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Benchmark variational calculations are performed for the seven lowest 1s22s np (1P), n = 2. . . 8,
states of the beryllium atom. The calculations explicitly include the effect of finite mass of 9Be nu-
cleus and account perturbatively for the mass-velocity, Darwin, and spin-spin relativistic corrections.
The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaus-
sian functions. Basis sets of up to 12 500 optimized Gaussians are used. The maximum discrepancy
between the calculated nonrelativistic and experimental energies of 1s22s np (1P) →1s22s2 (1S) tran-
sition is about 12 cm−1. The inclusion of the relativistic corrections reduces the discrepancy to bellow
0.8 cm−1. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4858275]

I. INTRODUCTION

High-precision calculations of energy levels for small
atoms and atomic ions have been a subject of fruitful interplay
between the experiment and theory, as has been evident from
the works concerning the lithium atom.1–13 The most accu-
rate calculations have included leading relativistic and quan-
tum electrodynamics (QED) corrections of orders O(α4mc2),
O(α5mc2), O( m

M
α4mc2), and O( m

M
α5mc2), where α is the fine

structure constant, c is the speed of light, and m and M are
the electron and nuclear mass, respectively. Particularly ac-
curate have been the calculations involving Hylleraas basis
functions. The form of these basis functions allows to describe
very well both the electron correlation and the behavior of the
wave function at short and long ranges of the electron-electron
and electron-nucleus distances.

More recently, the experimental-theoretical interplay has
started to focus on beryllium-like atoms, as both theoret-
ical tools and experimental techniques have started to de-
liver higher accuracy results for transition energies of these
four-electron systems. As extending the application of the
Hylleraas basis functions to calculating states of atoms with
four electrons has not been accomplished yet, other types
of variational expansions have been used. One of the most
popular and, arguably, the most effective among them have
been all-electron explicitly correlated Gaussian functions
(ECGs).14–16 Although Gaussian functions do not correctly
describe interparticle cusps and the long-distance behavior of
the wave function, if many of them are included in the basis
set and their nonlinear parameters are well optimized, the ac-
curacy of the computed results can be very high as evidenced
by recent publications.17–26 In this work we continue to apply
ECGs to study atomic excited states. The targeted states are
the seven lowest 1s22snp (1P), n = 2. . . 8, states of the beryl-
lium atom. The calculations involve two steps. In the first step
performed at the nonrelativistic level of theory a ECG basis
set for expanding the wave function of each considered state

is generated and the total energy of the state is calculated.
The approach directly involves accounting for the final mass
of the beryllium 9Be nucleus. The second step involves the
calculations of the largest relativistic corrections, namely, the
mass-velocity (MV), Darwin (D), and spin-spin (SS) interac-
tion corrections. The total nonrelativistic energies augmented
with the corresponding relativistic corrections are used to de-
termine the transition energies for the considered states with
respect to the ground 1s22s2 (1S) state.

The NIST Atomic Spectra Database27, 28 lists six energy
levels corresponding to 1s22s np (1P), n = 2. . . 6 Rydberg
states of 9Be. The energy of these six states expressed in wave
numbers and determined with respect to the ground state are
known to two figures after the decimal point. There are also
some higher 1P states listed (n = 7. . . 13), but the energy lev-
els of those states are known less precisely—one figure after
the decimal point or less. As the results of the present work in-
dicate, theoretical calculations can yield more accurate values
for the transition energies involving those higher states and,
thus, may provide some guidance for their remeasurement at
higher accuracy.

High accuracy in the ECG calculations can only be
achieved if very large basis sets are employed and the non-
linear parameters of ECGs are extensively optimized. In this
work the ECG basis is generated independently for each con-
sidered state. The optimization relies on a procedure that in-
volves the analytic energy gradient determined with respect
to the parameters. The use of the analytic gradient has a very
notable effect on the efficiency of the optimization and makes
calculations with very extended basis sets feasible.

