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H I G H L I G H T S

• A new non-Born-Oppenheimer molecular method is presented and used to calculate all 23 bound states of HD+ with L = 1.

A B S T R A C T

In our previous work (Bubin et al., 2016) it was established that complex explicitly-correlated one-center all-particle Gaussian functions (CECGs) provide an effective
basis set for very accurate non-relativistic molecular non-Born-Oppenheimer (non-BO) calculations for vibrational ground and excited states corresponding to the
rotational ground state. In this work we advance the molecular CECGs approach further by implementing and testing the algorithms for calculating the vibrational
states corresponding to the first rotational excited state (the =J 1 state). The test concerns all bound =J 1 rovibrational states of the HD+ ion.

1. Introduction

In recent years there has been interest is quantum mechanical cal-
culations of molecular bound ground and excited states without as-
suming the Born-Oppenheimer (BO) approximation [1–3]. There are at
least two reasons why such calculations are interesting. The first is
related to more accurately calculate the molecular rovibrational and
electronic spectra. When the BO approximation is not assumed, the
wave functions and the corresponding nonrelativistic energy levels of
the molecule explicitly include effects originating from the finite mass
of the nuclei and from the coupling of the motions of the nuclei and the
electrons. If such non-BO wave functions are used to calculate re-
lativistic and QED corrections, these corrections also directly include
the finite-nuclear-mass (FNM) effects, i.e. the so-called recoil effects.
We have showed that such an approach can produce results whose
accuracy match the accuracy of the most accurate experimental mea-
surements [3]. The second reason for carrying out the non-BO mole-
cular calculations stems from the interest in describing properties and
structures of molecules by calculations where all particles forming the
system are treated on equal footing. With that the molecular structure,
the dipole moment, the polarizabilities, etc., are obtained as

expectation values of operators representing these properties and, for
molecules containing identical nuclei, indistinguishability principle
leads to interesting effects not present when the BO approximation is
assumed.

Despite both being based on the principles of quantum mechanics
there are significant differences between BO and non-BO calculations of
molecular energies and the corresponding wave functions. The former
involve separate calculations of the electronic wave functions and the
corresponding energies performed at some selected configurations of
the nuclei placed in different fixed positions in space. These calcula-
tions provide the so-called potential energy surface (PES) which is used
in the subsequent calculation of bound rovibrational states of the mo-
lecule. In non-BO calculations the nuclei and the electrons forming the
molecule are treated on an equal footing. The calculations provide total
energies and the corresponding total wave functions which explicitly
depend on the coordinates of both the nuclei and the electrons. At the
non-relativistic level, as the Hamiltonian used to calculate the internal
states of the system commutes with the operators representing the
square of the total angular momentum operator and it z coordinate
(quantum numbers that quantize these quantities are good quantum
numbers), the wave functions are atom-like (i.e. they should transform
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according to the irreducible representations of the SO(3) rotation
group).

The starting point of the approach we have used in the non-BO
molecular calculations is the non-relativistic Hamiltonian dependent on
laboratory-frame Cartesian coordinates of all particles forming the
system. As this Hamiltonian includes the relative motion of the particles
around the center of mass of the system (here termed the internal
motion), as well the translational motion of the center of mass in space,
the two motions have to be separated so the calculation only focuses on
system’s “internal” bound states. These bound states are eigenstates of
the Hamiltonian (called the internal Hamiltonian) which is obtained by
separating the operator representing the motion of the center of mass
from the laboratory Hamiltonian. The internal Hamiltonian used in our
non-BO approach is described in the next section.

One of the central issues in non-BO calculations is the selection of
the basis functions for expanding the spatial part of the wave function.
In this work we continue to advance this subject. Our ultimate goal in
the development is to extend the non-BO calculations of rovibrational
states to molecules with more than two nuclei. The present work is a
part of this effort.

