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Isotope shifts of the 1s22s2(1 S0) → 1s22 p2(1 S0) transition in the doubly ionized carbon ion C2+
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Highly accurate quantum mechanical calculations are performed for the 1s22s2 (1S0) → 1s22p2 (1S0) transition
energy in the isotopomers of C2+ ion to determine the isotope shifts. Explicitly correlated Gaussian functions
and a variational approach that explicitly includes the nuclear motion are employed in the calculations. The
leading relativistic and quantum electrodynamics corrections to the transition energy are also calculated using the
perturbation theory with the nonrelativistic wave function as the zero-order approximation. It is determined that
the 12C2+ transitions energy, which is obtained from the calculations to be 182 519.031 cm−1 (vs the experimental
value of 182 519.88 cm−1, an excellent sub-wave-number agreement) up-shifts by 1.755 cm−1 for 13C2+ and by
additional 1.498 cm−1 for 14C2+. Those shifts are sufficiently large to be measured experimentally.
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I. INTRODUCTION

Understanding the physical state of the interstellar medium
(ISM) is a fundamental area of research in astrophysics
[1–8]. The classical theoretical models predict the stable
coexistence in pressure ISM equilibrium of various phases of
interstellar matter: the cold neutral medium (CNM), the warm
neutral medium (WNM), the warm ionized medium (WIM),
and the hot ionized medium (HIM). The HIM, which was
identified by the presence of soft x-ray emission by Snowden
et al. [9], has been the focus of the study with the Cosmic
Hot Interstellar Plasma Spectrometer (CHIPS) instrument
launched on January 12, 2003 [10]. As ultraviolet (uv) spectra
of absorption lines of atomic ions can be used to make accurate
temperature and turbulent-velocity measurements of gas in
the WIM by comparing the observed linewidths of ions with
different atomic masses, the spectra of ions of the carbon
isotopes at various ionization stages can be particularly useful.
These ions include the doubly charged carbon ion, C2+, which
is the target of the quantum mechanical calculations performed
in this work.

Isotope shifts of atomic spectral transition energies are
among the properties that are also used to test the agreement
between the experimental results and high-level theoretical
calculations. Since those shifts result from the different nuclear
masses of the isotopes, the nuclear mass has to be explicitly
included in the calculations of the energy levels of the atom (or
atomic ion). This can be done either directly by using a nuclear-
mass-dependent Hamiltonian in the energy calculations or by
employing the perturbation theory and treating the mass effect
as a correction to the infinite-nuclear-mass energy. In this work
we use the former approach. As the isotope shifts of the atomic
energy levels are very small, their calculations have to be
performed with very high accuracy. Such accuracy is achieved
in the present calculations with the use of all-electron explicitly
correlated Gaussian functions (ECGFs). We have used these
types of functions to calculate transitions energies in other
three-, four-, and five-electron atomic systems [11–13] and
we showed that sub-wave-number accuracy is achievable with

those functions provided that several thousands of them are
used and their nonlinear parameters are extensively optimized.
Also, the calculations have to include the leading relativistic
(REL) and quantum electrodynamics (QED) corrections. In
this work the calculations of both corrections are carried out
using the perturbation theory. A brief description of the method
used here is presented in what follows.

The focus of the present calculation is two lowest
1S0 states of three isotopomers of the C2+ ion: 12C2+,
13C2+, and 14C2+. We have also performed calculations for
the infinite-nuclear-mass case, ∞C2+. The quantity, which is
compared with experiment, is the transition energy between
these two states for the 12C2+ isotope. The experimental
value for this transition energy is 182 519.88 cm−1 [14]. The
finite-mass calculations allows us to determine how much this
transition frequency shifts in 13C2+ and 14C2+.

The other purpose for performing high-accuracy calcula-
tions on the doubly ionized carbon atom is to determine how
well the perturbation-theory calculations of the REL and QED
corrections work in this case. Our previous calculation of some
lowest 1S states of the beryllium atom [15] showed that the
approach works very well for that system. However, in C2+ the
REL and QED effects are expected to be about two orders of
magnitude larger than for Be and a question arises as to whether
the perturbation-theory approach based on the nonrelativistic
Schrödinger equation as the zeroth-order approximation is
equally good in this case.

