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Prediction of 2S Rydberg energy levels of 6Li and 7Li based on quantum-mechanical calculations
performed with explicitly correlated Gaussian functions
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Accurate variational quantum-mechanical calculations are performed for the nine lowest 2S (1s2ns), n =
2, . . . ,10 states of the lithium atom. The effect of the finite nuclear mass is explicitly included in the calculations
allowing for the determination of the isotopic shifts of the energy levels. The wave functions of the states
are expanded in terms of all-electron explicitly correlated Gaussian functions and their exponential parameters
are variationally optimized with the aid of the analytical energy gradient determined with respect to those
parameters. The experimental results for the lower states (n = 3, . . . ,6) and the calculated results for the higher
states (n = 7, . . . ,10) fitted with quantum-defect-like formulas are used to predict the energies of 2S 1s2ns states
for 7Li and 6Li with n up to 30.
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I. INTRODUCTION

High-precision calculations of energy levels for lithium
and lithiumlike ions have been a subject of several re-
cent works [1–10]. We have also contributed to this ef-
fort [11–13]. The most accurate calculations have included
leading relativistic and quantum electrodynamics (QED) cor-
rections of orders O(α4mc2), O(α5mc2), O((m/M)α4mc2),
and O((m/M)α5mc2). Particularly accurate have been the
calculations involving Hylleraas basis functions, because these
functions describe very well the medium- and long-range
electron correlation, as well as the behavior of the wave func-
tion at short and contact ranges of the electron-electron and
electron-nucleus distances. High-accuracy atomic calculations
can also be performed with all-electron explicitly correlated
Gaussian functions (ECG). These functions are currently the
only viable alternative to perform such calculations for atoms
with more than three electrons. Moreover, even for atoms with
just three electrons, ECG calculations for some higher excited
states, especially involving electrons with nonzero angular
momenta, are more accurate than Hylleraas calculations. An
example of such a case are our recent ECG calculations of nine
2D Rydberg excited states of lithium [12,13] where the most
accurate transition energies available in the literature were
obtained.

It should also be mentioned that, as the transition energies
associated with higher excited states are accurately measured
in experiment mainly due to weak intensities of the corre-
sponding spectral lines, calculations performed with Gaussians
are sufficiently accurate to provide valuable assistance to
experimental attempts to remeasure these lines with higher
accuracy. For example, the calculations of the lithium 2D

states [12,13] allowed refining some higher transition energies
whose measurements were significantly less accurate than the
transitions involving the lowest states.

In this work we continue to use the highly accurate
predictive ability of the ECG calculations to determine the
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energies of the still unmeasured 2S states of 7Li and 6Li.
The NIST atomic spectra database [14] lists four series
of Rydberg states of the 7Li isotope corresponding to the
following electronic configurations: 1s2ns, 1s2np, 1s2nd,
and 1s2nf . Among them there are ten 2S 1s2ns states, with
n = 2,3, . . . ,11. In Table I the experimental energies of these
states determined with respect to the 2S 1s22s state taken
from Refs. [14,15] are listed and it is important to notice that
the precision of the measurements decreases as n increases.
The measured energies of 6Li [15] are also shown. For the
lowest four 2S states of 7Li and 6Li, namely the 1s23s, 1s24s,
1s25s, and 1s26s states, the relative energies with respect to
the ground 2S 1s22s state are reported in Ref. [15] with the
precision of three to four significant digits after the decimal
point (in wave numbers). The energies of three higher states,
1s27s, 1s28s, and 1s29s, are reported [14] with only one
significant digit after the point. Two highest states measured,
the 1s210s1 and 1s211s1 states, are reported [14] with no digits
after the point.

Even though the calculations with ECGs show very high
accuracy for the ground and lower-lying states, as the exci-
tation level increases it becomes progressively more difficult
to converge the energy and the wave function as tight as for
those lower states. Undoubtedly the increasing number of the
radial nodes in the wave function is the reason. As the present
calculations will show, while less than 5000 ECGs are enough
to converge two significant figures after the decimal point in
the transition energy of the first 2S excited state, 12 500 ECGs
is hardly enough to reach a similar convergence level for the
eight excited state.