2. Hamiltonian

We consider an isolated molecule formed by N particles (nuclei and
electrons) with masses M{ }i and charges Q{ }i . The positions of the par-
ticles are first described in a laboratory Cartesian coordinate system.
The laboratory coordinates and the corresponding linear momenta of
the particles are:
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The nonrelativistic laboratory-frame Hamiltonian of the system is:
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Next, the N3 -dimensional problem represented by the above
Hamiltonian is separated into two problems. The first is 3-dimensional
problem of the motion of the center of mass of the molecule is space.
The second is an −N(3 3)-dimensional internal problem of the motions
of the particles forming the molecule with respect to each other. This
separation is rigorous and is achieved by transforming Hamiltonian (2)
to a new coordinate system, whose first three coordinates, r0, are the
coordinates of the center of mass in the laboratory coordinate frame
and the remaining −N3 3 coordinates are internal Cartesian co-
ordinates. These coordinates denoted as = … −i Nr , 1, , 1i , are position
vectors of particles 2 to N with respect to particle 1 called the reference
particles (usually the heaviest nucleus in the molecule). Let = −n N 1.
In the new coordinate system Hamiltonian (2) is:
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where T denotes the transpose, = +q Qi i 1, = +μi
m m

m m
i

i
0

0
are the reduced

masses, Mtot is the total mass of the system, m0 is the mass of the re-
ference particle, = +m Mi i 1, ∇ri is the gradient vector expressed in terms
of the x y,i i, and zi coordinates of vector ri, = − =r r r‖ ‖ij i j −+ +R R‖ ‖i j1 1 ,
and ≡ = = −+r r r R R‖ ‖ ‖ ‖i i i i0 1 1 .

As one can see, in the new coordinate system, lab-frame
Hamiltonian (3) becomes a sum of operators representing the kinetic

energy of the center-of-mass motion, H r( )nr
cm

0 , and the internal Ha-
miltonian, H r( )nr

int :
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0 nr
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0 nr
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where the three components of vector r are the coordinates of r1, the
next three are coordinates of r2, etc. As in this work we are only con-
cerned with the internal bound states of the system, the eigenvalues and
eigenfunctions of the internal Hamiltonian are calculated. It involves
diagonalization of the matrix of the internal Hamiltonian and the
overlap matrix. The computational time for calculating a matrix ele-
ment of each of the two matrices is, in general, proportional to the
product of the factorials of the numbers of particles in the groups of
identical particels. This dependency results from the number of sym-
metry operators that need to be applied to the wave function to impose
the proper permutational symmetry.

The internal Hamiltonian can be viewed as describing a system of n
pseudoparticles with the masses equal to reduced masses μi and charges
qi ( = …i n1, , ) moving in the central field of the charge of the reference
particle, q0. The pseudoparticles interact with each other by the
Coulombic potential and additionally their motions are coupled
through the mass-polarization terms, − ∑ ∇ ∇≠i j

n
m

T
r r

1
2

1
i j0

. As mentioned in
the introduction, the internal Hamiltonian, (3), has the symmetry of an
atomic Hamiltonian.

3. Basis functions

In selecting the basis functions for expanding the spatial parts of the
eigenfunctions of the internal Hamiltonian the following needs to be
taken into consideration:

1. If nuclei and electrons in the calculation are treated on equal
footing, the nucleus-nucleus (n-n), electron-electron (e-e), and nu-
cleus-electron (n-e) correlation need to be represented in the wave
function. The most effective form of this representation involves
expanding the wave functions in terms of basis functions which
explicitly depend on the inter-particle distances. Such functions are
usually called explicitly correlated functions. There has been various
types of explicitly correlated functions used in quantum mechanical
(QM) calculations of electronic structures of small molecules based
on the BO approximation, however similar calculations where the
BO approximation is not assumed is a more recent development in
the field of molecular quantum mechanics. Such calculations require
different basis functions as the effects that need to be described in
the calculations are more intricate than in the calculations con-
cerning electronic states. The e-e, n-e, and n-n correlation effects are
due to the electrostatic interactions between the particles, but they
are also dependent on particles’ masses. As electrons are light and
have unit negative charges the inter-electron correlation is relatively
weak. This is manifested by their wave functions overlapping to
some degree resulting in non-negligible probability of finding two
electrons (with opposite spins) at the same point is space. On the
other hand, due to significantly larger masses of the nuclei, the
inter-nuclear correlation is stronger because the nuclei “avoid” each
other to much higher degree in their motion inside the molecule
than the much lighter electrons. The third type of correlation, the n-
e correlations, can be called anti-correlation, as it describes an effect
of electrons, particularly the core electrons, following the nuclei
very closely. The dependence of the basis functions on the electron-
nucleus distances helps to accurately describe these effects.

