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ABSTRACT
In this work, we describe a computer program called ATOM-MOL-nonBO for performing bound state calculations of small atoms and
molecules without assuming the Born–Oppenheimer approximation. All particles forming the systems, electrons and nuclei, are treated on
equal footing. The wave functions of the bound states are expanded in terms of all-particle one-center complex explicitly correlated Gaussian
functions multiplied by Cartesian angular factors. As these Gaussian functions are eigenfunctions of the operator representing the square
of the total angular momentum of the system, the problem separates and calculations of states corresponding to different values of the
total rotational quantum number can be solved independently from each other. Due to thorough variational optimization of the Gaussian
exponential parameters, the method allows us to generate very accurate wave functions. The optimization is aided by analytically calculated
energy gradient determined with respect to the parameters. Three examples of calculations performed for diatomic and triatomic molecules
are shown as an illustration of calculations that can be performed with this program. Finally, we discuss the limitations, applicability range,
and bottlenecks of the program.
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I. INTRODUCTION

In recent years, there has been increasing interest in quan-
tum mechanical calculations of molecular bound ground and excited
states without assuming the Born–Oppenheimer (BO) approxima-
tion.1–3 There are at least two major reasons why such calcula-
tions are interesting and can provide useful information. The first
reason is related to higher accuracy in calculating the molecular

rovibrational and electronic spectra, as well as the electronic spec-
tra of atoms. When the BO approximation is not assumed, the wave
functions and the corresponding nonrelativistic energy levels of the
atom or molecule explicitly include effects originating from the finite
mass of the nuclei and from the coupling of the motions of the
nuclei and electrons. If such non-BO wave functions are then used
to calculate relativistic and quantum electrodynamics (QED) correc-
tions, these corrections will directly include the finite-nuclear-mass
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(FNM) effects, i.e., the so-called recoil effects. We have showed that
such an approach can produce results whose accuracy match the
accuracy of the most accurate experimental measurements.3 The
second reason for carrying out the non-BO atomic and molecular
calculations stems from the interest in describing properties and
structures of molecules and atoms by calculations where all par-
ticles forming the system are treated on equal footing. With that,
the molecular structure, dipole moment, polarizabilities, etc., are
obtained as expectation values of operators representing these prop-
erties, and for molecules containing identical nuclei, the indistin-
guishability principle leads to interesting effects not present when
the BO approximation is assumed.

Despite the fact that both BO and non-BO approaches are
based on the principles of quantum mechanics, there are significant
differences between them when it comes to calculating the ener-
gies and the corresponding wave functions. In order to describe
a molecular rovibrational spectrum within the BO approxima-
tion, one needs to perform separate calculations of the electronic
wave functions and the corresponding energies at some selected
configurations of the nuclei placed in different fixed positions in
space. These calculations yield the so-called potential energy sur-
face (PES), which is used in the subsequent calculation of bound
rovibrational states of the molecule. In non-BO calculations, as
the nuclei and the electrons forming the molecule are treated on
an equal footing, the calculations yield the total energies and the
corresponding total wave functions, which explicitly depend on
the coordinates of both the nuclei and the electrons. Both the
energies and wave functions directly include all effects (includ-
ing the high-order ones) that originate from the coupling of the
motion of the nuclei and electrons, i.e., adiabatic and non-adiabatic
effects.

At the nonrelativistic level, the Hamiltonian used to calcu-
late the internal states of an atomic or molecular system com-
mutes with the operators representing the square of the total orbital
angular momentum operator and its projection on some axis (usu-
ally chosen to be the z-axis). Therefore, the corresponding quan-
tum numbers, which can be used to label the eigenstates of the
Hamiltonian, are good quantum numbers. As the Hamiltonian is
isotropic (i.e., invariant with respect to rotations about the center
of the internal coordinate system described later in this work), the
wave functions are atom-like [i.e., they transform according to the
irreducible representations of the SO(3) rotation group]. Thus, if
basis functions that are eigenfunctions of the square of the total
orbital angular momentum and its projection on the z-axis are used
in the calculations, the problem of calculating atomic or molecu-
lar bound states separates into independent calculations that are
performed for groups of states, each corresponding to a partic-
ular set of the total orbital angular momentum quantum num-
bers. This applies equally to atoms and molecules, as the non-BO
Hamiltonians for both types of systems have the same spherical
symmetry.

The starting point of the approach we have developed for
non-BO atomic and molecular calculations is the transformation
of the nonrelativistic Hamiltonian, which depends on laboratory-
frame Cartesian coordinates of all particles forming the system.
This Hamiltonian describes both the relative motion of the parti-
cles around the center of mass of the system (here, we termed it the
internal motion) and the translational motion of the center of mass

in 3D space. The latter corresponds to a free motion of the system as
a whole, which has continuous (i.e., non-discrete) energy spectrum,
and thus has to be separated. After this separation, the calculation
can only focus on system’s bound states, which correspond to the
internal motion. The internal bound states are eigenstates of the
Hamiltonian (we call it the internal Hamiltonian), which is obtained
by separating out the operator representing the motion of the center
of mass from the laboratory Hamiltonian. The internal Hamiltonian
used in our atomic and molecular non-BO calculations is given in
Sec. II.

One of the central issues in non-BO calculations is the selec-
tion of appropriate basis functions for expanding the spatial part
of the wave function. In this selection, several points have to be
considered. They are related to the description of the interpar-
ticle correlation effects and to the description of the radial and
angular nodes in the wave functions of the ground and excited
states.

If the nuclei and electrons in a non-BO calculation are treated
on equal footing, the nucleus–nucleus (n–n), electron–electron (e–
e), and nucleus–electron (n–e) correlation effects need to be rep-
resented in the wave function of system. A natural and very effec-
tive form of this representation, at least for the case of pairwise
interaction between particles, involves expanding the wave func-
tion in terms of basis functions, which explicitly depend on the
inter-particle distances. Such functions are called explicitly corre-
lated functions. Various types of explicitly correlated functions have
been adopted in quantum mechanical calculations of atomic and
molecular systems within the BO approximation. Most commonly,
these functions are taken in some form of multi-particle Gaussian
functions.