High accuracy in the ECG calculations can only be
achieved if the ECG nonlinear parameters are extensively
optimized in the calculations. In this work the ECG basis
is variationally optimized independently for each considered
state. The optimization employs a procedure that involves
the analytical energy gradient determined with respect to the
parameters. The use of the gradient significantly accelerates
the convergence of the optimization process.

The nonrelativistic Hamiltonian for the lithium atom
representing the internal state of the system (we call it
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TABLE I. Experimental energies (in cm−1) of the 1s2ns, n =
2, . . . ,11 and n = ∞, 2S states of 7Li and 6Li (from Refs. [14] and
[15]), determined with respect to the ground 2S (1s22s) state.

n 7Li [14] 7Li [15] 6Li [15]

2 0. 0. 0.
3 27 206.12 27 206.095 2 27 205.712 9
4 35 012.06 35 012.032 6 35 011.543 2
5 38 299.50 38 299.462 7 38 298.928 3
6 39 987.64 39 987.586(3) 39 987.027
7 40 967.9
8 41 587.1
9 42 003.3
10 42 298.
11 42 510.
∞ 43 487.150

“internal Hamiltonian,” Ĥint) used in the present work is
obtained by separating out the center-of-mass motion from the
laboratory-coordinate-system Hamiltonian (for more details
see, for example, Ref. [16]). The separation is rigorous and
leads to the following Ĥint expressed in atomic units:

Ĥint = −1

2

⎛
⎜⎜⎝

n∑
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∇2
ri

+
n∑
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1
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⎞
⎟⎟⎠

+
n∑
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q0qi

ri

+
n∑

i>j=1

qiqj

rij

, (1)

where ri is the distance between the ith electron and the
nucleus, m0 is the nucleus mass (12 786.3933me for 7Li and
10 961.898me for 6Li, where me = 1 is the electron mass),
q0 = +3 is its charge, qi = −1 are electron charges, and
μi = m0mi/ (m0 + mi) are electron reduced masses. For a
four-particle (three-electron) atom n = 3. The prime indicates
the matrix or vector transpose.

The internal Hamiltonian (1) explicitly depends on the
mass of the nucleus. Thus, the calculated energy levels
for different isotopes are slightly shifted with respect to
each other. The shifts can be directly determined from
the variational calculations without resorting to additional
perturbation-theory calculations, which are typically done
following infinite-mass calculations to determine the mass
effects. The mass-dependent internal Hamiltonian can also
be used to calculate the energy spectrum for an atom with an
infinite nuclear mass (in this case ∞Li). As such calculations
can be directly compared with previous literature results, they
are also performed in this work.

II. CALCULATIONS

The all-electron explicitly correlated Gaussians (ECGs)
used in this work to describe the 2S states of the Li atom
have the following form:

φk = exp[−r′ (Ak ⊗ I3) r], (2)

where Ak is an n × n symmetric matrix, ⊗ is the Kronecker
product, I3 is a 3 × 3 identity matrix, and r is a 3n vector of

the electron coordinates. Gaussians (2) are square integrable
if the Ak matrix is positive definite. To assure this requirement
is always met we use the following Cholesky-factored form
of Ak: Ak = LkL

′
k , where Lk is a lower triangular matrix.

Even if the values of the Lk matrix elements vary from ∞ to
−∞, Ak in the form of LkL

′
k is automatically positive definite

and the Gaussian is square integrable. Thus it is convenient
to replace the elements of the Ak matrices by the elements of
the Lk matrices as the variational parameters because then the
optimization can be carried out without any constraints. This
helps to expedite the calculations.

The proper permutational symmetry of the wave function is
implemented by acting with a projection operator on each basis
function. In constructing this operator we use the so-called
spin-free formalism involving standard Young operators as
described, for example, in Ref. [17]. For 2S states of lithium,
the Young operator can be chosen as Ŷ = (1̂ + P̂23)(1̂ − P̂12),
where 1, 2, and 3 are electron labels, and P̂ij permutes the
spatial coordinates of the ith and j th electron. As the internal
Hamiltonian (1) commutes with all electron permutations,
in the calculation of the overlap and Hamiltonian matrix
elements, Ŷ needs to be only applied to the ket basis function
(as Ŷ †Ŷ ).