2. We have used varies forms of explicitly correlated one-center
Gaussian functions (ECGs) in our molecular non-BO calculations.
The key component of these functions, the Gaussian exponent, can
be represented, e.g. for an atom with s electrons, in the following
form, which shows its explicit dependence on the inter-particle
distances, rij:
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where n denotes the number of particles, ri is the distance between
particle i and the center of the Gaussian, and αik and βij k, and the
non-linear parameters of the k Gaussian, which can be optimized
using the variational method. The above functions can be re-
presented using the following alternative shorter form as:

= −ϕ r r A r( ) exp[ ¯ ],k
T

k (6)

where Āk is a ×n n3 3 real symmetric matrix of exponential para-
meters. Āk can be written as: = ⊗A A I¯ k k 3, where I3 is the ×3 3
unit matrix, ⊗ denotes the Kronecker product, and Ak is a ×n n
symmetric matrix. To ensure square integrability of ϕ r( )k , matrix Ak
must be positive definite. This is automatically achieved if Ak is
represented in the Cholesky factored form as: =A L Lk k k

T , where Lk
is an ×n n, rank n, lower triangular matrix. ϕ r( )k is square-integr-
able for the Lk matrix elements being any real numbers.

3. While the e-e correlation can be quite adequately described by ECGs
only dependent on the e-e distances in the Gaussian exponent, the
stronger n-n correlation, as we have demonstrated with the non-BO
calculations of bound states of some small diatomic molecules
[4–6], requires pre-exponential multipliers in the form of non-ne-
gative powers of the inter-nuclear distance (the intermolecular dis-
tances for molecules with more than two nuclei). The presence of
these terms in the ECGs is also important in representing vi-
brationally excited states, which have nodes in terms of the inter-
nuclear coordinates. We call ECGs with such multipliers “power
Gaussians” in this work. For a diatomic system a power Gaussian has
the following form:

= −ϕ rr r A r( ) exp[ ¯ ],k
m T

k1
2 k (7)

where one of the nucleus is selected to be the reference particle,
particle 2 is the second nucleus. Thus, r1 is the inter-nuclear distance
and m2 k is its power. The power is an even non-negative number. As
we demonstrated, limiting the powers to be even numbers does not
affect the accuracy of the calculation, but simplifies the algorithms
for calculating the Hamiltonian matrix elements. The larger the m2 k
power the more the nuclei are separated from each other. Zero value
of the power needs to be included to assure that the probability of
finding the nuclei in a single point in space may not be exactly zero.
In non-BO calculations of molecules with more than two nuclei, the
pre-exponential multiplier, r m

1
2 k, needs to be extended to include

powers of all inter-nuclear distances. Thus, for a triatomic, the
multiplier is r r rm n l

1
2

2
2

12
2k k k, where the third nucleus in particle 3. We

made an attempt to implement ECGs with such multipliers in non-
BO calculations, but it was unsuccessful due to oscillatory nature of
the algorithms for calculating the Hamiltonian matrix elements re-
sulting in numerical inaccuracies which could not be controlled [7].

4. In recent years we have developed and tested an alternative form of
ECGs for molecular non-BO calculations [8,9]. These alternative
basis functions are explicitly correlated Gaussians with complex
exponential parameters (complex ECGs (CECGs)). The general form
of such functions is:

= − = − +ϕ r r C r r A B r( ) exp[ ¯ ] exp[ ( ¯ i ¯ ) ],k
T

k
T

k k (8)

where Āk, as in (6), and B̄k are real symmetric matrices of the
variational exponential parameters. Āk and Bk can be written as:

= ⊗A A I¯ k k 3 and = ⊗B B I¯ k k 3.
To ensure square integrability of ϕ r( )k , matrix Ak, as in (6), is re-
presented in the Cholesky factored form as: =A L Lk k k

T . The Lk
matrix elements can be any real numbers. We demonstrated in our
recent works that functions (8) can be contracted to form pre-ex-
ponential multipliers being products of sin and cos functions de-
pendent on squares of the inter-particles distances [10]. Such

products can very effectively represent the e-e, n-n, and n-e corre-
lation effects. They can also describe the oscillations and nodes of
the wave functions in rovibrational excited states as effectively as
the power Gaussians and, what is even more important, such basis
functions can potentially be universal, i.e., can be used in the non-
BO calculations of molecules with two or more nuclei.

