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Variational calculations of excited states with zero total angular momentum
„vibrational spectrum … of H2 without use of the Born–Oppenheimer
approximation
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Very accurate, rigorous and fully variational, all-particle, non-Born–Oppenheimer calculations of
the vibrational spectrum of the H2 molecule have been performed. Very high accuracy has been
achieved by expanding the wave functions in terms of explicitly correlated Gaussian functions with
preexponential powers of the internuclear distance. An indicator of the high accuracy of the
calculations is the new upper bound for the H2 nonrelativistic nonadiabatic ground state energy
equal to21.164 025 030 0 hartree. ©2003 American Institute of Physics.
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We recently introduced a new correlated Gaussian b
set suitable for high accuracy nonadiabatic calculations
diatomic molecules1 and showed that the basis is capable
providing the most accurate ground-state nonadiabatic e
gies of H2 ~Ref. 2! and LiH.3 In this article we continue the
validation of our approach by presenting highly accura
variational, non-Born–Oppenheimer~non-BO! nonrelativis-
tic calculations of the ‘‘vibrational spectrum’’ of the H2 mol-
ecule. Although we use the term ‘‘vibrational spectrum,’’ t
states we have calculated can be better characterized as
with the zero total angular momentum that is the sum of
angular momenta of the electrons and the nuclei. We ca
late these states by using totally spherically symmetric w
functions dependent on the coordinates of both nuclei
electrons in an internal coordinate system that excludes
three coordinates describing the motion of the center of m
of the molecule. By describing our method as ‘‘variationa
we mean that the energies of the ground and excited stat
our calculations are obtained by direct diagonalization of
Hamiltonian matrix.

Such direct calculations of the whole vibrational spe
trum have not previously been reported in the literature.
far the only direct nonadiabatic calculation of H2 vibrational
levels has been the early work of Wolniewicz,4 which only
considered the ground and the first excited state.

A by-product of the calculations is a new variation
upper-bound for the ground state energy of the H2 molecule.
This new upper-bound, as well as the variational upp
bounds to the excited vibrational energies, should provid
very accurate reference for future nonadiabatic molec
calculations and for evaluating the quality of methodolog
where the nonadiabatic effects are determined as ‘‘cor

a!Electronic mail: bubin@email.arizona.edu
b!Permanent address: Department of Chemistry, University of Arizona, T
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tions’’ to the BO approximation. The present high-accura
results may also be used in the future to estimate the rela
istic effects in the vibrational spectrum of H2 as a difference
of the transition energies and the experimental energies.

In the nonadiabatic molecular approach that does
invoke the BO approximation regarding the separability
the electronic and nuclear motions, all particles~nuclei and
electrons! are treated equally. Without invoking any approx
mations, the total nonrelativistic Hamiltonian can be se
rated into an operator representing the translational mo
of the center of mass and an operator representing the in
nal energy. For H2 we perform this separation by makin
transformation to an internal reference frame with the ori
at one of the two nuclei,

r5F r1

r2

r3

G5FR22R1

R32R1

R42R1

G , ~1!

where theRi are the original Cartesian coordinates in t
laboratory coordinate system. This transformation to the
ternal coordinates together with the conjugate momen
transformation yields the nonadiabatic Hamiltonian for t
internal energy of H2 expressed in terms of coordinates
three pseudoparticles as

H52
1

2 S (
i 51

3
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M1
¹ i8¹j D 1(

i 51

3
q0qi

r i

1(
i , j

3
qiqj

r i j
, ~2!

wherem i5M1Mi /(M11Mi) is the reduced mass associat
with the first andi th particles, andM1 is the mass of particle
1 ~the reference nucleus!. The potential energy is the same
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in the total Hamiltonian but is now written using intern
distance coordinates. The charges are mapped from the o
nal particles as$Q1 ,Q2 ,Q3 ,Q4%°$q0 ,q1 ,q2 ,q3%. In the in-
ternal coordinates, the interparticle distances are:r i j 5ur i

2r j u5uRi 112Rj 11u with r j5ur j u5uRj 112R1u. More in-
formation on the nonadiabatic Hamiltonian and eliminati
the coordinates of the center of mass motion can be foun
Ref. 1.