II. THE HAMILTONIAN

The nonrelativistic Hamiltonian for the beryllium atom
describing the intrinsic motion of the system (“inter-
nal Hamiltonian,” Ĥint) is obtained by separating out the
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center-of-mass motion from the laboratory-coordinate-system
Hamiltonian (for more details see, for example, Refs. 29
and 15). The separation is rigorous and leads to the follow-
ing form of Ĥint expressed in atomic units:

Ĥint = −1

2

⎛
⎜⎝ n∑

i=1

1

μi

∇2
ri

+
n∑

i,j=1
i �=j

1

m0
∇ri

· ∇rj

⎞
⎟⎠

+
n∑

i=1

q0qi

ri

+
n∑

i>j=1

qiqj

rij

, (1)

where n = 4, ri is the distance between the ith electron and
the nucleus, m0 is the nuclear mass (16424.2037me for 9Be,
where me = 1 is the electron mass), q0 = +4 is the nuclear
charge, qi = −1 are electron charges, and μi = m0mi/(m0

+ mi) are electron reduced masses.
The internal Hamiltonian (1) explicitly depends on the

mass of the nucleus. Thus, the calculated energy levels for dif-
ferent isotopes are slightly shifted with respect to each other.
The shifts can be directly determined from the variational cal-
culations without resorting to perturbation theory, which is
typically employed in atomic structure calculations. The mass
of the nucleus can also be set to infinity, in which case in the
present calculations one obtains the energy spectrum of ∞Be.
Such calculations can be directly compared with the available
reference data.

III. THE BASIS SET

The all-electron explicitly correlated Gaussians used in
this work to describe the seven 1P states of the beryllium atom
have the following form:

φk = zik exp[−r′(Ak ⊗ I3)r], (2)

where zik is the z-coordinate of the ith electron (ik is an
adjustable integer parameter in our calculations), Ak is an
n × n symmetric matrix, ⊗ is the Kronecker product, I3 is
a 3 × 3 identity matrix, and r is a 3n vector of the electron
coordinates. The prime symbol indicates the matrix/vector
transpose.

Gaussians (2) are square integrable if the Ak matrix is
positive definite. To assure this requirement is always met we
use the following Cholesky-factored form of Ak: Ak = LkL

′
k ,

where Lk is a lower triangular matrix. In this form the Ak

matrix is always positive definite regardless of the values of
the Lk matrix elements. Thus these values can be varied from
∞ to −∞. In our calculations the elements of the Lk matri-
ces replace the elements of the Ak matrix as the variational
parameters and their optimization is carried out without any
constraints.

In the approach employed in the present calculations we
use the spin-free formalism to ensure the correct permuta-
tional symmetry properties. In this formalism, an appropri-
ate symmetry projector is applied to the elementary basis
functions (2). The symmetry projector can be constructed us-
ing the standard procedure involving Young operators as de-
scribed, for example, in Ref. 30. For singlet states of beryl-
lium, the Young operator can be chosen as: Ŷ = (1 − P̂13)

(1 − P̂24)(1 + P̂12)(1 + P̂34), where P̂ij denotes the permu-
tation of the spatial coordinates of the ith and jth electrons
(particle 0 is the nucleus). As the Hamiltonian of the system
commutes with all electron permutations, in the calculation of
the overlap and Hamiltonian matrix elements, Ŷ may be ap-
plied to either bra or ket only (as Ŷ †Ŷ ). More technical details
on basis functions (2) and the evaluation of matrix elements
with them can be found in Ref. 31.

As mentioned, the basis set optimization has been car-
ried out separately for each of the seven 1P states considered
in this work. The optimization was only done for the 9Be iso-
tope. In the calculations for ∞Be, the 9Be basis sets are used
without reoptimization of the nonlinear parameters. Only the
linear expansion coefficient of the wave function is readjusted
by solving the secular equation. This simplification has vir-
tually no effect on the accuracy of the ∞Be results as the
change of the wave function upon varying the nuclear mass
from 16424.2037me to infinity is rather small.

The final basis set for each of the states considered in
this work has been generated in a multistep process. It starts
with a small set of randomly chosen functions and involves
incremental addition of new functions. The new functions are
added to the basis set one by one and their nonlinear Lk pa-
rameters are optimized using the procedure employing the
analytic gradient of the energy. The initial guesses of these
parameters are generated based on random sampling from a
distribution that is defined by the parameters of the functions
that are already in the basis. The random candidate, which
lowers the energy the most, is then added to the basis. After
a certain number of functions (10 in this particular calcula-
tion) is added to the basis set, the entire basis is reoptimized.
The reoptimization involves cycling over all functions, one
by one, several times and tuning their nonlinear parameters.
As basis functions are added and optimized certain steps have
to be taken to prevent the occurrence of linear dependencies
between the basis functions, which may have a destructive
effect on the numerical stability and efficiency of the calcula-
tions. As in most cases only pairs of basis functions develop
strong linear dependencies, after each new function is added
to the basis set and its exponential parameters are optimized,
it is checked for possible linear dependence with every other
function in the basis set. If linear dependency appears, the
function is rejected and replaced by another function.