Atomic and molecular calculations where the BO approxi-
mation is not assumed represent a more recent development in
the field of quantum molecular science. Such calculations require
some modifications of the explicitly correlated basis functions, as
the correlation effects, i.e., the e–e, n–e, and n–n (n–n is only rel-
evant for molecules) correlation effects, that need to be described
are more intricate than in the calculations concerning purely elec-
tronic states. As electrons are lighter and more delocalized in space,
their wave functions (if we could talk about independent single-
particle orbitals) overlap more strongly than the wave functions
of nuclei. Thus, the correlation in the motion of electrons, on
the relative scale, is smaller than the correlation in the motion
of nuclei.

As the e–e, n–e, and n–n correlation effects are due to the
electrostatic interactions between the particles, they depend on the
charges of the particles. However, they also depend on particles’
masses. The mass dependence appears due to the following effect.
For the light electrons, there is non-negligible probability of finding
two of them (with opposite spins) at the same point in space. On the
other hand, due to significantly larger masses of the nuclei, the inter-
nuclear correlation is stronger because the nuclei in a molecule avoid
each other almost completely, even when their spins are opposite.
The third type of correlation, the n–e correlation, can be called anti-
correlation, as it is arises due to attraction and describes an effect
of electrons, particularly the core electrons, following the nuclei
very closely. The direct dependence of the basis functions on the
electron–nucleus distances is key to accurately describing the latter
correlation.
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The explicitly correlated Gaussian functions that have the
dependency on the interparticle distance only in the exponential
factor are usually quite effective in describing the n–e and e–e corre-
lation effects. However, as the probability of finding two nuclei at the
same spatial point is several orders of magnitude smaller than find-
ing two electrons in the same point, additional correlation factors
need to be included in the explicitly correlated Gaussians for non-
BO calculations. These additional factors are also needed to describe
the radial and angular nodes of the wave function that appear due to
ro-vibrational (and also electronic) excitations in molecular non-BO
wave functions and due to electronic excitations in atomic non-
BO wave functions. The need for such factors is due to Gaussians
at coalescent points (rij → 0) having maxima, which are natural
and desirable in describing the n–e correlation, but not desirable
in describing the n–n and, partially, the e–e correlations. The fac-
tors can be chosen in different forms, but their role is to lower (or
even zeroing) the amplitude of the wave function at rij = 0. The
factors should also allow us to generate radial oscillations of the
wave functions for “vibrationally excited” states. The angular oscil-
lations of the wave functions, which are also needed to describe
atomic and molecular excited states, can be achieved by multipli-
cation of the Gaussians by appropriate Cartesian spherical harmon-
ics. Finally, it is desirable to use a common set of basis functions
in both atomic and molecular non-BO calculations, as the general
structures and the symmetries of the Hamiltonians for these two
types of systems are the same. Such a common basis set that can
be used in very accurate atomic and molecular non-BO calcula-
tions is implemented in the computer code, which is described in
this work.

Non-BO calculations of ground and excited states of atomic
and molecular systems are interesting and useful for the following
reasons: (i) treating nuclei and electrons of the system on equal foot-
ing is approximately equivalent to computing the entire molecular
potential energy surface and determining rovibrational states of the
system in a single calculation, (ii) the non-BO approach enables
a direct account of the coupling of the vibrational and electronic
degrees of freedom and can provide a very accurate description of
this effect, (iii) non-BO calculations when performed with extended
well optimized basis sets and with the inclusion of leading relativistic
and quantum electrodynamics (QED) effects are capable of predict-
ing spectral transitions with accuracy that matches or even exceeds
the accuracy of the most accurate high-resolution experiments, and
(iv) non-BO calculations provide a unique description of chemical
and physical properties of atoms and molecules outside the realm of
the BO approximation.

The non-BO effects can be determined directly by an approach
such as the one presented in this work or by calculating these effects
using the perturbation theory, where the BO solution is taken to
be the zeroth-order approximation. A question that one can asks
is which of the two approaches is more accurate and convenient to
apply. An example that sheds some light on this point can be found
in the paper by Pachucki and Komasa4 where one finds a compar-
ison of the non-adiabatic corrections to the adiabatic energy levels
of the H2 molecule obtained in direct non-BO calculations by Wol-
niewicz, by our group, and by a perturbation-theory method derived
in that work (see Table I in Ref. 4) based on the BO approach. While
the agreement between our results and the results of Wolniewicz is
very good, it is slightly worse when comparing with the results of

Pachucki and Komasa. It seems that higher order corrections, which
are more cumbersome to calculate, are needed to obtain a better
agreement of the results obtained with the direct non-BO method
and the perturbation theory results.

II. HAMILTONIAN
Let us consider an isolated atom or molecule formed by N

particles with masses {Mi} and charges {Qi}. We start with the posi-
tions of the particles first described using the Cartesian coordinates
in the laboratory frame, {Ri}. The laboratory coordinates and the
corresponding linear momenta of the particles are

R=
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⋯
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

Y1

Z1

⋮
ZN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2

⋯
PN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Px1

Py1

Pz1

⋮
PzN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

The laboratory frame nonrelativistic Hamiltonian of the system is

Hnr(R) =
N

∑
i=1

P2
i

2Mi
+

N

∑
i=1

N

∑
j>i

QiQj

∣Ri − Rj∣
. (2)

Next, the 3N-dimensional problem represented by the above Hamil-
tonian is separated into two problems. The first is a 3D problem
of the motion of the center of mass of the system in space. The
second problem is an (3N − 3)-dimensional internal problem of
the motion of the particles forming the atom or a molecule with
respect to each other. The separation of the two problems is rig-
orous and is achieved by transforming Hamiltonian (2) to a new
coordinate system. The first three coordinates, r0, in this transfor-
mation are the coordinates of the center of mass in the labora-
tory coordinate frame and the remaining 3N − 3 coordinates are
the internal Cartesian coordinates. These coordinates, denoted as
ri (i = 1, . . ., N − 1), are the position vectors of particles 2 to N
with respect to particle 1. Particle 1 is called the reference particle.
While any particle in the system can be chosen to be the refer-
ence particle, it is natural to assign this role to the heaviest one.
The approach is a generalization of the textbook approach applied
to solve the time-independent Schrödinger equation for the hydro-
gen atom. Usually in an atomic calculation, the reference particle is
the atomic nucleus, and in a molecular calculation, it is the heaviest
nucleus. If we denote n ≡ N − 1, then, in the new coordinate system,
Hamiltonian (2) becomes

