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Expanding the wave functions of the ground and excited states of HD1 ~or pde) in terms of
spherically symmetric explicitly correlated Gaussian functions with preexponential multipliers
consisting of powers of the internuclear distance, and using the variational method, we performed
very accurate nonadiabatic calculations of all bound states of this system corresponding to the zero
total angular momentum quantum number~vibrational states;v50 – 22). The total and the transition
energies obtained agree with the best available calculations. For each state we computed the
expectation values of thed-p, d-e, and p-e interparticle distances. This is the first time these
quantities were computed for HD1 using rigorous nonadiabatic wave functions. While up to the
v520 state some asymmetry is showing in thed-e and p-e distances, forv521 andv522 we
observe a complete breakdown of the Born–Oppenheimer approximation and localization of the
electron almost entirely at the deuteron. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1850905#

The singly deuterated isotopomer of the H2 cation,
HD1, has been used for several decades in model studies of
the coupling between the electronic and nuclear motions.1 In
HD1 the lack of a center of symmetry, due to the different
nuclear masses, creates a particularly interesting situation
that requires a theoretical approach that may differ from
those used to describe the parent cation, H2

1 , and its sym-
metric isotopomer, D2

1 . The asymmetry of the HD1 system
has been investigated both experimentally2,3 and
theoretically.4–6 In recent work Ben-Itzhaket al.2 studied the
dissociation of the electronic ground state of HD1 following
ionization of HD by fast proton impact and found the H1

1D(1s) dissociation channel is more likely than the H(1s)
1D1 dissociation channel by about 7%. They attributed this
asymmetry breakdown to the finite nuclear mass correction
to the Born–Oppenheimer~BO! approximation, which
makes the 1ss state 3.7 meV lower than the 2ps state at the
dissociation limit.

Near the dissociation limit the density of states in the
HD1 spectrum increases. If one considers only the ground
rotational state manifold~i.e., consider only states with total
angular momentum equal to zero!, one finds states where the
dissociation energy of the system becomes close to the dif-
ference between the total energies of the H and D atoms
~equal to 29.84 cm21!. The D atom is energetically more
stable because it has slightly larger reduced mass than H,
which makes the electron slightly closer, on average, ap-
proach the nucleus resulting in stronger coulombic attraction
and a lower energy. In that region the vibrational wave func-
tion that corresponds to, say,v520 combined with the

ground state electronic wave function that places the electron
at the proton, has similar energy as the wave function with
the vibrational component corresponding tov521 and with
the electronic component localizing the electron at the deu-
teron. Since such two wave functions have the same symme-
try, their mixing can occur. This nonadiabatic coupling must
be included in the calculation of the dissociation of HD1 that
yields a proton plus a deuterium which is the lowest-energy
dissociation product of this system.

In nearly all theoretical treatments of H2
1 and its isotopes

reported in the literature, a body-fixed coordinate system
with the origin at the geometric center of the nuclei has been
used. For example, in the recent work of Esry and
Sadeghpour,5 as well as other works,7–10 the starting point
was the H2

1 BO Hamiltonian in prolate spheroidal coordi-
nates ~PSC!; and electronic wave functions and energies
were first obtained as a function of the internuclear distance.
Since, by definition, the BO Hamiltonian and the electronic
BO wave function cannot discriminate between the two dis-
sociation limits, H11D and D11H, the symmetry-breaking
term beyond the BO approximation had to be added as a
perturbation to account for the isotopically induced HD1

charge asymmetry. Bishop and Cheung11 applied an alterna-
tive approach to HD1 that did not involve the adiabatic ap-
proximation and was based on the variational principle. Also,
an approach based on a unitary transformation has been
used4,12–16 to move the symmetry-breaking term from the
kinetic-energy operator to the potential-energy operator as
reduced-mass dependent effective charges on the nuclei.