II. THE METHOD

In the nonrelativistic variational calculations we use the
following Hamiltonian (in a.u.) [16,17]:
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where m0 is the mass of the nucleus (m0 = 21 868.663 82 for
12C, m0 = 23 697.667 79 for 13C, and m0 = 25 520.350 57 for
14C), µi are the reduced electron masses, µi = m0mi/(m0 +
mi), m1 = m2 = m3 = m4 = 1, q0 = 6 (the charge of the nu-
cleus), q1 = q2 = q3 = q4 = −1 (the charges of the electrons),
ri , i = 1,2,3,4, are the position vectors of the electrons with
respect to the nucleus, ri are their lengths, and rij = |rj − ri |
are the distances between the electrons. The Hamiltonian
(1) is obtained by rigorously separating the center-of-mass
motion from the nonrelativistic laboratory frame Hamiltonian
[16–19]. This separation reduces the five-particle problem of
the C2+ ion to a four-“pseudoparticle” problem. The calcu-
lations have been carried out for finite masses of the carbon
nucleus, as well as for infinite nuclear mass. They yielded the
nonrelativistic energies, Enonrel, and the corresponding wave
functions. The infinite-nuclear-mass results were generated to
serve as a reference for calculations performed by others in
the framework of the Born-Oppenheimer approximation.

Denoting by r the 12 × 1 vector of the internal Cartesian
electron coordinates, r = (r′

1,r
′
2,r

′
3,r

′
4)′ (the prime symbol

denotes the vector or matrix transposition) and by σ the spin
coordinates of the electrons and the nucleus, we can write the
complete wave function of C2+ as

�(r,σ ) = Â[�(r)�S,MS
(σ )]. (2)

In (2) Â antisymmetrizes the electron labels and �S,MS
(σ )

is a product of the spin functions of the electrons and the
nucleus, �S,MS

= �e�N . For the states considered in this
work �e represents a four-electron singlet spin function. In
practical calculations it is more convenient to use the spin-free
formalism [20,21]. In that formalism only the spatial wave
function, �(r), enters the calculation. However, before it is
used, �(r) has to be acted on by the appropriate Young operator
that represents the permutational symmetry properties of the
state under consideration [20,21].

The following s Gaussians are used in this work to expand
the spatial wave functions, �(r), for the two considered
1S0 states of C2+:

φk = exp[−r′(LkL
′
k ⊗ I3)r], (3)

where ⊗ is the Kronecker product symbol, Lk is a 4 × 4
lower triangular matrix of nonlinear variational parameters,
and I3 is the 3 × 3 identity matrix. The Cholesky factored
form representation, LkL

′
k , of the matrix of the Gaussian

exponential parameters automatically makes the φk function
square integrable for any values of the Lk matrix elements.
This is important in optimizing these parameters because such
an optimization can be carried out without any restrictions
(i.e., the Lk matrix elements can be varied in the range of
[−∞,+∞]), which makes it much more efficient.

The optimization of elements Lk is performed by min-
imizing the total energy, which in the present calculations
has been done separately for each state. In the minimization
we employed the analytic gradient of the energy determined
with respect to the Lk matrix elements [18,19], which
significantly accelerates the optimization process and reduces
its computational cost. Without the use of the analytic gradient,
the present calculations could not be performed at the accuracy
level achieved in this work.

The relativistic effects have been computed as the expecta-
tion value of the Dirac-Breit Hamiltonian in the Pauli approx-
imation (Ĥrel) [22,23] transformed to the internal coordinate
system. For the states with the S symmetry considered in
this work, Ĥrel includes the mass-velocity (MV), Darwin (D),
orbit-orbit (OO), and spin-spin (SS) terms:

Ĥrel = ĤMV + ĤD + ĤOO + ĤSS. (4)

In the internal coordinates these operators have the following
form:
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where δ3(ri) denotes the three-dimensional Dirac δ function.
We should note that in the present calculations we have not
included the magnetic anomaly factors for the electrons and
the nucleus in the Darwin and spin-spin corrections. The
relativistic correction calculations have been performed for
the finite and infinite masses of the carbon nucleus. Thus, the
value of the correction varies with the nuclear mass.