Htot
nr (r0, r) = (−1

2
1

Mtot
∇2

r0) + (−1
2

n

∑
i

1
μi
∇2

ri

− 1
2

n

∑
i≠j

1
m0
∇′ri∇rj +

n

∑
i<j

qiqj
rij

+
n

∑
i=1

q0qi
ri
⎞
⎠

, (3)

where qi = Qi+1 (i = 0, . . ., n) are the charges, μi = m0mi
m0+mi

are the
reduced masses, Mtot is the total mass of the system, m0 is the mass
of the reference particle, and mi = Mi+1. ∇ri is the gradient vec-
tor expressed in terms of the xi, yi, and zi coordinates of vector ri,
rij = |ri − rj| = |Ri+1 − Rj+1|, and r0i ≡ ri = |ri| = |Ri+1 − R1|. The
prime symbol is used to denote the vector/matrix transposition.
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In the new coordinate system, the laboratory frame Hamilto-
nian (3) becomes a sum of the operators representing the kinetic
energy of the center-of-mass motion, Hcm

nr (r0), and the internal
Hamiltonian, Hint

nr (r),

Htot
nr (r0, r) = Hcm

nr (r0) + Hint
nr (r), (4)

where r is a 3n-component column vector. Its first three compo-
nents are coordinates r1, the next three are r2, etc. In the present
work, we are only concerned with the internal bound states of the
system. Thus, only the eigenvalues and eigenfunctions of the internal
Hamiltonian are calculated. The variational calculation in the frame-
work of the Rayleigh–Ritz approach involves solving the generalized
eigenvalue problem (finding eigenvalues ϵ and eigenvectors c),

Hc = ϵSc, (5)

with the (internal) Hamiltonian and overlap matrices H and
S. The elements of the Hamiltonian and overlap matrices,
Hkl = ⟨ϕk∣Hint

nr ∣ϕl⟩ and Skl = ⟨ϕk|ϕl⟩, are calculated in the chosen
set of explicitly correlated basis functions, {ϕk}.

The computational time for calculating a matrix element of
each of the two matrices is, in general, proportional to n3, as it
involves matrix operations such as inversion and multiplication.
The time is also proportional to the product of the factorials of the
numbers of particles in the groups of identical particles (for exam-
ple, in the case of the H+

3 ion, this product of factorials is 3! × 2!
as there are three identical nuclei and two identical electrons). This
later dependency results from the number of permutation sym-
metry operators that need to be applied to the wave function to
impose the proper permutational symmetry. When all matrix ele-
ments are computed, solving the generalized eigenvalue problem
(5) also makes a sizable contribution to the overall cost of the cal-
culation despite using a quick solver involving finding only a sin-
gle eigenvalue and the corresponding eigenfunction. It should be
noted that both the Hamiltonian and overlap matrices are com-
plex Hermitian matrices, while the overlap matrix is also positive
definite.

Upon examining the form of the internal Hamiltonian, one can
see that it describes a system of n pseudoparticles with the masses
equal to reduced masses μi and charges qi (i = 1, . . ., n) moving
in the central field of the charge of the reference particle, q0. The
pseudoparticles interact with each other via the Coulomb poten-
tial. In addition, their motions are coupled (correlated) through the
mass-polarization terms, − 1

2 ∑
n
i≠j

1
m0
∇′ri∇rj . As mentioned, (3) has

the symmetry of an atomic Hamiltonian. Thus, the spatial basis
functions used to expand the wave function of such a Hamiltonian
need to be one-center functions that provide bases for irreducible
representations of the SO(3) group of rotations.

III. BASIS FUNCTIONS
As nuclei (nucleus in an atomic calculation) and electrons in

the calculation are treated on equal footing, the basis functions need
to properly represent this egalitarian approach. In this work, we use
all-particle explicitly correlated Gaussian functions as basis func-
tions for expanding the spatial component of the non-BO wave
function. There are various forms of explicitly correlated one-center
n-particle Gaussian functions (ECGs). The Gaussian exponent of

these functions can be represented in the following form that shows
its explicit dependence on the inter-particle distances, rij:

ϕk = exp[−α1kr
2
1 − α2kr

2
2 − ⋅ ⋅ ⋅ − αnkr2

n − β12,kr
2
12

−β13,kr
2
13 − ⋅ ⋅ ⋅ − βn−1n,kr

2
n−1n], (6)

where ri is the distance between particle i and the center of the Gaus-
sian and αik and βij ,k are the non-linear parameters of the Gaussian.
The above function can be represented in the following alternative
compact form:

ϕk(r) = exp[−r′ Āk r], (7)

where Āk is a 3n × 3n real symmetric matrix of exponential param-
eters. Āk can be written as Āk = Ak ⊗ I3, where I3 is the 3 × 3 unit
matrix,⊗ denotes the Kronecker product, and Ak is a n × n symmet-
ric matrix. To ensure square integrability of function ϕk(r), matrix
Ak must be positive definite. This happens automatically if Ak is
represented in the Cholesky factored form as Ak = LkL′k, where Lk
is an n × n, rank n, lower triangular matrix. ϕk(r) is automatically
square-integrable for the Lk matrix elements being any real numbers.

As mentioned, the description of the n–n correlation and the
nodes of the wave function of excited states requires including addi-
tional factors in the basis functions. It was shown that, in the case
of a diatomic molecule, an effective factor can be a pre-exponential
multiplier in the form of a non-negative power of the inter-nuclear
distance.3,5,6 For a molecule with more than two nuclei, the factor
should be a product of non-negative powers of all intermolecular
distances. Let us call the Gaussians with such multipliers “power
Gaussians”. For a diatomic system, the power Gaussian has the
following form:

ϕk(r) = r2pk
1 exp[−r′ Āk r], (8)

where r1 is the distance between the reference nuclei and particle i
and 2pk is its integer non-negative power (ranging from 0 to 250 in
our calculations; we only use even powers as this considerably sim-
plifies the calculation of the Hamiltonian integrals but has almost no
effect on the accuracy of the calculation). For a triatomic molecule,
the power Gaussian has the following form:7

ϕk(r) = r2p1,k
1 r2p2,k

2 r2p12,k
12 exp[−r′ Āk r], (9)

where r1, r2, and r12 are internuclear distances and 2p1,k, 2p2,k, and
2p12,k are their respective non-negative even-integer powers.