As mentioned, the basis set optimization has been carried
out separately for each of the nine 2S states considered in this
work. The optimization was only done for the 7Li isotope.
In the calculations for the 6Li isotope, as well as for ∞Li,
the 7Li basis sets were used without reoptimization of the
nonlinear parameters. Because the change in the total wave
function is quite small when the mass of the nucleus is varied,
it is sufficient to adjust only the linear coefficient of the basis
functions.

The final basis set for each of the considered states have
been generated in a basis set growing process. It starts
with a small set of randomly chosen functions and involves
incremental addition of new functions. The new functions
are added to the basis set one by one and their nonlinear
Lk parameters are variationally optimized using the analytic
gradient of the energy. The initial values of these parameters
are obtained from randomly perturbing the parameters of the
functions already included in the set and selecting the function
which lowers the energy the most when added to the basis.
After a certain number of functions (usually 100) is added
to the basis set, all functions in the set are reoptimized. The
reoptimization involves cycling over all functions, one by one,
several times and reoptimizing them with the gradient-based
approach.

An important issue in the optimization is preventing linear
dependencies between the basis functions to form when their
exponential parameters are optimized. Linear dependencies
are undesirable because they may cause the precision of the
calculation to decrease and, in extreme cases, the results
(energy) become unphysical. There are several reasons why
linear dependencies may appear in variational calculations.
The most common one is that the basis functions are not
perfectly well suited for expanding the eigenfunctions of
the atomic Schrödinger equation (for example, due to their
incorrect cusp and long-distance behavior). The variational
procedure may try to generate clusters of basis functions that
mimic functions which better describe those features. For
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example, forming a linearly dependent ECG pair, where the
two ECGs differ only in terms of one Ak matrix element, is
effectively generating the first derivative of the Gaussian with
respect to that element. If, for example, this element is the
first element on the diagonal of Ak , the derivative is equal
to the original Gaussian multiplied by r2

1. As such function
vanishes at r1 = 0, it may help to describe the behavior of
the wave function near the nucleus-electron contact point. In
a similar way functions approximating products of Gaussians
by squares of the interelectron distances, r2

ij , can be generated.
Such functions can help better describe the interelectronic
cusps. Thus, certain deficiencies of basis functions can cause
linear dependencies to appear in the calculation.

In view of the above, a procedure has to be devised to
prevent linear dependencies to form in the basis set in the
variational optimization of the ECG exponential parameters,
because if they do form, the efficiency of the energy mini-
mization usually significantly decreases and numerical noise
appears in the energy. As in the majority of cases only
ECG pairs become linearly dependent, after a new function
is added to the basis set and its exponential parameters are
optimized, it is checked for linear dependency with every
function already included in the set. If linear dependency
is noticed, the function is rejected and replaced by another
function. The process continues until the added function,
after optimization, does not show linear dependency with any
other function in the basis set. A similar procedure is also
applied in the cyclic reoptimization of the functions. If after
reoptimization of a function linear dependency is found, the
parameters of the functions are reset to their values before the
reoptimization.

The basis set growing process continues until a certain
target level of the energy convergence is reached. As this target
level was about the same for all considered states, more ECGs
had to be generated for higher states than for lower ones. In
the present calculations the target convergence level was set to
assure that two digits after the decimal point of the transition
energy (expressed in wave numbers) for each state determined
with respect to the ground state were converged.

III. CALCULATIONS OF THE ENERGIES OF THE 2S
STATES FOR 7LI AND 6LI

In the calculations of atoms with ECGs one can hardly
expect to reach the level of the energy convergence that is
achievable with Hylleraas functions. While in principle very
well optimized ECG functions are as good (if not better) as the
Hylleraas functions in describing the atomic wave function,
the generation of very extended and at the same time thor-
oughly optimized ECG basis sets is an extremely demanding
computational task. For example, our best results obtained for
the ground, first-excited, and second-excited 2S states of ∞Li
with 6500 ECGs for the first two states and with 7000 ECGs
for the third state of −7.478 060 323 89, −7.354 098 421 39,
and −7.318 530 845 92 hartree are off by about 2, 5, and 8
in the 11th digit after the decimal point, respectively, from
the best results obtained with 34 020 Hylleraas functions
of −7.478 060 323 910 146 894, −7.354 098 421 444 364 045,
and −7.318 530 845 998 906 901 hartree [9]. For the seventh
excited state, which was the highest state considered in
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TABLE III. Calculated nonrelativistic energies (in cm−1) of the 1s2ns, for n = 3, . . . ,10 and n = ∞, 2S states of 7Li determined with respect to the ground 2S (1s22s).a Energies
of 6Li and ∞Li, as well as the 6Li/7Li isotope shifts, are also shown.