IV. CALCULATION OF THE RELATIVISTIC
CORRECTIONS

While relativistic effects in atoms with small nuclear
charge are weak, their inclusion provides considerable bet-
ter agreement with the spectroscopic data. These effects can
be accounted for by means of perturbation theory based on
the expansion of the total energy in powers of the fine-
structure constant.32 In this work we restrict ourselves only to
the largest relativistic contributions due to the mass-velocity,
Darwin, and spin-spin interaction effects.33 The smaller orbit-
orbit interaction correction, as well as higher order QED cor-
rections, are not included. The operators representing the MV,
D, and SS relativistic corrections can be written in the internal
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coordinates ri as follows:

HMV = −1

8
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and

HSS = −8π

3

n∑
i<j

qiqj

mimj

si · sj δ(rij ). (5)

Here si is the spin operator for the ith electron. The spin-
averaged value of si · sj is equal to −3/4.

The corrections are computed as expectation values of
the above operators with the zero-order wave functions that
correspond to the 1P states. The calculations are performed
for both 9Be and ∞Be isotopes. In the former case the recoil
effects are automatically included in all relativistic corrections
(MV, D, and SS) calculated in this work.

V. CALCULATIONS OF THE ENERGIES
OF THE 1P STATES FOR 9BE

A thorough optimization of an ECG basis set is a very
demanding computational task even if the analytic energy
gradient is used in the calculation. As the number of nodes
in higher excited states increases, more basis functions are
needed to achieve a comparable accuracy as achieved for
lower-lying states. In Table I the convergence of the total en-
ergy of 9Be isotope with the number of ECG basis functions
is shown for all seven 1P states considered in this work. As
one can see for the lowest 1s22s2p state at the level of 10 700
ECGs the energy changes only by one in the ninth figure after
the decimal point after the basis set is increased by 300 func-
tions, while for the highest 1s22s8p state the increase by 300
functions from 12 200 to 12 500 changes the energy by three
in the eight figure after the decimal point.

As the experimental values expressed in wave numbers
for the 1s22s2 (1S)→ 1s22snp (1P), n = 2. . . 6, are given with
two significant figures after the decimal point, this is the target
accuracy we aim for in the present calculations. The analysis
of the data presented in Table II suggests that the transition en-
ergy for the lowest 1s22s2p state is converged to about 0.001–
0.002 cm−1, while the convergence for the highest 1s22s8p
state is about 0.03–0.05 cm−1.

The components of the relativistic correction for all seven
1P states of 9Be are shown in Table III. They are calcu-
lated using the largest basis set generated for each state. In
Table III we also show the total energy for each state cal-
culated as a sum of the total nonrelativistic energy and the
corresponding relativistic corrections. The same set of data is
also shown for the beryllium atom with an infinite mass of the
nucleus (∞Be). Our ∞Be nonrelativistic energy for the lowest
1s22s2p (1P) state can be compared with the recent result of
Puchalski et al.26 of −14.473 451 334 hartree. Our variational T
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TABLE II. The convergence of the nonrelativistic transition energies expressed in cm−1 of the 1s22snp (1P), n = 2. . . 8, states of 9Be with the number of the
Gaussian basis functions. The transition energies are determined with respect to the ground 1s22s2 (1S) state.

Basis 1s22s2p 1s22s3p 1s22s4p 1s22s5p 1s22s6p 1s22s7p 1s22s8p 1s22s∞p

9800 42 554.3223
9800 42 554.3221
10 100 42 554.3218
10 400 42 554.3216 60 178.3274
10 700 42 554.3214 60 178.3271 67 027.0523
11 000 60 178.3269 67 027.0520 70 113.2928
11 300 60 178.3266 67 027.0517 70 113.2924 71 738.7173 72 694.4168 73 302.5252
11 600 60 178.3264 67 027.0514 70 113.2920 71 738.7164 72 694.4140 73 302.5167
11 900 67 027.0512 70 113.2916 71 738.7154 72 694.4114 73 302.5089
12 200 70 113.2913 71 738.7145 72 694.4089 73 302.5021
12 500 71 738.7136 72 694.4071 73 302.4959
8000 75 185.8656

upper bound, −14.473 451 378(10) hartree, yields somewhat
more converged value.