In the approach we use,17 we begin with the total non-
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relativistic Hamiltonian for a molecular system in the labo-
ratory Cartesian coordinate system. All particles present in
the system are included in the Hamiltonian. The total number
of particles~i.e., the electrons and the nuclei! is set to ben
11 and their masses, charges and positions are denoted as
Mi , Qi , andRi , respectively, wherei 51,...,n11. The labo-
ratory frame nonrelativistic Hamiltonian that includes the ki-
netic energy operator for each particle and Coulombic inter-
actions between each pair of the particles has the following
form:

ĤTOT52 (
i 51

n11
1

2Mi
¹ i

21 (
i 51

n11

(
j . i

n11
QiQj

Ri j
, ~1!

where Ri j 5uRj2Ri u are interparticle distances. We then
make a transformation to separate the center-of-mass Hamil-
tonian from the rest, thereby reducing then11-particle
problem to ann-pseudoparticle problem described by the
internal Hamiltonian,Ĥ. In this transformation we place a
heavy particle~particle 1 with massM1 called the reference
particle; in the HD1 calculations that particle was the deu-
teron! at the center of the internal coordinate system and we
refer the other particles to that center particle using the car-
tesian position vectorsr i defined asr i5Ri 112R1 . The re-
sulting internal Hamiltonian is
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where 8 denotes vector transposition. This Hamiltonian de-
scribes a system containing the reference particle in the ori-
gin of the coordinates with chargeq05Q1 andn pseudopar-
ticles, or internal particles, which are characterized by the
reduced massesmi5M1Mi 11 /(M11Mi 11) and chargesqi

5Qi 11 . The pseudoparticles are moving in the spherically
symmetric potential generated by the reference particle
placed at the center of the internal coordinate system.
The second term in the parentheses is the mass polarization
term, which arises from the transformation of the lab-frame
coordinate system to the internal coordinate system and
which couples the motion of all the particles. In the potential
energy termsr i and r i j are defined as:r i5ur i u and r i j

5uRj 112Ri 11u5ur j2r i u.
The present HD1 calculations involved two pseudopar-

ticles ~i.e., pseudoelectron and pseudoproton!. Unlike other
approaches, no charge-symmetry~gerade or ungerade! was
imposed on the basis functions and the charge-asymmetry, if
appeared in the wave function, was a direct result of the
variational calculation.

We have shown that the explicitly correlated Gaussian
basis set involving functions with preexponential multipliers
consisting of the internuclear distance,r1 , raised to a non-
negative power,mk :18–20

fk5r 1
mk exp@2r 8~Ak^ I 3!r # ~3!

is capable of very effectively describing nonadiabatic zero-
angular-momentum states of diatomic systems withs elec-

trons. The above function is a one-center correlated Gaussian
with exponential coefficients forming the symmetric matrix
Ak . r is a 3n31 vector of the internal cartesian coordinates,
r i , of the n pseudoparticles, andI 3 is the 333 identity ma-
trix. fk are rotationally invariant functions as required by the
symmetry of the internal ground state problem described by
the Hamiltonian~2!. The presence ofr 1

mk in ~3! makes the
function peak at some distance away from the origin. This
distance depends on the value ofmk and on the exponential
parameters,Ak . To describe a diatomic system, the maxi-
mum of fk in terms ofr 1 should be around the equilibrium
internuclear distance of the system. In the variational calcu-
lation the maximum offk’s is adjusted by optimization of
mk’s andAk’s.

The ground and excited-state nonadiabatic wave func-
tions for HD1 in the present calculations were obtained by
directly minimizing the Rayleigh quotient,

E~$ck%,$mk%,$Ak%!5 min
$$ck%,$mk%,$Ak%%

c8H~$mk%,$Ak%!c

c8S~$mk%,$Ak%!c
, ~4!

with respect to the expansion coefficients of the wave func-
tion in terms of the basis functions,ck , the basis-function
exponential parameters,$Ak%, and the preexponential pow-
ers,$mk%.

To achieve the best results in the parameter optimization
with the least computational effort, we have recently imple-
mented a hybrid method that combines the gradient-based
optimization with the stochastic selection method.21,22 The
strategy is based on alternating the gradient-based and the
stochastic-based optimizations in growing the basis set from
a small initial set generated in a gradient-based optimization
to the final set. The basis set for each vibrational state was
generated in a separate calculation. To achieve a similar level
of accuracy as obtained in the best previous calculations7 we
used 2000 basis functions for each state except the ground
and first excited state where we limited ourselves to 1000-
term expansions, as the energies for those states were essen-
tially converged with this number of functions. Also, in ad-
ditional calculations for the highest excited state (v522),
where we studied the convergence of our approach, we used
expansions with up to 4000 basis functions. The range of the
preexponential powers,$mk%, used was from 0 to 250. The
calculations have been carried out at the University of Ari-
zona Center of Computing and Information Technology with
the use of an HP Alpha GS1280 supercomputer.

