that it still allows determination of the transition en-
ergies, discussed next, with the accuracy similar to the ex-
perimental uncertainty, if not higher.

In Table | we also compare our total variational energies
with the energies obtained by Wolniewicz. In his calculations
Wolniewicz employed an approach where in the zeroth order
the adiabatic approximation for the wave function was used
(i.e., the wave function is a product of the ground state elec-
tronic wave function and a vibrational wave functjand he
calculated the nonadiabatic effects as correctiohis gen-
eral the agreement between our results and the results of
Wolniewicz is very good. However, one notices that the
agreement is much better for the lower energies than for the
higher ones. While for the two lowest states our energies are
lower than those obtained by Wolniewicz, the energies for
the higher states are progressively higher.

We found it interesting how the distribution of powers of
r, in the basis set changes with the increased excitation
level. We demonstrate this change in Fig. 1 by showing the
power distributions optimized for the=0, v=1, andv
=14 states. As expected, only one maximum in the power
distribution appeared for the ground-state wave function,
where there are no nodes and the wave function peaks near
the ground-state equilibrium distancér {) = 1.449 bohr).
For the first excited state, the distribution was somewhat
wider, which seems to be a result of two overlapping peaks
and reflects the presence of a maximum and a minimum in
the wave function of this state. For the= 14 state, whose
wave function has 14 “nodes,” the power distribution be-
came almost uniform in the 0—250 range.

Included in Table Il is the comparison of the transition
frequencies calculated from the energies obtained in this
work with the experimental transition frequencies of

Number of functions

Number of functions

Number of functions

50

100

m

150

200

200

250

250

3081

Dabrowski:™ To convert theoretical frequencies into wave gig. 1. The distribution of , powers for the states with=0 (a), v =1 (b),
numbers we used the factor of 1 hartreeandv=14 (c).
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TABLE Il. Comparison of vibrational frequenciés, ., —E, (in cm™1) of H, calculated from our non-Born—
Oppenheimer energies with the experimental values of Dabrowski and with the results of Wolniewicz obtained
using the conventional approach based on the potential energy curve. Differences between the calculated and
the experimental results are shown in parentheses.

v Experiment This work (Diff.) Wolniewic? (Diff.) WolniewicZ (Diff.)
0 4161.14 4161.16540.025) 4161.163{ 0.023) 4161.167 0.027)
1 3925.79 3925.8424 0.052) 3925.837 0.047) 3925.836 { 0.046)
2 3695.43 3695.398-0.032) 3695.392  0.038) 3695.389 { 0.041)
3 3467.95 3467.9904 0.040) 3467.9830.033) 3467.976 € 0.026)
4 3241.61 3241.596-0.014) 3241.577 € 0.033) 3241.564 ( 0.046)
5 3013.86 3013.880+0.020) 3013.869 4 0.009) 3013.851 4 0.009)
6 2782.13 2782.189+ 0.059) 2782.1610.031) 2782.136 £ 0.006)
7 2543.25 2543.227+0.023) 2543.209 4 0.041) 2543.175 4 0.075)
8 2292.93 2293.016+ 0.086) 2292.993 0.063) 2292.950 £ 0.020)
9 2026.38 2026.445+ 0.064) 2026.406  0.026) 2026.351 £ 0.029)
10 1736.66 1736.81840.158) 1736.776 4 0.116) 1736.707 4 0.047)
11 1415.07 1415.18740.117) 1415.163 £ 0.093) 1415.076  0.006)
12 1049.16 1049.26940.109) 1049.250 4 0.090) 1049.1390.021)
13 622.02 622.06340.043) 622.098 £ 0.078) 621.956 { 0.064)

®Reference 10.
PReference 11nonrelativistic values
°From Ref. 8(includes relativistic and radiative corrections

=219474.63137 cmt from CODATA 98° For all the fre- fects are included. However, the insufficient accuracy of the
quencies our results are either within or very close to theéxperiment, as well as perhaps that of some of the theoretical
experimental error bracket of 0.1 crh We hope that the results, does not allow one to carry out a more detailed
present calculations will inspire a remeasurement of the vianalysis of the remaining discrepancies.
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