Table III also lists the transition energies for the seven
1P states calculated with respect to the ground 1S state using
the corresponding total energies calculated with and without
the relativistic corrections. The transition energies are calcu-
lated for both 9Be and ∞Be. The results for 9Be are shown
against the experimental transition energies.27 Here, the fol-
lowing observations can be made. First, the comparison of
the nonrelativistic 9Be and ∞Be transition energies shows that
the finite-nuclear-mass effect provides a noticeable contribu-
tion to the energies, which increases in magnitude from about
−3 cm−1 for the lower states to about −5 cm−1 for the high-
est states. Second, the comparison of the calculated and ex-
perimental transition energies shows that, while at the non-

relativistic level the energy differs by about 11 cm−1 for the
1s22s2p state and by about 7 cm−1 for the 1s22s6p state, the
differences are significantly reduced by including the rela-
tivistic corrections to only about 0.2 cm−1 for the lowest state
and to 0.8 cm−1 for the 1s22s5p state (for this state the differ-
ence with the experiment is the highest).

Finally, in Table IV some expectation values calculated
for the seven 1P states obtained with the largest basis sets
generated in the calculation are shown. Among the results it
is interesting to examine the expectation values that demon-
strate the increasing diffuseness of the electron density as the
p electron becomes excited to higher Rydberg states. These
expectation values are the average nucleus-electron distance,
〈ri〉, and the average electron-electron distance, 〈rij〉. As one
can see both 〈ri〉 and 〈rij〉, as expected, rapidly increase with

TABLE III. Total nonrelativistic energies (ENR) of 1s22snp (1P), n = 2. . . 8, states of the beryllium atom (9Be), the mass-velocity, Darwin, and spin-spin
interaction relativistic corrections, and the total energies that include relativistic corrections (Etot = ENR + α2(EMV + ED + ESS)) and their values with respect
to the ground 1s22s2 (1S) state (�ENR = ENR − E

ground
NR , �Etot = Etot − E

ground
tot ). NIST denotes the experimental data from NIST Atomic Spectra Database.27

All entries are in hartree, except the last three columns. Values in parentheses are estimates of uncertainty due to finite length of the basis.

State Basis ENR EMV ED ESS Etot �ENR (cm−1) �Etot (cm−1) NIST (cm−1)

9Be
1s22s2 Ref. 23 10 000 −14.666 435 504 −270.625 15 217.133 37 10.087 17 −14.668 746 858
1s22s2p 10 700 −14.472 543 749 −266.586 96 214.292 90 9.850 90 −14.474 803 905 42 554.32(0) 42 565.56(0) 42 565.35
1s22s3p 11 600 −14.392 242 874 −267.378 65 214.901 05 9.887 24 −14.394 510 868 60 178.33(0) 60 187.84(0) 60 187.34
1s22s4p 11 900 −14.361 037 788 −267.877 82 215.277 88 9.913 30 −14.363 310 909 67 027.05(0) 67 035.44(0) 67 034.70
1s22s5p 12 200 −14.346 975 843 −268.057 86 215.413 82 9.922 32 −14.349 250 833 70 113.29(0) 70 121.27(0) 70 120.49
1s22s6p 12 500 −14.339 569 874 −268.121 11 215.457 11 9.926 07 −14.341 845 726 71 738.71(0) 71 746.51(1) 71 746.09
1s22s7p 12 500 −14.335 215 414 −268.134 37 215.461 89 9.930 71 −14.337 491 471 72 694.41(1) 72 702.15(1) 72 701.8
1s22s8p 12 500 −14.332 444 758 −268.130 43 215.445 82 9.933 20 −14.334 721 328 73 302.50(2) 73 310.13(2) 73 309.7
1s22s∞p 2500 −14.323 863 494 −268.242 79 215.560 22 9.929 58 −14.326 140 149 75 185.87(0) 75 193.48(0) 75 192.64(6)
∞Be
1s22s2 Ref. 23 10 000 −14.667 356 486 −270.692 12 217.173 60 10.088 85 −14.669 669 175
1s22s2p 10 700 −14.473 451 378 −266.653 39 214.332 98 9.852 57 −14.475 712 848 42 557.25(0) 42 568.49(0)
1s22s3p 11 600 −14.393 143 528 −267.444 90 214.940 94 9.888 89 −14.395 412 838 60 182.79(0) 60 192.31(0)
1s22s4p 11 900 −14.361 938 388 −267.944 00 215.317 69 9.914 95 −14.364 212 825 67 031.52(0) 67 039.92(0)
1s22s5p 12 200 −14.347 876 275 −268.124 05 215.453 63 9.923 97 −14.350 152 582 70 117.80(0) 70 125.79(0)
1s22s6p 12 500 −14.340 470 145 −268.187 31 215.496 91 9.927 72 −14.342 747 315 71 743.26(0) 71 751.05(1)
1s22s7p 12 500 −14.336 115 562 −268.200 56 215.501 69 9.932 36 −14.338 392 936 72 698.98(1) 72 706.73(1)
1s22s8p 12 500 −14.333 344 814 −268.196 62 215.485 61 9.934 85 −14.335 622 702 73 307.09(2) 73 314.73(2)
1s22s∞p 2500 −14.324 763 176 −268.309 00 215.600 04 9.931 22 −14.327 041 149 75 190.54(0) 75 198.16(0)
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TABLE IV. Expectation values for the 1s22snp (1P), n = 2. . . 8, states of 9Be. All values are in a.u.