After the wave functions for all 23 (v50,...,22) states
were generated, we calculated the expectation values of the
internucleard-p distance,̂ r 1&, the deuteron–electron (d-e)
distance, ^r 2&, and the proton–electron (p-e) distance,
^r 12&, for each state, as well as their squares. The algorithm
for calculating the expectation values of nucleus–electron
distances was developed and implemented in the present
work. It will be described in a separate paper.23 In the calcu-
lations we used the following values for the nuclear masses:
md53670.482 965 2me , mp51836.152 672 61me taken
from Ref. 24. Here,me stands for the mass of the electron.
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The effort in the first series of the calculations has been
focused on generating very accurate variational wave func-
tions and energies for the rotationless vibrational states of the
HD1 ion. As mentioned, this system has been studied by
many researchers and very accurate, virtually exact nonrela-
tivistic energies have been published in the literature.7,25This
includes the energy for the highest vibrationalv522 state,
which is only about 0.4309 cm21 below the D1H1 disso-
ciation limit. In Table I we compare our variational energies
with the values of Hilicoet al.25 As one can see, the values
agree very well. The agreement is consistently very good for
all the states calculated. We should mention that the energies
in the Hilico et al. work25 were obtained with the CODATA
86 mass values while in our calculations we used more re-
cent CODATA 2002 masses. However, as we have deter-
mined, the effect of the mass difference does not exceed the
uncertainty due to the basis incompleteness that we have in
our calculations. Our calculations, where we used the old
CODATA 86 masses, produced energies shifted down by at
most 4310210 a.u. in comparison to the energies obtained
with the CODATA 2002 masses. The highest shift was ob-
tained for states in the middle of the spectrum withv near
10. For the lower and higher states the difference due to the
CODATA 86/CODATA 2002 mass change was progressively
smaller.

In the next step the wave functions for all the 23 states
were used to calculate the average internuclear distances and
the average distances between the nuclei and the electron.
Also, averages of the squares of the distances were calcu-
lated. The results are shown in Table I. As can be expected,
the average internuclear distance increases with the rising

level of excitation. This increase becomes more prominent at
the levels near the dissociation threshold. For example, in
going fromv521 tov522 the average internuclear distance
increases more than twofold from 12.95 a.u. to 28.62 a.u. In
the v522 state the HD1 ion is almost dissociated. These
results agree well with the previous calculations of Moss.26

However, the most striking feature that becomes apparent
upon examining the results is a sudden increase of the asym-
metry between the deuteron–electron and proton–electron
average distances above thev520 excitation level. In levels
up to v520 there is some asymmetry of the electron distri-
bution with thep-e distance being slightly longer than the
d-e distance. For example, in thev520 state thed-e aver-
age distance is 4.569 a.u. and thep-e distance is 5.516 a.u.
The situation becomes completely different for thev521
state. Here thep-e distance of 12.19 a.u. is almost equal to
the average value of the internuclear distance but thed-e
distance becomes much smaller and equals only 2.306 a.u. It
is apparent that in this state the electron is essentially local-
ized at the deuteron and the ion becomes highly polarized.
An analogous situation also occurs for thev522 state. Here,
again, thep-e average distance is very close to the internu-
clear distance while thed-e distance is close to what it is in
an isolated D atom.

To illustrate the convergence of the expectation value
calculations, we show in Table II the results for the highest
v522 state obtained with different basis sizes. We should
note that thev522 state is the most difficult to describe due
to its closeness to the dissociation limit and due to the high-
est number of radial nodes in its wave function. The results
presented in Table II show that our approach converges very

TABLE I. Total energies, expectation values of the deuteron–proton distance,r d-p , the deuteron–electron
distance,r d-e , and the proton–electron distance,r p-e , and their squares for the vibrational levels of HD1 at the
rotational ground state. All quantities in atomic units.