5. The internal Hamiltonian in the non-BO approach commutes with
the operator representing the square of the total angular momentum
and with operator representing its z-coordinate. Thus, if the basis
functions used in the calculation are eigenfunctions of these two
operators, the Hamiltonian and overlap matrices are block-diagonal.
In our previous works we implemented algorithms for calculating
excited rovibrational states of diatomic systems corresponding to
the total angular-momentum quantum numbers of one and two
using the power ECGs [13–15]. The angular factors of the Gaussians
were Cartesian spherical harmonics. The implementation of the
former case was first carried out using the following basis functions:

= −ϕ z rr r A r( ) exp[ ¯ ],k
m T

k1 1
2 k (9)

where z1 is the z coordinate of the r1 vector. mk is a non-negative
integer. Such a basis restricts the angular (rotational) excitation to
the nuclei. More recently we removed this restriction and im-
plemented the ECG basis set with z1 replaced by zi:

= −ϕ z rr r A r( ) exp[ ¯ ],k i
m T

k1
2 k (10)

where index i spans the range … n1, , . Such a basis set allows the
angular excitation of the molecule to be a superposition of nuclear
rotational excitation and electron angles excitations. The general-
ization of the ECG basis resulted in a noticeable improvement of the
results. However, the replacement of the z r m

1 1
2 k pre-exponential

factor by the z ri
m

1
2 k factor resulted in more complex algorithms for

calculating the Hamiltonian matrix elements. Also, a generalization
of basis (9) to calculate higher angular-momentum states would lead
to even more complicated algorithms.

6. Considering the above, effort is now beening devoted to the im-
plementation of the CECG basis sets with pre-exponential factors
being Cartesian spherical harmonics for calculating ground and
excited rovibrational states of diatomics, as well as of molecules
with more than two nuclei. In the present work we implement and
test algorithms for performing non-BO molecular calculations of
rovibrational states corresponding to the total angular-momentum
quantum number of one. The following CECGs are used:

= − +ϕ zr r A B r( ) exp[ ( ¯ i ¯ ) ].k i
T

k k (11)

Functions (11) are simpler than functions (10) with the zi angular
factor because the r m

1
2 k is absent. This makes the evaluation of the

Hamiltonian matrix elements simpler, as was shown in our previous
work [11].

4. Computational implementation

The algorithms for the Hamiltonian and overlap matrix elements for
CECGs (11) derived in our previous work [11] are implemented on a
parallel computer platform using Frotran90 and MPI (message passing
interface). The implementation also includes the matrix elements of the
analytical energy gradient determined with respect to the matrix ele-
ments of Lk and Bk, i.e. the Gaussian non-linear parameters. The im-
plementation is general and can be applied to an arbitrary number and
types of particles. The procedures for calculating the matrix elements
are called by the optimization routine that minimizes the total non-
relativistic internal energy of a particular state of the considered
system. The routine calculates the energy by constructing the Ha-
miltonian and overlap matrices and by solving the secular equation. It
also uses the energy gradient to navigate the search for the energy
minimum in terms of the Lk and Bk parameters. The basis set is gen-
erated separately for each state in a process that involves adding basis
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functions one by one. The initial guess for an added function is obtained
by applying random perturbation to the non-linear parameters of a
subset of some most contributing functions already included in the basis
set and selecting the function that after perturbation lowers the energy
the most. For that function the i index in pre-exponential multiplier zi is
optimized first and this is followed by the optimization of the function’s
Lk and Bk parameters. At this point the overlap integrals between the
optimized functions and the functions already included in the basis set
are calculated to check for linear dependencies. If any are found the
function is discarded and a new function is selected and optimized.
After addition of a certain number of new functions the whole basis set
is reoptimized by cycling over all functions one by one and re-
optimizing their Lk and Bk parameters (no reoptimization of the i index
is done at this point). The growing of the basis set continues until the
desired energy convergence is reached.