Explicitly correlated spherical Gaussians multiplied
powers of the internuclear distance were used as basis f
tions in the present calculations. As we showed before,1,2 the
preexponential powers of the internuclear distance allow
to describe the nuclei correlation effects. They are also
portant in generating nodes in the wave functions of the
brational excited states. The general form of the basis fu
tion is ~the prime represents vector/matrix transposition a
^ is the Kronecker product symbol!

fk5r 1
mk exp@2r 8~L kL k8^ I3!r #, ~3!

where for H2 r is a 931 vector of the internal Cartesia
coordinates of the three pseudoparticles,L k is 333 rank 3
lower triangular matrix of nonlinear variation paramete
and I3 is the 333 identity matrix. To ensure the proper pe
mutational symmetry of the two identical nuclei and the tw
electrons, the appropriate symmetry projections were app
to the basis functions. More details regarding the form of
symmetry projection operators can be found in Refs. 1 an
Using only spherical Gaussians we can only describe st
with the zero total angular momentum. In order to consi
rotationally excited states we would need to include in
basis functions angular factors. Such factors have been
sidered in recent works by Suzuki and Varga~see Ref. 7!.

Our calculations were performed for the proton–elect
mass ratio of 1836.152 667 5 taken from the CODATA 95

We used the atomic units except where otherwise no
Thus, \51, me51, energies are in hartrees, and distan
are in bohrs.

The wave functions for the ground state and the exc
states were obtained using the variational method by m
mizing the energy of each state obtained through diago
ization in a separate calculation. The minimization was do
with respect to the linear expansion coefficients,ck , and
with respect to the nonlinear parameters of the basis fu
tions, i.e., the basis set exponent matrices,L k , and the pow-
ers of the internuclear distance,mk .

In our previous non-BO calculations of the ground sta
of H2 and LiH2,3 we employed a procedure where we d
rectly optimized the Rayleigh quotient with respect to bo
the linear and the nonlinear parameters,

E~L ,m,c!5 min
$L ,m,c%

c8H~L ,m!c

c8S~L ,m!c
,

whereH~L ,m! andS~L ,m! are the Hamiltonian and overla
matrices, respectively. Both are functions of the nonlin
parameters of the basis functions. In the optimization
used the analytically calculated gradients of the energy w
respect to the linear and exponential nonlinear paramet1

The powers,mk , were optimized separately.
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In the present calculations we used a mixed approa
First we optimized a wave function for each state in the ba
of 128 functions~175 functions for the highest, fourteent
excited state! using the procedure based on analytical gra
ents to obtain a good first approximation. Then we continu
the optimization using the stochastic variational method.6,7 In
this step we enlarged the basis set for each state by inclu
additional basis functions with randomly selected nonlin
parameters and powers of the internuclear distance, an
subsequently optimizing these parameters of the function
one-dimensional optimizations. After each addition of 10
200 new functions to the basis we carried out a cyclic o
dimensional optimization of each nonlinear parameter of
ery function in the basis set. Although the approach, unl
the approach based on the analytical gradient, does not
ally provide a very well optimized set of parameters, it a
lows one to compensate for this by significantly increas
the basis set size. In the present calculations we used 3
basis functions for each of the 15 calculated states. As wil
shown next, with 3000 basis functions we noticeably lo
ered our previous variational upper-bound of the ground s
energy of H2 .2 This indicated to us that the stochastic var
tional approach is very effective in the energy minimizatio

The non-BO wave functions of different excited stat
have to differ from each other by the number of ‘‘nodes’’
terms of the internuclear distance,r 1 . To accurately describe
the node structures in all 15 states considered in the pre
calculations, a wide range of powers,mk , had to be used
While in the previous calculations of the H2 ground state2 the
power range was 0–40, in the present calculations it w
extended to 0–250. Also, as was the case in the prev
calculations, we only used even powers.