v E, this work E, Ref. 25 ^r d-p& ^r d-e& ^r p-e& ^r d-p
2 & ^r d-e

2 & ^r p-e
2 &

0 20.597 897 968 5 20.597 897 968 6 2.055 1.688 1.688 4.268 3.534 3.537
1 20.589 181 829 1 20.589 181 829 6 2.171 1.750 1.750 4.855 3.839 3.843
2 20.580 903 700 1 20.580 903 700 3 2.292 1.813 1.814 5.492 4.169 4.173
3 20.573 050 546 4 20.573 050 546 8 2.417 1.880 1.881 6.185 4.526 4.531
4 20.565 611 041 8 20.565 611 042 3 2.547 1.948 1.950 6.942 4.915 4.921
5 20.558 575 520 0 20.558 575 521 1 2.683 2.020 2.022 7.771 5.339 5.346
6 20.551 935 948 2 20.551 935 949 3 2.825 2.095 2.097 8.682 5.804 5.813
7 20.545 685 913 7 20.545 685 915 6 2.975 2.175 2.177 9.689 6.318 6.329
8 20.539 820 639 4 20.539 820 641 9 3.135 2.259 2.261 10.81 6.888 6.902
9 20.534 337 011 0 20.534 337 013 9 3.305 2.348 2.351 12.06 7.527 7.545

10 20.529 233 631 7 20.529 233 635 9 3.489 2.445 2.448 13.48 8.250 8.272
11 20.524 510 905 9 20.524 510 910 6 3.689 2.549 2.554 15.09 9.074 9.105
12 20.520 171 137 4 20.520 171 148 2 3.909 2.664 2.670 16.96 10.03 10.07
13 20.516 218 698 8 20.516 218 710 3 4.154 2.791 2.799 19.16 11.15 11.21
14 20.512 660 176 7 20.512 660 192 6 4.432 2.934 2.946 21.79 12.49 12.57
15 20.509 504 627 0 20.509 504 651 7 4.754 3.099 3.116 25.01 14.13 14.26
16 20.506 763 834 4 20.506 763 878 1 5.138 3.292 3.319 29.11 16.20 16.41
17 20.504 452 646 6 20.504 452 699 1 5.611 3.527 3.572 34.55 18.92 19.30
18 20.502 589 181 5 20.502 589 234 0 6.227 3.821 3.910 42.25 22.66 23.47
19 20.501 194 732 3 20.501 194 799 3 7.099 4.198 4.421 54.35 28.13 30.38
20 20.500 292 401 7 20.500 292 454 3 8.550 4.569 5.516 77.74 35.66 46.64
21 20.499 910 333 9 20.499 910 361 5 12.95 2.306 12.19 176.0 12.94 168.2
22 20.499 865 777 5 20.499 865 778 5 28.62 1.600 28.55 910.0 4.266 911.4

D atoma 20.499 863 815 2 1.500 3.002

aIn the ground state.
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well to the best energy value reported for thev522 state in
the literature. Furthermore, the calculations show that with
2000 functions in the basis set the average distances are very
well converged. They should be even better converged with
that number of basis functions for the lower lying states
since those states are easier to describe. The residual differ-
ence~by 1 in the ninth decimal! that still remains between
our best energy value for thev522 state obtained with 4000
basis functions and the best literature value can be in part
attributed to the incompleteness of the 4000-term basis.
However, it may also be a result of the known inability of the
Gaussians to describe the electronic and nuclear cusps in the
wave function.

To summarize, a rigorous, variational, high-accuracy,
nonadiabatic calculation employing explicitly correlated
Gaussian basis functions have been performed for the HD1

ion to determine the degree of charge asymmetry in this sys-
tem. The results indicate that a catastrophic breakdown of the
Born–Oppenheimer approximation occurs abovev520 vi-
brational level. In thev521 andv522 states the electron
becomes entirely localized around the deuteron and it is
completely absent at the proton. This strong, purely nonadia-
batic effect occurs when the dissociation energy of a vibra-
tionally excited state becomes close to the difference be-
tween the total energies of the H and D atoms.
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Basis size E ^r d-p& ^r d-e& ^r p-e& ^r d-p
2 & ^r d-e

2 & ^r p-e
2 &

1000 20.499 864 251 6 24.615 1.6206 24.529 638.88 4.5235 639.96
1500 20.499 865 746 9 28.590 1.5985 28.523 904.16 4.2421 905.55
2000 20.499 865 769 2 28.527 1.5999 28.459 900.41 4.2607 901.79
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Ref. 25 20.499 865 778 5
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