Basis 1s23s 1s24s 1s25s 1s26s 1s27s 1s28s 1s29s 1s210s 1s2∞sb

7Li 5000 27 204.20
5500 27 204.20
6000 27 204.20 35 009.73 38 297.04
6500 27 204.20 35 009.73 38 297.04
7000 35 009.73 38 297.04 39 985.11
7500 35 009.73 38 297.04 39 985.11
8000 39 985.11
8500 39 985.11 40 965.48
9000 40 965.48
9500 40 965.48

10 000 40 965.48 41 584.89 42 001.04
10 500 41 584.89 42 001.04
11 000 41 584.89 42 001.03 42 294.05
11 500 41 584.89 42 001.03 42 294.05
12 000 42 294.04
12 500 42 294.04

43 484.60
6Li 27 203.82 35 009.25 38 296.50 39 984.56 40 964.91 41 584.31 42 000.45 42 293.45 43 484.00
Isotopic shift from 7Li −0.38 −0.49 −0.53 −0.56 −0.57 −0.58 −0.58 −0.59 −0.60
∞Li 27 337.72 35 012.67 38 300.24 39 988.46 40 968.90 41 718.41 42 004.54 42 297.56 42 581.01
aCalculated relative to the ground 2S 1s22s state of Li. E(7Li) = −7.477 451 930 7 hartree, E(6Li) = −7.477 350 681 2 hartree, and E(∞Li) = −7.478 060 323 8 hartree taken from [19].
bEnergy difference between the ground 2S 1s22s state of Li and the ground 1S 1s2 state of Li+. E(7Li+) = −7.279 321 519 72, E(6Li+) = −7.279 223 016 09, and E(∞Li+) =
−7.279 913 412 58 hartree (from [20]).

the previous calculations [7], our ∞Li energy obtained with
11 500 ECGs of −7.286 673 575 53 hartree is off from the
best previous result of −7.286 673 586 71 hartree by 1 in
the eighth place after the decimal point. A similar accuracy
can be expected of the energy of the eighth excited state,
whose energy obtained in our calculations with 12 500
ECGs is −7.285 338 440 92 hartree. This state has never
been calculated before. Even though the accuracy of the
energy in the ECG calculations noticeably decreases with
the increasing excitation level, the accuracy achieved in the
present calculations is sufficient for the purpose of the present
study.

In order to extrapolate the energies of the 2S 1s2ns,
n = 2, . . . ,10 states of 7Li to higher n values these energies
have to be very well converged. Therefore, in the first part
of the present work significant computational effort has been
invested in generating and optimizing the basis sets for the
nine considered states. The energies obtained for the states are
shown in Table II. The energies for 6Li and ∞Li computed
with the largest basis set generated for the particular states are
also shown in Table II.

The results from Table II are used to generate the relative
energies of the n = 3, . . . ,10 states of 7Li determined with
respect to the ground 2S 1s22s state. They are presented in
Table III. The convergence of these relative energies with the
number of the basis function is shown. As one can see, for all
considered states, except, perhaps, for the last n = 10 state, the
energies are converged to better than 0.01 cm−1. The results
for 6Li and ∞Li are also shown in Table III.

In our previous work [12,13] it was shown that the
difference between the calculated nonrelativistic energies of
the 2D 1s2nd n = 3, . . . ,7 states of 7Li and the experimental
values [14] converges to a constant equal to −2.58 cm−1. This
happens because the dominant (by far the largest) contribution
to the calculated or experimental energy difference comes from

relativistic and quantum-electrodynamic (QED) effects of the
lithium core electrons, which become virtually constant as the
Rydberg d electron gets increasingly more excited and diffuse.
The difference of −2.58 cm−1, as one can expect, is close to the
difference between the calculated ionization energy (IE) and
the experimental IE of 7Li of −2.55 cm−1. These two values
can be viewed as corresponding to the 2D 1s2nd state with
n = ∞. To see if a similar trend occurs for the 2S states the
differences between the calculated (nonrelativistic) energies
and the experimental energies for the n = 3, . . . ,62S states of
6Li and 7Li are determined and shown in Table IV. As one can
see, while these differences also clearly show convergence
to the value corresponding to n = ∞, the value at n = 6 is

