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Low-lying 2S states of the singly charged carbon ion
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In this work, we report benchmark variational calculations of the five lowest doublet S-states of the C+ ion.
The wave functions of this five-electron system are expanded in terms of 16 000 all-particle explicitly correlated
Gaussians (ECGs) whose nonlinear variational parameters are subject to extensive optimization. The motion
of the finite-mass nucleus is explicitly included in the Hamiltonian, while relativistic corrections to the energy
levels are computed in the framework of the perturbation theory. Lowest-order quantum electrodynamics (QED)
corrections are also estimated. The results obtained for the energy levels enable the determination of transition
frequencies with the accuracy that approaches the available experimental data and may open up avenues for
future determination of nuclear charge radii of carbon isotopes.
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I. INTRODUCTION

Accurate energies and wave functions of few-electron
atoms and molecules have been of considerable interest since
the early days of quantum theory [1,2]. Nowadays, this inter-
est stems primarily from two factors: The ongoing activity in
the field of precision measurements motivated by the search
for new physics beyond the Standard model and need for cali-
bration data for the development of various ab initio methods
that can effectively describe electronic correlations. Even at
the nonrelativistic level of theory, one must resort to numerical
approaches in order to obtain energy eigenvalues and the
corresponding wave functions. Over the decades that have
passed since the introduction of electronic computers in scien-
tific research many different approaches have been developed
for approximately solving the time-independent Schrödinger
equation. In the case of few-electron atoms, the most ac-
curate ones are mainly based on the use of the variational
principle. The notion of what constitutes a high-precision
numerical calculation certainly changed as computers became
more capable and largely depends on the number of particles
in the system. In variational calculations of atoms, the most
effective approach is based on expanding the wave function
of the system in terms of suitable basis functions that are
capable of describing the short and long range behavior of
the wave function and the electron correlation effects. It was
demonstrated at the very beginning of computational atomic
quantum mechanics that the basis functions explicitly depen-
dent on the inter-electronic distances (the so-called explicitly
correlated functions) are particularly effective in describing
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these effects. The early works of Hylleraas [1], Kinoshita [3],
and Pekeris [4] on the helium atom initiated highly accurate
studies of energy spectra of atoms that continue to this day.

While bound states of two- and three-electron atoms have
been calculated with ultra-high accuracy using Hylleraas-type
explicitly correlated functions (see, for example, works [5–10]
and [11–13]), the approach involving this basis set has not
been fully extended to atoms with four or more electrons
due to difficulties with calculating the Hamiltonian matrix
elements. There have been works on four-electron systems
that involve the Hylleraas-type basis, but they utilized only
a subset of that basis. King et al. [14] calculated the ground
states of the Be I isoelectronic series using the Hylleraas
approach with Slater-type basis functions, which contained
at most one odd integer power in the ri j factors. Sims and
Hagstrom [15] used even more simplified Hy-CI basis. An-
other type of basis function that has been very popular in
high-accuracy atomic calculations are explicitly correlated
Gaussian functions (ECGs) [16–18]. These functions expo-
nentially depend on squares of the interparticle distances.
Powers of squares of the interparticle distance may also ap-
pear as pre-exponential multipliers. The most accurate results
for four- and five-electron atoms have been obtained with
ECGs [19–24]. These include the study of the ground state
of the C+ ion [19]. The largest atomic systems for which
ECG calculations were performed include the neutral carbon
and nitrogen atoms [17,25]. Due to the limited number of
basis functions used in these calculations, however, the results
are not yet as accurate as those for four- and five-electron
systems.

The present high-accuracy calculations of the 2S spectrum
of the carbon cation, C+, is a continuation of the development
of capabilities to study increasingly larger atomic systems
with high precision. Theoretical spectroscopy of carbon has
relevance to astrophysics as this element is the fourth most
abundant one in the universe and it is of fundamental im-
portance in understanding the interstellar medium. Atomic
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carbon has been found in both neutral and ionic forms in many
places in the interstellar medium [26–29].