In calculating the leading QED corrections of the order
α3 and α4 (called here EQED and EHQED, respectively), in
this work we used the approach described by Pachucki et al.
[24–27]. The approach is based on the perturbation theory
employed in the framework of the the nonrelativistic QED
(NRQED) [28–30]. The zeroth-order level in this approach is
the nonrelativistic Schrödiger equation. The algorithm used
here was also employed in our recent work on the ground
and excited states of the Be atom [15]. The α3 and α4

QED corrections represent the two-photon exchange, the
vacuum polarization, and the electron self-energy effects. The
algorithm for calculating the α3 QED correction includes
the magnetic anomaly factors for the electrons. As the
procedure used in this work for calculating the α3 and α4 QED
corrections was only developed for the infinite-mass case, only
this type of calculation has been performed.

We note that, while the complete α3 QED correction
(denoted as α3EQED) is determined in the present calculations,
only the dominant contribution of the α4 QED (denoted as
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TABLE I. The convergence of the nonrelativistic energies and the leading relativistic corrections (all values are in a.u.) for different isotopes
of C2+ with the number of basis functions. The rightmost column contains the total energy calculated as the sum of the nonrelativistic energy
plus the relativistic corrections multiplied by α2: Etot = Enonrel + α2(〈HMV〉 + 〈HD〉 + 〈HSS〉 + 〈HOO〉). The values in parentheses are estimates
of the remaining theoretical uncertainty.

System State Basis size Enonrel 〈HMV〉 〈HD〉 〈HSS〉 〈HOO〉 Enonrel + α2Erel

12C2+ 2 1S0 2000 −36.533 148 788 −1509.7554 1199.1146 42.4169 −2.3963 −36.547 559 684
4000 −36.533 149 029 −1509.7926 1199.1534 42.4155 −2.3963 −36.547 559 914
6000 −36.533 149 098 −1509.8448 1199.2045 42.4092 −2.3963 −36.547 560 377
8000 −36.533 149 131 −1509.8420 1199.2076 42.4081 −2.3963 −36.547 560 149

10 000 −36.533 149 149 −1509.8919 1199.2478 42.4077 −2.3963 −36.547 560 710
10 000a −36.533 149 159(35) −1509.9152 1199.2626 42.4076 −2.3963 −36.547 561 174(500)

3 1S0 2000 −35.702 788 412 −1417.4557 1132.2895 39.3873 0.6127 −35.715 843 846
4000 −35.702 791 828 −1417.7682 1132.6512 39.3539 0.6127 −35.715 846 418
6000 −35.702 792 293 −1417.8611 1132.7478 39.3523 0.6127 −35.715 846 767
8000 −35.702 792 471 −1417.8923 1132.7824 39.3522 0.6127 −35.715 846 774

10 000 −35.702 792 551 −1417.9022 1132.7983 39.3512 0.6127 −35.715 846 589
10 000a −35.702 792 578(110) −1417.9024 1132.7984 39.3512 0.6127 −35.715 846 619(200)

13C2+ 2 1S0 2000 −36.533 280 234 −1509.7771 1199.1275 42.4173 −2.3876 −36.547 691 114
4000 −36.533 280 475 −1509.8143 1199.1663 42.4158 −2.3876 −36.547 691 344
6000 −36.533 280 544 −1509.8665 1199.2174 42.4096 −2.3876 −36.547 691 807
8000 −36.533 280 577 −1509.8636 1199.2205 42.4085 −2.3876 −36.547 691 579

10 000 −36.533 280 594 −1509.9136 1199.2607 42.4081 −2.3876 −36.547 692 141
10 000a −36.533 280 604(35) −1509.9368 1199.2755 42.4080 −2.3876 −36.547 692 604(500)

3 1S0 2000 −35.702 911 862 −1417.4760 1132.3017 39.3877 0.6207 −35.715 967 282
4000 −35.702 915 279 −1417.7885 1132.6635 39.3543 0.6207 −35.715 969 854
6000 −35.702 915 744 −1417.8814 1132.7601 39.3527 0.6207 −35.715 970 203
8000 −35.702 915 921 −1417.9126 1132.7947 39.3525 0.6207 −35.715 970 211