The larger is the 2pk power value at fixed Ak, the more the two
nuclei are separated from each other [i.e., the maximum of the Gaus-
sian, which is located, for example, for Gaussian (8) on a sphere,
shifts to a sphere with a larger radius]. Gaussians with the zero value
of the powers need to be included to assure that the probability of
finding two or more nuclei in a single point in space may not be
exactly zero. In a calculation of an excited vibrational state, Gaus-
sians (8) with different values of the 2pk powers are combined to
generate the radial oscillations and the nodes in the wave function.
As the non-BO wave function for an excited ro-vibrational state of,
for example, a diatomic system oscillates in terms of r1, it also oscil-
lates in terms of the distances between the electrons and the nuclei
because the maxima of the electron densities appear in the same
regions where there are maxima of the densities of the nuclei. In the
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non-BO wave function of a diatomic molecule, where the internal
coordinate r1 describes the relative position of the second nucleus
with respect to the first (reference) nucleus, the internal coordinates
r2, r3, etc., describe the relative positions of the electrons with respect
to the reference nucleus. Thus, the oscillations of the wave func-
tions in terms of r1 are accompanied by similar oscillations of the
wave function in terms of r2, r3, etc. However, as the wave func-
tions do not have nodes in terms of these latter coordinates, there
is less need to include in the basis functions pre-exponential multi-
pliers being powers of the r2, r3, etc. distances. The dependency of
the exponents of the Gaussians on these distances usually suffices in
this case. This explains the effectiveness of the basis set of Gaussians
(8) in the non-BO calculations of diatomic molecules.3,5,6 However,
this effectiveness can be increased by making the pre-exponential
multipliers also dependent on powers of r2, r3, etc. This point is dis-
cussed further when the basis functions used in the present work are
introduced.

In recent years, we have developed and tested an alternative
form of ECGs for molecular non-BO calculations.8–10 These alter-
native basis functions are all-particle explicitly correlated Gaussians
with complex exponential parameters (complex ECGs or CECGs,
for short). The general form of such functions for states with the
rotation quantum number of zero (L = 0) is8

ϕk(r) = exp[−r′ C̄k r] = exp[−r′ (Āk + iB̄k) r], (10)

where Āk, as in (7), B̄k is a real symmetric matrix of variational
parameters, and i =

√
−1. Āk and B̄k can be written as Āk = Ak ⊗ I3

and B̄k = Bk ⊗ I3. For L = 1 (ML = 0) states, the appropriate form of
the CECGs becomes10

ϕk(r) = zik exp[−r′ C̄k r] = zik exp[−r′ (Āk + iB̄k) r], (11)

where zik is the z internal coordinate of particle ik. Note that the value
of the integer parameter ik can be varied from 1 to n for each basis
function and, thus, it has the corresponding index k. Basis functions
(10) and (11) have been implemented.8–10 Work on implementation
of L = 2 (ML = 0) CECGs,

ϕk(r) = (2zikzjk − xikxjk − yikyjk) exp[−r′ C̄k r]
= exp[−r′ (Āk + iB̄k) r], (12)

is currently in progress. The limitation of L = 0, 1, or 2 in the non-BO
atomic and molecular calculations means that only the states where
the electronic excitations are limited to Σ, Π, and Δ states, states
where the total rotational quantum number does not exceed three,
and states of the mixed nature where the total angular momentum
quantum number does not exceed three can be considered. Future
developments may go beyond these constraints.

As mentioned, to ensure the square integrability of ϕk(r),
matrix Ak in (7) is represented in the Cholesky factored form as
Ak = LkL′k. The Lk matrix elements, which are variational parameters
in the calculation, can take any real values, positive or negative. In
our recent works, we showed that functions (10) can be contracted to
form pre-exponential multipliers being products of sin and cos func-
tions dependent on squares of the inter-particle distances.11 Such
products multiplied by the real part of the exponent of the Gaussian,

which “dumps” the sin/cos oscillations at longer distances, are capa-
ble of very effectively describing the e–e, n–n, and n–e correlation
effects. They can also describe the radial oscillations and the radial
nodes of the wave functions of excited states as effectively as the
power Gaussians for both atomic and molecular systems. Finally, the
CECG basis functions are universal and can be used in non-BO cal-
culations of atoms and diatomic molecules, as well as in calculations
of molecules with more than two nuclei.

The exact wave functions of states of atoms and molecules cor-
responding to the projection of the total orbital angular momentum
vector on the z axis equal to zero are functions that are not complex.
Even though complex Gaussians can be contracted into sin/cos lin-
ear combinations that are real functions, there is some value in using
CECGs in the uncontracted form in the non-BO calculations. If the
complex Gaussians are uncontracted and both Ak (or Lk) and Bk
matrix elements are variationally optimized as independent param-
eters, it gives the basis more flexibility and may open some additional
trajectories in the process of optimizing the nonlinear variational
parameters, which in the end can lead to more compact expansion
of the wave functions in terms of the basis functions. At the same
time, the complex-space optimization approach may produce a wave
function with a small imaginary component. This is acceptable as the
function is variational.

The angular excitations of the system, for both the atomic
and molecular cases, are described by including angular functions
as pre-exponential Gaussian multipliers. As mentioned, for L = 1,
the Gaussian should be multiplied by the zik factor, where ik = 1,
. . ., n. The value of ik in our calculations is treated as an addi-
tional variational parameter and is partially optimized. While in
the atomic non-BO calculations, i is an electron index, in molec-
ular calculations, it may correspond to either an electron label or
a label of a nucleus. Thus, in a calculation of an excited rovi-
brational state, along with the main contributions to the non-BO
wave function that describe angular excitations of the nuclei, there
might be some minor contributions corresponding to angular exci-
tations of the electrons. We showed that such contributions are
indeed small, yet not negligible.12 For rovibrational states where
more than one particle is angularly excited (we calculated such states
for atoms13), there can be contributions to the wave function from
Gaussians where both nuclei (nucleus for an atom) and electrons
are simultaneously angularly excited. The CECGs with appropri-
ate mixed Cartesian angular factors can effectively describe such
excitations.