TABLE IV. Shifts (in cm−1) of the calculated energies of the
1s2ns, for n = 3, . . . ,6 and n = ∞ 2S states of 7Li and 6Li with
respect to the experimental energies taken from Ref. [15]. For n =
7, . . . ,10 the shifts are determined by extrapolating the n = 3, . . . ,6
and n = ∞ shifts.

n 7Li 6Li

3 −1.8980 −1.8978
4 −2.2979 −2.2976
5 −2.4264 −2.4255
6 −2.472 −2.469

7 −2.5069 −2.5059
8 −2.5223 −2.5216
9 −2.5313 −2.5308
10 −2.5370 −2.5366

∞ −2.5511 −2.5511a

aFor the experimental n = ∞ energy corresponding to 6Li used in
the calculation of this shift the experimental n = ∞ energy of 7Li
of 43 487.150 cm−1 (see Table I) plus the calculated isotopic shift of
−0.60 cm−1 (see Table III) is used.
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still somewhat lower than the value at n = ∞. Therefore, to
predict the values of the shifts between the experimental and
calculated energies for the states with n = 7, . . . ,10, which
we will need in the next step of this work, we apply an
extrapolation. This extrapolation, which is based on the values
of the difference for n = 3, . . . ,6 and n = ∞, results in the
values for the difference for the n = 7, . . . ,10 states of 6Li
and 7Li also shown in Table IV. By adding these values
to our best calculated energies for these states, predictions
for the experimental energies of these states are generated.
These predictions together with the experimental energies for
the n = 3, . . . ,6 states are employed in the quantum-defect
extrapolation procedure (described next) to predict energies of
6Li and 7Li for the value of n up to 30.

IV. QUANTUM-DEFECT EXTRAPOLATION PROCEDURE

The quantum-defect effect on the energies of Rydberg states
of an atom refers to a correction applied to the equation
expressing the energies in terms of the principal quantum
number to take into account the fact that the inner (core)
electrons do not entirely screen with their charges the charge of
the nucleus in the interaction of the nucleus with the Rydberg
electron [18]. The quantum-defect effect is a particularly
useful concept in conjunction with highly excited states of
the alkalis that contain a single electron in their outer shell.
For multielectron atoms in Rydberg states with a low value
of the orbital angular momentum, there is some probability
of finding the excited electron near the nucleus where it can
polarize or even penetrate the ion core, modifying the potential.
The resulting shift of the energy levels expressed in the atomic

units is represented mathematically as an angular-momentum-
dependent quantum defect, δl :

E(l)
n = − 1

(n − δl)2
. (3)

The largest shift occurs when the orbital angular momentum
is equal to zero and decreases when l increases.

In the present work we employ two quantum-defect-like
extrapolation formulas (called models 1 and 2). They express
relative energies of 2S 1s2ns states of 7Li with respect to the
ground 1s22s state as a function of n. Model 1 is equivalent
to (3) and model 2 includes an additional n-dependent higher-
order correction term. The general formulas for the two models
are

Model 1: E(n) = a1 − b1

(n − c1)2
, (4)

and

Model 2: E(n) = a2 − b2

(n − c2 + d2n2)2
, (5)

where a1, b1, c1, a2, b2, etc., are adjustable parameters.
The parameters are determined by fitting the energies of the
n = 3, . . . ,10 and n = ∞ states of 7Li. The first four of those
energies (n = 3, . . . ,6) are the experimental values taken from
Ref. [15] (see Table I; as each line is a doublet, an average
of the two line frequencies is used), while the next four
(n = 7, . . . ,10) are obtained from the refinement procedure
described above. The n = ∞ limit is the experimental energy
of 7Li+ (n = ∞; IE = 43 487.150 cm−1 [14]). The fitting
resulted in the following E(n) expressions for the two models
(in cm−1):

Model 1: E(n) = 43 487.150 − 109 569.357 225 05

(n − 0.405 172 165 284 388)2
(6)

and

Model 2: E(n) = 43 487.150 − 109 126.118 895 334

(n − 0.409 316 209 061 811 − 0.000 175 095 119 657 704n2)2
. (7)

Expressions (6) and (7) are used to determine the energies of the 2S 1s2ns Rydberg series for n = 11, . . . ,30. The results are
shown in Table V.