10 000 −35.702 916 001 −1417.9226 1132.8105 39.3516 0.6207 −35.715 970 025
10 000a −35.702 916 028(110) −1417.9227 1132.8107 39.3515 0.6207 −35.715 970 055(200)

14C2+ 2 1S0 2000 −36.533 392 482 −1509.7956 1199.1385 42.4176 −2.3803 −36.547 803 349
4000 −36.533 392 723 −1509.8328 1199.1773 42.4162 −2.3803 −36.547 803 579
6000 −36.533 392 792 −1509.8850 1199.2284 42.4099 −2.3803 −36.547 804 042
8000 −36.533 392 825 −1509.8821 1199.2315 42.4088 −2.3803 −36.547 803 815

10 000 −36.533 392 843 −1509.9321 1199.2717 42.4084 −2.3803 −36.547 804 376
10 000a −36.533 392 853(35) −1509.9553 1199.2865 42.4083 −2.3803 −36.547 804 840(500)

3 1S0 2000 −35.703 017 284 −1417.4934 1132.3122 39.3880 0.6275 −35.716 072 691
4000 −35.703 020 700 −1417.8059 1132.6740 39.3546 0.6275 −35.716 075 263
6000 −35.703 021 165 −1417.8988 1132.7706 39.3530 0.6275 −35.716 075 612
8000 −35.703 021 343 −1417.9300 1132.8051 39.3528 0.6275 −35.716 075 620

10 000 −35.703 021 423 −1417.9399 1132.8210 39.3519 0.6275 −35.716 075 434
10 000a −35.703 021 450(110) −1417.9401 1132.8212 39.3519 0.6275 −35.716 075 464(200)

∞C2+ 2 1S0 2000 −36.534 851 968 −1510.0359 1199.2817 42.4220 −2.2843 −36.549 262 665
4000 −36.534 852 209 −1510.0731 1199.3205 42.4206 −2.2843 −36.549 262 895
6000 −36.534 852 278 −1510.1253 1199.3716 42.4143 −2.2843 −36.549 263 358
8000 −36.534 852 311 −1510.1225 1199.3747 42.4132 −2.2843 −36.549 263 130

10 000 −36.534 852 328 −1510.1724 1199.4149 42.4128 −2.2843 −36.549 263 692
10 000a −36.534 852 338(35) −1510.1957 1199.4297 42.4127 −2.2843 −36.549 264 156(500)

3 1S0 2000 −35.704 388 000 −1417.7190 1132.4484 39.3920 0.7159 −35.717 443 246
4000 −35.704 391 417 −1418.0316 1132.8102 39.3586 0.7159 −35.717 445 820
6000 −35.704 391 883 −1418.1245 1132.9068 39.3570 0.7159 −35.717 446 170
8000 −35.704 392 060 −1418.1557 1132.9414 39.3569 0.7159 −35.717 446 178

10 000 −35.704 392 140 −1418.1656 1132.9573 39.3559 0.7159 −35.717 445 993
10 000a −35.704 392 167(110) −1418.1658 1132.9574 39.3559 0.7159 −35.717 446 023(200)

aSeveral additional optimization cycles were performed.
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α4EHQED) correction is calculated. EQED for singlet states of
a four-electron atom has the form [31,32]
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where 	 is the step function, γ is the Euler constant, Ĥ BO
int is the

internal Hamiltonian in the Born-Oppenheiner approximation,
and EBO

int is its eigenvalue.
While EQED contribution is relatively simple to evaluate,

the calculation of the complete α4 correction is a formidable
task. So far, such a complete calculation was only performed
for one- and two-electron atoms [33–35], including the calcu-
lations of some lowest 1S states of the helium atom [36–38].
In general, the algorithm for the α4 correction involves some
first- and second-order quantities, which, when computed
individually, are divergent. The complexity of this algorithm
can be assessed, for example, by the inspection of Eq. (3.58) in
Ref. [38]. This complexity prevented us from calculating the
full α4 correction in the present work. However, it is known
that the α4 correction is dominated by the so-called one-loop
term (see Eq. (2.56) in Ref. [38]) that can be determined using
the following formula:

EHQED 
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(12)

This formula has been employed here to approximately
determine the contribution from the α4 QED effects.