IV. COMPUTATIONAL IMPLEMENTATION
The algorithms for performing non-BO calculations with

CECGs are implemented in a computer program written in FOR-

TRAN and employ MPI (Message Passing Interface) protocol for
parallelization on distributed memory systems. The implementa-
tion includes algorithms for calculating the matrix elements of the
internal-Hamiltonian matrix and the overlap matrix. At present, the
calculations can be performed with basis functions (10) and (11).
The implementation also includes the matrix elements of the analyt-
ical energy gradient determined with respect to the elements of Lk
and Bk matrices, i.e., the Gaussian non-linear parameters. The pro-
cedure for calculating the gradient is described in Refs. 8 and 14. The
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implementation is general and can be applied to an arbitrary number
and types of particles. As the calculations of matrix elements requires
very little communication between different MPI processes, this part
of the code is highly scalable.

The scheme implemented in the computer program is fairly
straightforward. The major goal of the calculation is to generate
a CECG basis set for expanding the wave function of the desired
state of the system and to calculate its energy and other properties.
The basis set generation is based on variational minimization of the
total nonrelativistic internal non-BO energy of the considered state
of the system. The calculation of the energy involves constructing
the Hamiltonian and overlap matrices and solving the generalized
eigenvalue problem. The variational energy minimization employs
the energy gradient to navigate the search for an energy minimum
(or at least a low enough point in the space of nonlinear variational
parameters). The gradient is dependent on the derivatives of the
Hamiltonian and overlap matrix elements determined with respect
to the matrix elements of the Lk and Bk matrices.

The basis set is generated and tuned independently for each
considered state of the system. The basis set is grown from a small
set of Gaussians that can be obtained by a very thorough optimiza-
tion, constructing it from a set of single-particle Gaussian orbitals,
or taken from an already calculated neighboring state of the sys-
tem. Using a small set of Gaussians whose parameters are obtained
from a random number generator is also a possibility. The grow-
ing process involves adding basis functions one by one or in small
groups of functions. The initial guess for a new added basis function
is obtained by randomly perturbing the non-linear parameters of a
subset of some function already included in the basis set and then
by selecting the candidate that lowers the energy the most. For that
function, the particle indices in the angular pre-exponential multi-
plier [for example, the ik index in the zik pre-exponential angular
multiplier in basis function (11) or the ik and jk indices in function
(12)] are optimized first. This is followed by an optimization of the
function’s Lk and Bk parameters. At this point, the overlap integrals
between the optimized function and the functions already included
in the basis set are calculated to check for linear dependencies. If any
linear dependencies exceeding a predefined threshold are detected,
the function is discarded and a new function is selected and opti-
mized. It is undesirable to have linearly dependent functions in the
basis set, as this may lead to severe numerical instabilities and loss
of precision in the calculation. After addition of a certain number
of new functions to the basis set, the whole basis set is reoptimized
by cycling over all functions one by one and reoptimizing their Lk
and Bk exponential parameters (no reoptimization of the i index is
done at this point). The growing of the basis set continues until the
desired energy convergence is reached.

It should be noted that in our code, there is also an alterna-
tive option of reoptimization of all parameters of all basis functions
simultaneously. In this case, in order to prevent the optimization
process from yielding a set of highly linearly dependent functions,
we add a penalty function as described in Ref. 15. In the approach, a
positive-valued penalty term,

P =∑
i,j
β(∣Sij∣2 − t2), ∀ i, j : ∣Sij∣ > t, (13)

is added to the total variational energy of the considered state when-
ever two or more basis functions have the normalized overlap,

Sij, higher than the predefined threshold, t. After the addition,
instead of minimizing the energy, the sum of the energy and the
penalty term is minimized. β in (13) is a scaling factor. The penalty
term depends on the overlap integrals between the basis functions
and increases as these overlaps become closer to one (the basis func-
tions are normalized). In the calculation, the penalty threshold is
set to a value slightly smaller than one (e.g., t = 0.99). This ensures
that during the optimization no two basis functions become almost
linearly dependent.

The code, which contains a makefile that can be used to com-
pile it, is placed in a GitHub repository and can be downloaded
freely.16 A description of how to generate an input file is also sup-
plied (some input parameters and variables used in the code are
described in the comments of the FORTRAN source). We also pro-
vide examples of the input file (see inout.txt) and the corresponding
output files. The examples concern calculations of the ground and
the first excited states of the HD+ ion. The structure of the code
reflects the purpose of the calculation, which achieves the lowest
possible total nonrelativistic energy of the considered state of the sys-
tem. The code contains subroutine DRMNG, modified by us, which
realizes unconstrained optimization and is implemented via reverse
communication.17 During the minimization process, DRMNG calls
the procedure that calculates the energy and the energy gradient,
which in turn calls the procedure to calculate the Hamiltonian and
overlap matrix elements and their derivatives with respect to the
non-linear parameters of the bra and ket basis functions. Thus, a
significant amount of the computational time goes into calculating
the matrix elements. The part of the code that does that is fully
parallelized. To illustrate the efficiency of the parallelization, calcu-
lations are performed where the Hamiltonian and overlap matrices
are generated for the basis set of 1500 CECGs for HD+ using differ-
ent numbers of MPI processes (i.e., 28, 14, 7, 3, and 1). The timings
for the calculations of matrices are shown in Table I. They were
obtained on a server with Intel Xeon E5-2695v3 central processing
unit (CPU) (14 cores/28 threads and 2.3 GHz base frequency). The
data show that, until the number of MPI processes reaches 14, the

TABLE I. Timings (in milliseconds) for computing the Hamiltonian and overlap matri-
ces in the basis of CECGs functions for the ground state of HD+. In the first half of
the table, the basis has a fixed size of K = 1500 CECGs, while the number of MPI
processes executed changes. In the second half, the number of MPI processes, 14,
is fixed, while K changes.