Next, the approach is used for 2S 1s2ns states of 6Li with only one difference. The energy corresponding to n = ∞ used
in the extrapolation is not the experimental energy of 6Li+, but the energy obtained by adding the calculated isotopic shift of
0.60 cm−1 (shown in Table III) to the experimental energy of 7Li+. The calculated shift value should provide a very good estimate
for the experimental shift because the missing contributions from the differences in the relativistic correction (the so-called recoil
corrections) and the QED correction between 6Li and 7Li can be expected to be very small. The procedure renders the energy of
6Li+ (this value is equivalent to the energy of the 6Li 2S 1s2ns for n = ∞) equal to 43 486.55 cm−1. This value is used in the 6Li
extrapolants for methods 1 and 2, which have the following form:

Model 1: E(n) = 43 486.547 − 109 567.963 017 694

(n − 0.405 171 143 268 452)2
(8)

and

Model 2: E(n) = 43 486.547 − 109 124.897 586 163

(n − 0.409 313 628 571 568 − 0.000 175 028 793 281 85n2)2
. (9)
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TABLE V. The energies (in cm−1) of the Rydberg 1s2ns, n = 3, . . . ,30, states for 6Li and 7Li obtained from the two quantum-defect-like
formulas (models 1 and 2) discussed in the text. The energies are given with respect to the 2S 1s22s ground states of the respective isotopes.
The columns marked “data” contain the energies used in the fitting of models 1 and 2.

7Li 6Li

n Model 1 Model 2 Data Model 1 Model 2 Data

3 27213.60 27207.74 27205.71 27213.99 27208.12 27206.10
4 35007.89 35009.46 35011.54 35008.38 35009.95 35012.03
5 38296.82 38298.58 38298.93 38297.35 38299.12 38299.46
6 39986.21 39987.31 39987.03 39986.77 39987.87 39987.59
7 40967.27 40967.75 40967.42 40967.84 40968.32 40967.99
8 41587.01 41587.02 41586.83 41587.59 41587.60 41587.41
9 42003.31 42003.00 42002.98 42003.90 42003.58 42003.56
10 42296.38 42295.82 42295.99 42296.96 42296.41 42296.57
11 42510.44 42509.73 42511.03 42510.32
12 42671.55 42670.72 42672.14 42671.32
13 42795.83 42794.93 42796.43 42795.52
14 42893.71 42892.75 42894.30 42893.35
15 42972.17 42971.18 42972.76 42971.77
16 43036.02 43035.01 43036.62 43035.61
17 43088.68 43087.66 43089.28 43088.26
18 43132.62 43131.60 43133.22 43132.20
19 43169.66 43168.65 43170.26 43169.25
20 43201.18 43200.17 43201.78 43200.77
21 43228.22 43227.22 43228.82 43227.82
22 43251.59 43250.60 43252.19 43251.20
23 43271.93 43270.96 43272.53 43271.56
24 43289.74 43288.78 43290.34 43289.38
25 43305.41 43304.47 43306.02 43305.07
26 43319.29 43318.36 43319.89 43318.96
27 43331.63 43330.72 43332.23 43331.32
28 43342.66 43341.76 43343.26 43342.36
29 43352.55 43351.66 43353.15 43352.26
30 43361.45 43360.58 43362.05 43361.18

∞ 43486.55 43486.55 43486.55 43487.15 43487.15

They are used to predict the energy levels of the 6Li 2S1s2ns

Rydberg series for n = 11, . . . ,30. The results are shown in
Table V.

Naturally, the model with the larger number of free
parameters (model 2) provides the best fit to the original
data (energies of the n = 3, . . . ,10 and n = ∞ states) in
Table V. The maximal discrepancy between the energies of
n = 12, . . . ,30 states predicted with the two models are of the
order of 1.0 cm−1. Due to the somewhat higher flexibility of
model 2, the values obtained using it are probably more reliable
than the values obtained with model 1. This flexibility is likely
needed more to predict the energies of the 2S Rydberg states
than to predict states where the Rydberg electron has a nonzero
angular momentum (i.e., the 2P , 2D, etc., states), because the s

Rydberg electron, particularly for low n value, overlaps more
and interacts stronger with the core electrons than p, d, etc.,
Rydberg electrons. This interaction may require that the simple
quantum-defect formula, Eq. (3), is corrected by an additional
term such as the one which differentiates model 1 from model
2. We believe that the accuracy of the present predictions is
sufficient for them to be useful in guiding the experimental

measurements of yet unmeasured 2S energy levels of 6Li
and 7Li.