The numerical values of the fine structure constant and
the Hartree-wave-number conversion factor used in this work
were taken from [39]. They are: α = 7.297 352 537 6 × 10−3,
1 hartree = 2.194 746 313 705 × 105 cm−1.

III. RESULTS

The calculations performed in this work involved the
following three steps. In the first step we performed
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nonrelativistic variational calculations where the ECGF basis
set for each state was grown to the size of 10 000 functions by
incrementally enlarging the basis by 20 functions, optimizing
them one by one with the gradient-based method, and, after
this optimization was completed, cycling over all functions
in the basis set and reoptimizing each of them once. After
the 10 000-function basis was generated, several additional
cyclic optimizations were performed to get the final basis set
for each of the two states. The optimization of the exponential
parameters of the basis functions have been performed only for
the 12C2+ isotope. In the calculations of other isotopes, as well
as in the calculations with the infinite nuclear mass ∞C2+, only
the linear expansion coefficients were varied. Our experience
with atoms and atomlike systems have shown that adjusting
only linear coefficients is sufficient to accurately reproduce the
small change of the wave function caused by the difference in
the nuclear mass.

In Table I we show how the total nonrelativistic energy and
the relativistic corrections for each isotope and for each of the
two states converge with the number of basis functions. As the
results indicate, nine to ten leading figures in the nonrelativistic
energy value are essentially converged. The results also show
that the relativistic corrections are not as tightly converged as is
the nonrelativistic energy. This is clearly caused by a singular
character of the operators representing those corrections. Also,
while the value of the total nonrelativistic energy in the
variational calculations always decreases when more functions
are added to the basis set, the values of the relativistic
corrections usually show some small fluctuations.

We should mention that generating the ECGF basis sets has
been the most time consuming step of the calculations. Even
though our computer code was very effectively parallelized
and run on a cluster using up to 24 computer cores, which
made it possible to significantly reduce the computational time,
it still took several months to complete the calculations.

As the internal nonrelativistic Hamiltonian depends on
the reduced masses of the electrons, the nonrelativistic
energy varies with the nuclear mass. Thus, the nonrelativistic
wave functions are slightly different for different isotopes
and this, along with the fact that some of the relativistic
operators depend explicitly on the nuclear mass, results
in the total relativistic correction being mass dependent.
This dependency, as well as the mass dependency of the
total nonrelativistic energy, cause a small change of the
transition energy depending on the mass of the nucleus.
This change is shown in Table II as the function of the
number of ECGFs in the basis set. As one can see, the
transition energy obtained with 10 000 ECGFs increases
by 1.755 cm−1 in going from 12C2+ to 13C2+ and increases
again by 1.498 cm−1 between 13C2+ and 14C2+. Virtually

all the shift values result from the mass dependency of the
nonrelativistic energy. In Table II we also show the uncertainty
of each contribution to the transition energy estimated based
on the convergence pattern. These values indicate that
the nonrelativistic contribution to the transition energy is
converged very well (the uncertainty is about 0.020 cm−1),
while the contribution from the relativistic correction is
converged somewhat worse, to about 0.170 cm−1. We should
note that the theoretical uncertainties shown in Tables I and II
(which arise due to finiteness of the basis set) should be
considered to be very rough estimates only. As experience
shows, these estimates can easily be off by a factor of two
or three, in particular in the case of relativistic energies and
transitions, whose convergence often shows nonmonotonic
behavior. This is probably one of the reasons why the estimated
uncertainty of the total relativistic energy of the excited state
in Table I happened to be smaller than the one of the ground
state, while normally one should expect the opposite.

In the next step of the calculations we evaluated the leading
QED corrections of the order of α3 and α4. As said, the
calculations of these corrections in the present work were
only performed for the case of an infinite carbon nuclear
mass. As such, while they contribute to the transition energy
value, they do not affect its isotope shifts. In the perturbation
approach used to calculate the QED corrections we used the
nonrelativistic zero-order ∞C2+ wave function expanded in
terms of 10 000 Gaussians. In Table III we show the results
of the calculations that include, besides the values of the
corrections, also the values of the 〈P (1/r3

ij )〉/(4π ) and lnk0

terms, which are the key components of the corrections. The
reason for small uncertainties due to α3EQED correction in
Table III is the finite size of the basis used in the calculations.
In the case of α4EHQED correction, the uncertainties are much
larger. These are the result of the approximate treatment of this
correction in which only the dominant part is included.