State 〈1/r2
i 〉 〈1/r2

ij 〉 〈1/ri〉 〈1/rij〉 〈ri〉 〈rij〉 〈r2
i 〉 〈r2

ij 〉 〈δ(ri )〉 〈δ(rij )〉

1s22s2p 14.214 77 1.542 322 2.069 045 0.693 271 1.775 941 2.976 695 6.518 197 12.922 95 8.722 421 0.261 303
1s22s3p 14.224 12 1.500 597 2.028 640 0.612 292 3.193 052 5.810 123 29.295 17 59.434 79 8.747 341 0.262 267
1s22s4p 14.237 29 1.489 304 2.012 288 0.579 089 5.492 002 10.361 00 104.1756 208.8678 8.762 854 0.262 958
1s22s5p 14.242 16 1.485 790 2.005 075 0.564 542 8.562 863 16.481 36 277.4885 555.3129 8.768 442 0.263 198
1s22s6p 14.244 31 1.484 375 2.001 303 0.556 952 12.392 36 24.129 91 610.9444 1222.125 8.770 239 0.263 297
1s22s7p 14.245 40 1.483 701 1.999 091 0.552 505 16.976 61 33.292 71 1181.383 2362.942 8.770 521 0.263 420
1s22s8p 14.246 01 1.483 341 1.997 686 0.549 680 22.315 32 43.966 70 2081.007 4162.150 8.769 931 0.263 486

the excitation. While the 〈ri〉 expectation value for the lowest
of the seven states is about 1.78 a.u., it increases to 22.31 a.u.
for the seventh state. A similar increase is observed for the
〈rij〉 expectation value.

VI. SUMMARY

Very accurate quantum-mechanical variational calcu-
lations are performed for the lowest seven 1s22snp (1P),
n = 2. . . 8, states of the beryllium atom, 9Be. Using a very ex-
tended set of all-electron explicitly correlated Gaussian func-
tions a new nonrelativistic variational energy upper bound is
obtained for each state. The optimization of nonlinear param-
eters of the basis functions takes advantage of the analytic
gradient determined with respect to these parameters. After
augmenting the nonrelativistic energies with a set of most
significant relativistic corrections, namely, the mass-velocity,
Darwin, and spin-spin corrections, the transition energies with
respect to the beryllium ground 1s22s2(1S) state are calcu-
lated and compared with the experimental data. The discrep-
ancy of the calculated transition energies with the experiment
does not exceed 0.8 cm−1. It is found that the relativistic
and finite-nuclear-mass effects provide contributions similar
in magnitude (of several wave numbers), but opposite in sign,
to the transition frequencies. The results of this work lie foun-
dation for further progress towards achieving truly spectro-
scopic accuracy in theoretical calculations of small atoms.
Such calculations complemented with highly accurate exper-
imental measurements and with understanding of the under-
lying atomic theory may allow precision tests of QED and
determination of nuclear properties.
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