V. SUMMARY

An approach which combines high-accuracy quantum-
mechanical (QM) calculations, the experimental data, and the
quantum-defect extrapolation formulas has been employed to
predict the energies of 2S 1s2ns Rydberg states of the 6Li and
7Li isotopes. The QM calculations have been performed with
all-electron explicitly correlated Gaussian functions, whose
nonlinear parameters have been extensively optimized using
a method involving analytically calculated energy gradient.
The predictions concern the states with n = 11, . . . ,30. The
predicted energy values can guide experimental measurements
of these quantities.
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L. Adamowicz, Phys. Rev. A 78, 052507 (2008).

[12] K. L. Sharkey, S. Bubin, and L. Adamowicz, Phys. Rev. A 83,
012506 (2011).

[13] K. L. Sharkey, S. Bubin, and L. Adamowicz, J. Chem. Phys.
134, 194114 (2011).

[14] Yu. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD
Team (2010), NIST Atomic Spectra Database (version 4.0.0),
National Institute of Standards and Technology, Gaithersburg,
MD. Available online at http://physics.nist.gov/asd.

[15] L. J. Radziemski, R. Engleman, and J. W. Brault, Phys. Rev. 52,
4462 (1995).

[16] S. Bubin, M. Cafiero, and L. Adamowicz, Adv. Chem. Phys.
131, 377 (2005).

[17] M. Hamermesh, Group Theory and Its Application to Physical
Problems (Addison-Wesley, Reading, MA, 1962).

[18] C. J. Foot, Atomic Physics (Oxford University Press, Oxford,
UK, 2005).

[19] S. Bubin, J. Komasa, M. Stanke, and L. Adamowicz, J. Chem.
Phys. 131, 234112 (2009).

[20] K. L. Sharkey, S. Bubin, and L. Adamowicz, J. Chem. Phys.
134, 044120 (2011).

042510-7

http://dx.doi.org/10.1016/S0166-1280(96)04919-6
http://dx.doi.org/10.1016/S1049-250X(08)60111-1
http://dx.doi.org/10.1103/PhysRevLett.100.243002
http://dx.doi.org/10.1103/PhysRevLett.100.243002
http://dx.doi.org/10.1103/PhysRevA.66.042504
http://dx.doi.org/10.1103/PhysRevA.66.042504
http://dx.doi.org/10.1103/PhysRevA.78.052511
http://dx.doi.org/10.1103/PhysRevA.78.052511
http://dx.doi.org/10.1103/PhysRevA.80.032521
http://dx.doi.org/10.1103/PhysRevA.80.032521
http://dx.doi.org/10.1103/PhysRevA.82.062509
http://dx.doi.org/10.1103/PhysRevA.82.062509
http://dx.doi.org/10.1103/PhysRevA.83.034503
http://dx.doi.org/10.1103/PhysRevA.83.034503
http://dx.doi.org/10.1103/PhysRevA.85.052513
http://dx.doi.org/10.1103/PhysRevA.85.052513
http://dx.doi.org/10.1103/PhysRevA.80.052507
http://dx.doi.org/10.1103/PhysRevA.80.052507
http://dx.doi.org/10.1103/PhysRevA.78.052507
http://dx.doi.org/10.1103/PhysRevA.83.012506
http://dx.doi.org/10.1103/PhysRevA.83.012506
http://dx.doi.org/10.1063/1.3591836
http://dx.doi.org/10.1063/1.3591836
http://physics.nist.gov/asd
http://dx.doi.org/10.1103/PhysRevA.52.4462
http://dx.doi.org/10.1103/PhysRevA.52.4462
http://dx.doi.org/10.1002/0471739464.ch6
http://dx.doi.org/10.1002/0471739464.ch6
http://dx.doi.org/10.1063/1.3275804
http://dx.doi.org/10.1063/1.3275804
http://dx.doi.org/10.1063/1.3523348
http://dx.doi.org/10.1063/1.3523348