Number of cores Time (ms)

1 1050
3 422
7 245
14 190
28 168

Number of CECGs Time (ms)

188 4
375 12
750 44
1500 188
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TABLE II. Wall time (minutes:seconds) used to perform HD+ calculations using seven MPI processes that involve increasing
the basis set size from Kstart to Kstop and performing 20 optimization cycles in which all CECGs are optimized one by one. All
energies are in a.u.

Kstart Kstop Energy (Kstart) Energy (Kstop) Wall time

100 150 −0.597 878 500 66 −0.597 895 577 66 1:19
150 200 −0.597 895 577 66 −0.597 897 357 41 3:25
200 250 −0.597 897 357 41 −0.59 789 776 487 6:53
250 300 −0.597 897 764 87 −0.597 897 895 75 12:47
300 1500 −0.597 897 895 75 −0.597 897 968 58 (Several months)

computational time scales nearly linearly with that number. At
28 MPI processes, the scaling becomes less linear, which is partially
due to the fact that hyper-threading in many modern CPUs is rarely
capable of “doubling” the actual performance (gains due to enabling
hyper-threading in most float-point intense applications are rela-
tively small). In the table, we also include timings for calculations
performed using 14 MPI processes using different numbers of basis
functions. The numbers increase by a factor of two and the tim-
ings for calculating the matrix elements approximately increases, as
expected, by a factor of four.

Finally, in order to illustrate how much time a typical calcula-
tion of a state of a molecular system takes, we performed a series of
non-BO calculations for the ground state of the HD+ ion in which
the CECG basis set is incrementally increased from 100 CECGs to
300 CECGs. Each time, the increment of the increase is equal to
50 CECGs. After each incremental increase of the basis set, 20 opti-
mization cycles are performed for the basis functions, where in each
cycle, all basis functions in the set are variationally reoptimized one
by one using the gradient-aided optimization approach. The calcu-
lations were performed using seven MPI processes. The energies and
the timings corresponding to each incremental increase of the basis
set size are shown in Table II.

V. NUMERICAL ILLUSTRATION
All three illustrative examples presented in this work concern

molecular systems. For atoms, we used Gaussians (10), (11), and (12)
without the imaginary components in the exponents (see our recent
benchmark calculations of the four lowest 1S states of the beryllium
atom18 where we showed that the use of these functions can pro-
duce extremely accurate total energies for all Be isotopes). As real
Gaussians, such as those used in the above-mentioned work on the
1S spectrum of beryllium, are a partial case of the complex Gaus-
sian basis set (10), the inclusion of the imaginary components in
the Gaussian exponents would make these basis functions even bet-
ter. However, for molecules, the effectiveness of the use of CECGs
in ro-vibrational calculations has not been as well documented as
for atoms. Thus, in the test calculations described below, we only
consider molecules.

The first test concerns the complete vibrational spectrum of
the HD+ ion corresponding to zero total orbital angular momen-
tum. The spectrum consists of 23 bound states (v = 0, . . ., 22). The
total energies of the ro-vibrational states obtained in the calcula-
tions performed with CECGs are shown in Table III. The results are

compared with the energies obtained in the calculations performed
with power Gaussians.19 The number of CECGs for each state is sig-
nificantly smaller than the number of power Gaussians. For example,
for the lowest state, the largest number of CECGs is 1500, but there
were 4000 power Gaussians in the largest basis set of this kind. How-
ever, as one can see, already with 1500 CECGs, the total energy of
−0.597 897 968 588 a.u. is slightly lower than the best power Gaus-
sian result of −0.597 897 968 577 a.u. For the first excited state, the
1500 CECG result is slightly higher than the 5000 power-Gaussian
result. This trend continues as the size of the power-Gaussian basis
set increases for higher states to reach 7000 for the top v = 22 state,
while the number of CECGs increases to only 1700. The reason we
are only able to show CECG results up to 1700 functions are due to
a yet unresolved issue with developing a fast and stable (for highly
excited states) eigenvalue solver that can update the solution of the
complex generalized eigenvalue problem at the cost of O(K2) arith-
metic operations (K is the size of the basis). Therefore, at large K
values that exceed ∼1000, solving the generalized eigenvalue prob-
lem becomes a bottleneck in the current implementation. However,
the analysis of the energy convergence indicates that is it likely that
the CECG energies for all 23 states will eventually become lower
than the power-Gaussian results as the number of CECGs keeps
increasing.

As the level of vibrational excitation increases and the wave
function acquires more radial nodes, more basis functions are
needed to describe the oscillations of the wave function. The primary
vibration oscillations appear in the HD+ non-BO wave function
in terms of the coordinate representing the internuclear distance
(the length of vector r1 in the present calculations). However, the
vibration quantum number v is only approximately a good quan-
tum number, as the vibrational motion is coupled in HD+ with the
motion of the electron. The coupling increases with the vibrational
excitation. Also, as more oscillation appears in the wave function
in terms of r1 with vibrational excitation, oscillations also appear
in terms of the r2 coordinate, which represents the distance of
the electron from the reference nucleus. As mentioned, this hap-
pens because the wave-function maxima in terms of r1 coincide
with the maxima in terms of r2 as the electron follows the moving
nucleus (pseudonucleus). In the power Gaussians, there is no term
that can directly represent the r2 oscillations and they have to be
described “indirectly” through the exponential correlation terms. On
the other hand, appropriate linear combination of CECGs generates
real Gaussians with sin/cos preexponential multipliers dependent on
r2

2 , which can directly describe the needed oscillation of the wave
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TABLE III. The convergence of the total nonrelativistic non-BO energies of the pure vibrational states of HD+. The result marked with ∗ are taken from Ref. 19. All energy values
are given in a.u.