All optimizations performed in this work have been ca
ried out using the double precision~64 bit!. A peril of sig-
nificantly increasing number of terms in the expansions
the wave functions in such calculations is the numerical
stability. To verify this point, all results presented in th
work were recalculated with the quadruple precision~128
bit!. No numerical inaccuracies have been detected.

The high degree of parallelism of the algorithm that u
derlies the stochastic variational method allowed devel
ment of a parallel implementation of the procedure. The c
culations described here have been carried out using
~message passing interface! on several multiprocessor com
puter platforms. They included our ‘‘Beowulf’’ 16-processo
SUN ULTRA 10 cluster, an IBM SP3 computer, and SG
ORIGIN 2000 super-computer. The calculations have b
carried out continuously for over four months.

Table I contains total variational energies of the lowe
15 states corresponding to the rotational ground stateJ
50) calculated with 3000 basis functions each. We a
show the expectation values of the internuclear distance
its square calculated as average values using the optim
wave function of each state (^r 1&,^r 1

2&). The energy for the
ground state of21.164 025 030 0 hartree is noticeably low
than our previously reported upper-bound2 of
21.164 025 023 2 hartree. We are certain that for at lea
few lowest excited states the quality of the results is v
similar as for the ground state. However, for the high
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE I. Nonadiabatic variational energies for 15 states of the H2 molecule with zero total angular momentum
~the ground rotational states! obtained with 3000 basis functions for each state and expectation values o
internuclear distance and the square of the internuclear distance,^r 1&, ^r 1

2&. Also, the nonrelativistic energies o
Wolniewicz are presented for comparison. All quantities in atomic units.

v E ^r 1& ^r 1
2& E ~from Ref. 11!

0 21.164 025 030 0 1.448 738 0 2.127 045 9 21.164 025 018 5
1 21.145 065 367 6 1.545 349 5 2.473 996 7 21.145 065 362 9
2 21.127 177 915 2 1.646 057 9 2.856 817 2 21.127 177 932 4
3 21.110 340 442 9 1.751 708 2 3.281 414 3 21.110 340 485 5
4 21.094 539 118 7 1.863 424 5 3.755 699 5 21.094 539 194 0
5 21.079 769 321 7 1.982 733 2 4.290 541 7 21.079 769 480 3
6 21.066 037 073 7 2.111 758 7 4.901 320 7 21.066 037 284 9
7 21.053 360 489 0 2.253 534 9 5.610 516 3 21.053 360 825 8
8 21.041 772 695 0 2.412 595 2 6.452 556 7 21.041 773 113 9
9 21.031 324 945 4 2.595 894 0 7.482 387 6 21.031 325 470 8

10 21.022 091 784 9 2.814 949 0 8.794 679 6 21.022 092 487 6
11 21.014 178 260 1 3.090 179 8 10.566 922 21.014 179 153 6
12 21.007 730 195 1 3.462 701 0 13.181 814 21.007 731 197 9
13 21.002 949 375 8 4.034 237 3 17.680 148 21.002 950 463 3
14 21.000 115 048 2 5.211 018 1 28.919 890 21.000 115 976 2

a 20.999 455 679 4

aNonrelativistic threshold.
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states, where the number of nodes in the wave functio
much higher, the quality of the calculations decreases, bu
believe that it still allows determination of the transition e
ergies, discussed next, with the accuracy similar to the
perimental uncertainty, if not higher.

In Table I we also compare our total variational energ
with the energies obtained by Wolniewicz. In his calculatio
Wolniewicz employed an approach where in the zeroth or
the adiabatic approximation for the wave function was u
~i.e., the wave function is a product of the ground state e
tronic wave function and a vibrational wave function! and he
calculated the nonadiabatic effects as corrections.8,9 In gen-
eral the agreement between our results and the result
Wolniewicz is very good. However, one notices that t
agreement is much better for the lower energies than for
higher ones. While for the two lowest states our energies
lower than those obtained by Wolniewicz, the energies
the higher states are progressively higher.