The computational costs for calculating the matrix elements with
CECGs and with the power ECGs are similar. However, solving of the
secular equation for CECGs takes somewhat more time than the for
power ECGs, as it involves diagonalization of complex Hamiltonian and
overlap matrices. The test calculations are performed for all 23 bound
rovibrational states of the HD+ ion with the total-angular-momentum
quantum number of one (the ( = …v 0, ,22; 1) states). Basis set (11) is

used in the calculations. HD+ is chosen as test case for the present
calculations because its (v; 1) states were calculated before both with
the basis functions (9) and (10) [12–14].

One question which may arise regarding the choice of the basis
functions used in the present calculations is why we choose to use
complex Gaussians (11) and not their real sin cos/ linear combinations
formed as described in Ref. [10]. As the wave functions for the
( = …v 0, ,22; 1) states are real, one may think that the use of real basis
set would be better than using complex basis functions (11). However,
by allowing the variational optimization of CECGs (11) to be carried out
without any constrains, thus allowing the wave function to extend to
the complex plain, may open additional optimization trajectories in the
space of the non-linear parameters that lead to faster convergence of
the calculation to the final solution which is the real wave function and
the corresponding real energy value. However, at the end of the var-
iational optimization the resulting wave function may still contain some
residual “imaginary” contamination. This does not present a problem as
the result is still strictly variational.

In the first step, the basis sets containing 1300 CECGs previously
generated for the ( = …v 0, ,22, 0) states of HD+ are used to generate
the initial guesses for the basis sets for calculating the ( = …v 0, ,22; 1)
states. At first each ( = …v 0, ,22, 0) basis function is multiplied by z1.

Table 1
Comparison of the total energies of all (v;1) rovibrational states, i.e. vibrational states corresponding to the total rotational quantum number of one, of HD+ with the
number of ECG and CECG basis functions. aCalculations performed with the ECGs containing the z1 angular factors; Eq. (9) (the results are taken from Ref. [13]);
bcalculations performed with ECGs containing the zi angular factors; Eq. (10) (the results are taken from Ref. [14]); cpresent results. Energy is given in hartrees.

v No. of ECGsa Energy No. of ECGsb Energy No. of CECGsc Energy

0 1000 −0.597698117270 1300 −0.597698126833
2000 −0.597698117430 2000 −0.597698128157 1400 −0.597698127708

1 1000 −0.588991101048 1300 −0.588991109211
2000 −0.588991101393 2000 −0.588991111891 1400 −0.588991111051

2 2000 −0.580721817887 1300 −0.580721821645
3000 −0.580721817949 3000 −0.580721828098 1400 −0.580721825717

3 2000 −0.572877266933 1300 −0.572877264452
3000 −0.572877267102 3000 −0.572877276952 1400 −0.572877272234

4 2000 −0.565446156398 1300 −0.565446140543
3000 −0.565446156586 3000 −0.565446166143 1400 −0.565446155218

5 2000 −0.558418853179 1300 −0.558418816117
3000 −0.558418853772 3000 −0.558418863010 1400 −0.558418841953

6 3000 −0.551787358384 1300 −0.551784813885
4000 −0.551787358546 4000 −0.551787367661 1400 −0.551785362736

7 3000 −0.545545294252 1300 −0.545545176971
4000 −0.545545294365 4000 −0.545545303218 1400 −0.545545246885

8 3000 −0.539687917327 1300 −0.539687805034
4000 −0.539687917664 4000 −0.539687926437 1400 −0.539687858051

9 3000 −0.534212153253 1300 −0.534211960249
4000 −0.534212153571 4000 −0.534212161742 1400 −0.534212052045

10 3000 −0.529116643823 1300 −0.529116392004
4000 −0.529116644298 4000 −0.529116652126 1400 −0.529116530299

11 3000 −0.524401837382 1300 −0.524401445152
4000 −0.524401837887 4000 −0.524401845428 1400 −0.524401679662

12 3000 −0.520070088900 1300 −0.520069637976
4000 −0.520070089352 4000 −0.520070097632 1400 −0.520069890179

13 3000 −0.516125824708 1300 −0.516125031933
4000 −0.516125825569 4000 −0.516125832377 1400 −0.516125471367