v Basis Energy v Basis Energy v Basis Energy v basis Energy

0 1300 −0.597 897 968 559 1 1300 −0.589 181 829 438 2 1400 −0.580 903 700 073 3 1300 −0.573 050 545 883
1400 −0.597 897 968 586 1400 −0.589 181 829 504 1500 −0.580 903 700 105 1400 −0.573 050 546 218
1500 −0.597 897 968 588 1500 −0.589 181 829 513 1600 −0.580 903 700 125 1500 −0.573 050 546 313
∗4000 −0.597 897 968 577 ∗5000 −0.589 181 829 541 ∗4000 −0.580 903 700 201 ∗4000 −0.573050546451

4 1400 −0.565 611 041 122 5 1500 −0.558 575 519 512 6 1500 −0.551 935 946 669 7 1500 −0.545685911351
1500 −0.565 611 041 490 1600 −0.558 575 520 053 1600 −0.551 935 947 550 1600 −0.545685913104
1600 −0.565 611 041 616 1700 −0.558 575 520 197 1700 −0.551935 947 844 1700 −0.545685913571
∗4000 −0.565 611 042 015 ∗4000 −0.558 575 520 667 ∗4000 −0.551 935 948 624 ∗4000 −0.545685914996

8 1500 −0.539 820 634 742 9 1500 −0.534 337 003 694 10 1500 −0.529 233 620 505 11 1500 −0.524510889995
1600 −0.539 820 637 628 1600 −0.534 337 007 333 1600 −0.529 233 625 616 1600 −0.524510896639
1700 −0.539 820 638 677 1700 −0.534 337 009 157 1700 −0.529 233 628 500 1700 −0.524510900413
∗4000 −0.539 820 640 553 ∗4000 −0.534 337 013 108 ∗4000 −0.529 233 634 746 ∗4000 −0.524510909642

12 1500 −0.520 171 120 258 13 1400 −0.516 218 648 376 14 1400 −0.512 660 105 161 15 1400 −0.509504536602
1600 −0.520 171 129 340 1500 −0.516 218 671 673 1500 −0.512 660 139 336 1500 −0.509504574611
1700 −0.520 171 133 163 1600 −0.516 218 684 234 1600 −0.512 660 156 988 1600 −0.509504603521
∗4000 −0.520 171 143 835 ∗4000 −0.516 218 708 878 ∗5000 −0.512 660 191 254 ∗5000 −0.5095046474123

16 1400 −0.506 763 735 683 17 1400 −0.504 452 529 860 18 1400 −0.502 589 046 694 19 1400 −0.501194606434
1500 −0.506 763 780 540 1500 −0.504 452 583 906 1500 −0.502 589 109 245 1500 −0.501194671839
1600 −0.506 763 816 149 1600 −0.504 452 626 599 1600 −0.502 589 154 439 1600 −0.501194710606
∗6000 −0.506 763 873 837 ∗6000 −0.504 452 691 747 ∗6000 −0.502 5892 273 423 ∗7000 −0.501194794224

20 1400 −0.500 292 256 373 21 1500 −0.499 910 306 544 22 1500 −0.499 865 761 719
1500 −0.500 292 320 388 1600 −0.499 910 325 099 1600 −0.499 865 767 252
1600 −0.500 292 362 144 1700 −0.499 910 332 875 1700 −0.499 865 770 261
∗7000 −0.500 292 453 636 ∗7000 −0.499 910 359 483 ∗7000 −0.499 865 778 308

function. This explains the effectiveness of CECGs in molecular
non-BO ro-vibrational calculations. This also suggests that CECGs
should be equally effective in non-BO ro-vibrational calculations of
molecules with more than two nuclei as they are in the calculations
of diatomics, such as the HD+ molecular ion.

The HD+ system is a good example where the Born–
Oppenheimer approximation leads to unsatisfactory results as it fails
to describe the asymmetry of the charge distribution as the vibra-
tional excitation increases. In BO nonrelativistic electronic calcula-
tions, the average proton–electron and deuteron–electron distances
are the same regardless of the level of the vibrational excitation (if
no adiabatic corrections to the wave functions are included). How-
ever, when the non-BO approach is used in the calculations, the
densities of the particles forming the system show charge asymme-
try that increases with the level of the vibrational excitation. The
values of the average interparticle distances calculated using the non-
BO wave functions generated with the code described in this work
presented in Table IV show that, while for lower vibrational states,
the asymmetry (as measured by the difference between the proton–
electron and deuteron–electron distances) is small, for the last two
states before dissociation, the electron is almost entirely localized at

the deuteron. Simultaneously, the character of the bond in the ion
changes from being basically covalent at lower vibrational states to
ionic at the top states.

The second test concerns a triatomic molecule, the D+
3 ion.

It is chosen because, due to its nuclei being bosons, the permuta-
tional symmetry of the nuclei is easier to implement in the wave
function than in the case of H+

3 with fermionic nuclei (H+
3 non-BO

calculations are now possible with the newly implemented algo-
rithm10 and will be pursued in the near future). When Gaussians
(10) with Bk set to zero (real Gaussians) are used in a molecular
calculation, for example, for H3

+, the natural occurrence of linear
dependencies between the basis functions prevents the calculation
from converging. The reason for this behavior can be explained
by the optimization of the basis functions trying to describe the
value of the wave function becoming equal to zero as r1 → 0,
r2 → 0, or r12 → 0. In order to achieve that for real Gaussians
[i.e., Gaussians (10) with Bk = 0], the optimization has to effec-
tively generate pre-exponential factors in the Gaussians that are
products of powers of r1, r2, and r12. This can be achieved by
“differentiating” the real Gaussians with respect to appropriate
matrix elements of Lk. During the optimization, this differentiation

J. Chem. Phys. 152, 204102 (2020); doi: 10.1063/1.5144268 152, 204102-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE IV. Charge asymmetry in pure vibrational states of HD+. Average proton–
deuteron (rpd ), proton–electron (rpe), and deuteron–electron (rde) distances in a.u.
calculated for all 23 vibrational states listed in Table III. The calculation for each state
is performed with the larges CECG basis set shown for that state in Table III (∗D atom
in the ground state).