We found it interesting how the distribution of powers
r 1 in the basis set changes with the increased excita
level. We demonstrate this change in Fig. 1 by showing
power distributions optimized for thev50, v51, and v
514 states. As expected, only one maximum in the po
distribution appeared for the ground-state wave functi
where there are no nodes and the wave function peaks
the ground-state equilibrium distance (^r 1&51.449 bohr).
For the first excited state, the distribution was somew
wider, which seems to be a result of two overlapping pe
and reflects the presence of a maximum and a minimum
the wave function of this state. For thev514 state, whose
wave function has 14 ‘‘nodes,’’ the power distribution b
came almost uniform in the 0–250 range.

Included in Table II is the comparison of the transitio
frequencies calculated from the energies obtained in
work with the experimental transition frequencies
Dabrowski.10 To convert theoretical frequencies into wa
numbers we used the factor of 1 hartr
nloaded 27 Mar 2012 to 129.59.117.132. Redistribution subject to AIP 
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FIG. 1. The distribution ofr 1 powers for the states withv50 ~a!, v51 ~b!,
andv514 ~c!.
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TABLE II. Comparison of vibrational frequenciesEv112Ev ~in cm21) of H2 calculated from our non-Born–
Oppenheimer energies with the experimental values of Dabrowski and with the results of Wolniewicz ob
using the conventional approach based on the potential energy curve. Differences between the calcula
the experimental results are shown in parentheses.

v Experimenta This work ~Diff. ! Wolniewiczb ~Diff. ! Wolniewiczc ~Diff. !

0 4161.14 4161.165 (10.025) 4161.163 (10.023) 4161.167 (10.027)
1 3925.79 3925.842 (10.052) 3925.837 (10.047) 3925.836 (10.046)
2 3695.43 3695.398 (20.032) 3695.392 (20.038) 3695.389 (20.041)
3 3467.95 3467.990 (10.040) 3467.983 (10.033) 3467.976 (10.026)
4 3241.61 3241.596 (20.014) 3241.577 (20.033) 3241.564 (20.046)
5 3013.86 3013.880 (10.020) 3013.869 (10.009) 3013.851 (20.009)
6 2782.13 2782.189 (10.059) 2782.161 (10.031) 2782.136 (10.006)
7 2543.25 2543.227 (20.023) 2543.209 (20.041) 2543.175 (20.075)
8 2292.93 2293.016 (10.086) 2292.993 (10.063) 2292.950 (10.020)
9 2026.38 2026.445 (10.064) 2026.406 (10.026) 2026.351 (20.029)

10 1736.66 1736.818 (10.158) 1736.776 (10.116) 1736.707 (10.047)
11 1415.07 1415.187 (10.117) 1415.163 (10.093) 1415.076 (10.006)
12 1049.16 1049.269 (10.109) 1049.250 (10.090) 1049.139 (20.021)
13 622.02 622.063 (10.043) 622.098 (10.078) 621.956 (20.064)

aReference 10.
bReference 11~nonrelativistic values!.
cFrom Ref. 8~includes relativistic and radiative corrections!.
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5219 474.63137 cm21 from CODATA 98.5 For all the fre-
quencies our results are either within or very close to
experimental error bracket of 0.1 cm21. We hope that the
present calculations will inspire a remeasurement of the
brational spectrum of H2 with the accuracy lower than
0.1 cm21. With such high-precision results it would be po
sible to verify whether the larger differences between
calculated and the experimental frequencies for higher e
tation levels, that now appear, are due to the relativistic
radiative effects.

Finally, in Table II we also compare our results for th
transition energies with the results obtained by Wolniew
in Refs. 8 and 9. Wolniewicz also calculated transition en
gies corrected for the relativistic effects and these results
also shown in Table II. Upon comparing the results one
tices that our transition energies are, in general, very sim
to Wolniewicz’s nonrelativistic results. Both sets of resu
show higher positive discrepancies in comparison with
experimental values for the higher excitation levels. Th
discrepancies decrease somewhat when the relativistic
nloaded 27 Mar 2012 to 129.59.117.132. Redistribution subject to AIP 
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fects are included. However, the insufficient accuracy of
experiment, as well as perhaps that of some of the theore
results, does not allow one to carry out a more detai
analysis of the remaining discrepancies.
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