The final set of results is presented in Table IV. It concerns
the 2 1S0 → 3 1S0 transition energies determined for the 12C2+,
13C2+, and 14C2+ isotopes by adding consecutive corrections
to the value obtained at the nonrelativistic level with the
infinite nuclear mass of the carbon nucleus. Our final value
of the transition energy for 12C2+ of 182 519.031(1000) cm−1

can be compared with the value of the transition energy of
182 519.88 cm−1 obtained experimentally [14]. The results
presented in Table IV indicate that to achieve such an excellent
sub-wave-number agreement between the calculations and the
experiment, all corrections calculated in this work are needed.
More careful analysis of the EHQED correction shows that its
contribution to the transition energy equal to 1.552 cm−1 is
perhaps too large, as only 0.703 cm−1 separates the calculated
value from the experimental result when this correction is not

TABLE III. The leading QED corrections for the 2 1S0 and 3 1S0 states of the C2+ ion. The Araki-Sucher term and the Bethe logarithm, as
well as the total α3 and α4 QED corrections (α3EQED and α4EHQED), obtained in the infinite-mass calculations with 10 000-term wave functions
are shown. All values are in a.u.

State 〈P (1/r3
ij )〉/(4π ) lnk0 α3EQED α4EHQED

2 1S0 −5.954 323(3) 6.5574(4) 1.556 166 8(1) ×10−3 1.27(42) ×10−4

3 1S0 −5.089 253(5) 6.5642(8) 1.466 578 7(4) ×10−3 1.20(40) ×10−4
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TABLE IV. Convergence of the 2 1S0 → 3 1S0 transition energies for 12C2+, 13C2+, and 14C2+ including increasingly higher level corrections
(finite-mass, relativistic, and QED) to the energies of the two states. All values are in cm−1.

Contribution included �E (12C2+) �E (13C2+) �E (14C2+)

Enonrel (inf. nucl. mass) 182 264.940(20) 182 264.940(20) 182 264.940(20)
Enonrel (fin. nucl. mass) 182 242.205(20) 182 243.959(20) 182 245.458(20)
α2Erel 182 540.245(170) 182 542.000(170) 182 543.498(170)
α3EQED 182 520.583(170) 182 522.338(170) 182 523.836(170)
α4EHQED 182 519.031(1000) 182 520.785(1000) 182 522.283(1000)
Experiment [14] 182 519.88

included. Thus, the inclusion of the neglected part of the EHQED

correction seems indispensable in the calculations of heavier
atoms. This point will be investigated in our future work.

The agreement obtained for 12C2+ also indicates that the
2 1S0 → 3 1S0 transition energies calculated for the 13C2+
and 14C2+ isotopes and shown in Table IV are also likely
to be very precise. As they differ from the transition energy
obtained for 12C2+ by almost two wave numbers, they can be
experimentally determined and used to estimate the isotope
ratio for the C2+ ions both in laboratory samples and in
interstellar space.

IV. SUMMARY

There have been two goals in this work. The first concerned
very accurate determination of the 2 1S0 → 3 1S0 transition
energy for 12C2+ using the variational approach and explicitly
correlated Gaussian basis functions at the nonrelativistic level
and the perturbation-theory approach to calculate relativistic
and QED energy corrections. This part of the work resulted in
the transition energy value that differs from the experimental
result by less than a wave number. Such an excellent agreement
for a system where the relativistic corrections are significantly

larger than for lighter four-electron atoms (e.g., Be or Li−),
indicates the NRQED approach works very well. A possible
improvement of the approach that may further reduce the
difference between the calculated and experimental transition
energy values is to include the neglected component of the
EHQED correction. This will be considered in our future work.

The second goal concerned determination of the mass shifts
(yet unmeasured) of the transition energy that occurs for the
13C2+ and 12C2+ isotopes. As those shifts are sufficiently
high to be detected experimentally, their measurement would
provide an excellent test of the theoretical model used in the
calculations performed in this work.
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