v rpd rpe rde

0 2.0548 1.6884 1.6877
1 2.1713 1.7504 1.7495
2 2.2918 1.8143 1.8134
3 2.4167 1.8807 1.8796
4 2.5467 1.9497 1.9484
5 2.6825 2.0217 2.0202
6 2.8250 2.0972 2.0955
7 2.9754 2.1769 2.1748
8 3.1349 2.2613 2.2588
9 3.3054 2.3515 2.3484
10 3.4891 2.4485 2.4447
11 3.6889 2.5540 2.5491
12 3.9087 2.6699 2.6636
13 4.1539 2.7992 2.7907
14 4.4320 2.9458 2.9340
15 4.7542 3.1159 3.0987
16 5.1377 3.3191 3.2924
17 5.6112 3.5723 3.5270
18 6.2274 3.9098 3.8209
19 7.0989 4.4208 4.1976
20 8.5499 5.5162 4.5693
21 12.9501 12.1913 2.3060
22 28.5345 28.4655 1.6004
D∗ 1.5000

effectively occurs by making two or more Gaussians almost identical
and having them contribute to the wave function with a linear coef-
ficient with equal absolute values, but opposite signs. This effectively
generates a “numerical” derivative that approximates the analytical
one. This behavior explains the tendency of the optimization to cre-
ate the linear dependencies, which make the optimization ineffective
and even numerically unstable. For example, we observe such behav-
ior in the optimization of real Gaussians for vibrational states of
the H+

2 molecule. By adding the imaginary components to the real
Gaussians [i.e., by making Bk ≠ 0 in Gaussians (10)], thus effectively
allowing the sin/cos pre-exponential factors to appear in the Gaus-
sians, the zeroing of the Gaussians at r1 → 0, r2 → 0, or r12 → 0
is achieved. Then, there is no need for the linear dependencies to
appear in the calculation. This feature is tested for D+

3 in calcula-
tions of its ground and first-excited vibrational states corresponding
to the total rotation quantum number of zero. In the test, we use 400
CECGs for each state. The basis set is separately optimized for each
state using the gradient-based variational energy minimization. The
all-parameter optimization approach is employed. The linear depen-
dencies appear not to be an issue in the calculation. The energies of
the lowest two states obtained in the calculations are −1.328 377 6
a.u. and −1.316 858 8 a.u. These two results are preliminary. To
obtain good-quality results, the basis sets for the two states have to
be significantly increased. Also, more ro-vibrational states need to be

TABLE V. Convergence of the total energy for the ground state of the BH molecule
(2 nuclei + 6 electrons) in calculations with explicitly correlated Gaussian basis
functions.

Basis size Energy (a.u.)

500 −25.270 646
1000 −25.277 313
2000 −25.280 280
3000 −25.281 146
4000 −25.281 518

calculated to fully assess the utility of the computer code presented in
this work.

The third example of non-BO calculations concerns the largest
system we have ever calculated with the non-BO approach using
all-particle explicitly correlated Gaussian functions. It is the eight-
particle (two nuclei plus six electrons) boronmonohydride molecule,
BH. The calculations are performed for the lowest energy state of the
system. As the above-described HD+ calculations showed, CECGs
can be equally effective in non-BO molecular calculations as explic-
itly correlated power Gaussians,19 which are products of CECG
Gaussian exponents with B̄k = 0 and even non-negative powers of
the internuclear distance. Thus, in the BH calculations, which started
long time before the present work was initiated (the calculations are
still running), we use the power Gaussians. At present, the basis set
size reached over 4000 functions. This required about two years of
continuous calculations on a 32-core computer. As for the mem-
ory requirements, for relatively large basis sets, the bulk of allocated
RAM is used for storing two square matrices of size K. When double
precision is used in the calculation, it translates into ∼16 × K2 bytes.
Only a small amount of disk space is used. The majority of CPU
time goes into calculating the matrix elements of the Hamiltonian
and overlap matrices and those of the energy gradient determined
with respect to the Gaussian exponential parameters. Because there
are six identical particles (electrons) in the BH molecule, each matrix
element requires the calculation of 6! = 720 terms. As each Gaus-
sian in the BH calculations contains 28 independent parameters, for
4000 Gaussians, the total number of parameters that are optimized
is 112 000.

The results of the BH calculations are shown in Table V. They
include the energy values obtained at different stages of the basis-
set growing process. The reported energy values correspond to 500,
1000, 2000, 3000, and 4000 Gaussians. As one can see, the energy
convergence is good, but with 4000 basis functions in the basis set,
the energy is converged to about the fifth significant figure only. The
BH example provides a good illustration of the effort involved in
non-BO molecular calculations of larger molecules.

VI. SUMMARY
In this work, we describe our new computer code ATOM-

MOL-nonBO for performing non-Born–Oppenheimer calculations
of atoms and molecules with an arbitrary number of electrons and
for molecules with an arbitrary number of nuclei. The nuclei and
electrons are treated on equal footing. The basis sets of all-particle
explicitly correlated complex Gaussians are employed in the calcula-
tions. The basis set is universal and can be used to calculate ground
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and excited electronic states of atoms and ro-vibrational states of
molecules. The code is tested in the calculations of the complete
vibrational spectrum of the HD+ ion in the ground rotational state
and the lowest two vibrational states of the D+

3 ion. Some results
are also shown from non-BO calculations of the ground state of the
eight-particle BH molecule, which is the largest system we have ever
calculated within the non-BO approach.

The code continues to be developed and new features are being
added. Currently, it allows us to calculate states corresponding to
the total rotation quantum number of zero and one. One of the
most interesting applications of the code, which will be performed
in the future, is calculations of the ro-vibrational spectra of H+

3 and
its isotopologues. To increase the accuracy of the calculations, we
are planning to add algorithms for computing the leading relativis-
tic corrections (the algorithm for calculating these corrections for
the ground rotational state are already implemented20).

SUPPLEMENTARY MATERIAL

See supplementary material for the source code used in the
present calculations can be downloaded/cloned from a git reposi-
tory.16 It contains the FORTRAN source (files with extensions .f90 and
.f), a UNIX makefile, and several example input files, which set up
calculations for the ground and first excited states of the HD+ ion
with 500, 1000, and 1500 basis functions. Example output files are
also provided. Users need to make sure that a working installation
of the MPI library is available (e.g., Open MPI21) and adjust the
makefile according to their local configuration.
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