15 4000 −0.509428840269 1300 −0.509427927964
5000 −0.509428841143 7000 −0.509428847836 1400 −0.509428413768

16 5000 −0.506697146745 1300 −0.506695635863
6000 −0.506697147635 7000 −0.506697153549 1400 −0.506696459296

17 5000 −0.504395560512 1300 −0.504393797468
6000 −0.504395562033 7000 −0.504395568117 1400 −0.506696459296

18 5000 −0.502542374245 1300 −0.502540442229
6000 −0.502542376164 7000 −0.502542383121 1400 −0.502541521177

19 6000 −0.501159138174 1300 −0.501157061986
7000 −0.501159139178 8000 −0.501159145991 1400 −0.501158220861

20 6000 −0.500269319648 1300 −0.500267274996
7000 −0.500269319879 7000 −0.500269322550 1400 −0.500268029383

21 6000 −0.499902780157 1300 −0.499902253252
7000 −0.499902780540 7000 −0.499902781600 1400 −0.499902454450

22 6000 −0.499864341698 1300 −0.499864243170
7000 −0.499864342032 7000 −0.499864342146 1400 −0.499864244585
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Next a variational calculation is performed for each state where the
index of the z1 multiplier for each basis function is optimized to either
remain equal to 1 or is changed to 2. This is the only point in the
procedure where index i of the zi pre-exponential angular multiplier is
optimized. Next the 1300-CECG basis set for each state is fully opti-
mized, i.e. the Lk and Bk parameters for each basis functions are var-
iationally optimized using the variational procedure that employs the
analytical energy gradient. This optimization is followed for each state
with a calculation where the basis set of that state is grown from the
size of 1300 to the size of 1400. In the next step each 1400-CECG basis
set is extensively optimized. The total non-BO energies obtained in the
calculations performed with 1300 and 1400 CECGs are shown in
Table 1. These energies are compared with our best results obtained for
the ( = …v 0, ,22; 1) states with basis functions (9) and (10). The pur-
pose of the comparison is to test the correctness of the procedure im-
plemented in this work.

Upon examining the results in Table 1 one notices that the CECG
energies in general agree with the ECG results. However, as the ECG
results were obtained with the number of functions that increased from
2000 for the lowest energy state to 7000–8000 for the highest energy
states, the energy gap between the CECG and ECG energies increases
with the vibrational excitation. For the =v 0 state, the CECG energy is
lower than the energy obtained with ECGs with the z1 but it is slightly
higher than the energy obtained with ECGs with and zi angular mul-
tipliers. The some also happens for states =v 1, 2, 3, and 4. As the level
of the vibrational excitation increases and the number of the CECGs
stays at the constant level of 1400 functions, while the number of ECGs
increases to 7000–8000 functions, the CECG energies become pro-
gressively worse. It is clear that more CECGs is needed to match the
ECG results.

In the last series of the calculations the number of CECGs is gra-
duately increased from 1400 to 1700 for the lowest three vibrational
states to check if CECGs are capable to deliver comparable accuracy as
reached with ECGs that contain the zi angular pre-exponential multi-
pliers. The results are shown in Table 2. As one can see, the CECG
energies for all three states converge within 10−9 hartree to the ECG
results.

Based on the above results we can conclude that the implementation
of the algorithm for calculating the (v;1) rovibrational states is correct.
Some more applications of the procedure are forthcoming.

5. Summary

The explicitly correlated complex all-particle Gaussian functions are
very promising basis functions to extend the applicability of the non-BO
approach to calculate rovibrational spectra of molecules with more
than two nuclei. In this work we implement a procedure for calculating
rovibrational states corresponding to the rotational quantum number of
one. The implementation is general and can be used in calculations of
molecular systems (or, in general, clusters of particles) with an arbi-
trary number of particles of any types. The implemented procedure is
tested in the calculations of the (v;1) spectrum of the HD+ ion. The test
validates the correctness of the implementation. Our next project is to
perform non-BO calculations of rovibrational spectra of +H3 and its
isotopologues using CECGs. Some of the +H3 spectral lines will be cal-
culated with the procedure implemented in the present work.
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1700 −0.580721827195

3000 −0.580721828098
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