The present study of the spectrum of the carbon cation
also has relevance to its use in radiotherapy for cancer treat-
ment. Particle therapy and, in particular, carbon ion therapy
[30,31], which is a form of external beam radiotherapy, has
been gaining prominence in recent years. In contrast to X-
ray (photon beams) radiotherapy, carbon-ion beams exhibit a
Bragg peak in energy loss when they cross the body. As a
result, their maximum radiation dose can be delivered near
the tumor minimizing damage to surrounding normal tissues
[30,31]. Clinical studies have demonstrated advantages of the
carbon-ion therapy in treating various forms of cancer, e.g.,
prostate, lung, liver, bone, etc. It is possible that using beams
of excited carbon ions can further increase the effectiveness
of the treatment.

II. METHOD

The approach used in this work to calculated the 2S states
of the C+ ion was described in our previous papers [32]. Let
us only briefly summarize the major feature of the method.

After separating the center-of-mass motion, the internal
Hamiltonian used to determine internal bound states of the
atom has the following form [32]:

Hnr = −1

2

(
5∑

i=1

1

μi
∇2

ri
+

5∑
i=1

5∑
j �=i

1

m0
∇′

ri
∇r j

)

+
5∑

i=1

q0qi

ri
+

5∑
i=1

5∑
j<i

qiq j

ri j
, (1)

where qi, i = 1, . . . , 5 are the electron charges, μi, i =
1, . . . , 5 are the reduced electron masses, μi ≡ m0mi/(m0 +
mi ), where mi, i = 1, . . . , 5 are the electron masses and m0

is the mass of the nucleus located in the center of the co-
ordinate system. ri, i = 1, . . . , 5 are the vectors pointing
from the nucleus to the position of the ith electron and
ri j = |r j − ri|. ′ stands for vector/matrix transpose. q0 = +6
the charge of the carbon nucleus. In this work, we consider
four isotopes of the carbon ion, namely, 12C+, 13C+, 14C+,
and ∞C+. The masses of the corresponding nuclei in atomic
units are m12

0 = 21 868.663850, m13
0 = 23 697.667827, m14

0 =
25, 520.350606, and m∞

0 = ∞.
Hamiltonian (1) can also be conveniently written in the

matrix form [17]:

Hnr = −∇′
rM∇r +

5∑
i=1

q0qi

ri
+

5∑
i=1

5∑
j<i

qiq j

ri j
, (2)

where

∇r =
⎛
⎝∇r1

...

∇r5

⎞
⎠

is a 15-component column gradient vector, and M = M ⊗ I3

is the Kronecker product of a 5 × 5 matrix M and the 3 × 3
identity matrix I3. The diagonal elements of matrix M are
1/(2μ1), . . . , 1/(2μ5), while all off-diagonal elements are
equal to 1/(2m0).

In order to obtain accurate eigenvalues and wave functions
of the S states, we expand the wave functions in terms of all-
electron explicitly correlated Gaussian (ECG) basis functions,
which have the following form [17,18,33]:

φk = exp [−r′(Ak ⊗ I3)r]. (3)

Here

r =
⎛
⎝r1

...

r5

⎞
⎠

is a 15-component column vector of the internal coordinates
and Ak is a 5 × 5 real symmetric positive definite matrix of
adjustable parameters. Basis functions (3) are invariant under
3D rotations and, thus are eigenfunctions of the L2 operator
corresponding to zero total orbital angular momentum quan-
tum number. It should be noted that matrix Ak is unique for
each basis function. Its elements are determined through the
variational minimization of the total nonrelativistic energy.
In order to ensure the positive definiteness of Ak and avoid
dealing with any constrains in the optimization process it is
convenient to represent it in the Cholesky factorized form,
Ak = LkL′

k , where Lk is a real lower-triangular 5 × 5 matrix.
The Lk matrix elements are the parameters that are variation-
ally optimized in the calculation. The optimization is carried
out with the aid of the analytical energy gradient determined
with respect to the parameters. The proper permutation sym-
metry is implemented in the calculations using the spin-free
formalism [34,35] as described, for example, in our previous
work [32,36].

When accurate wave functions corresponding to the so-
lution of the nonrelativistic problem are available, the most
practical approach to account for small in magnitude relativis-
tic and QED effects in light atoms is to use the perturbation
theory. In this approach, the total energy can be expanded in
powers of the fine structure constant, α [37,38]:

Etot = Enr + α2E (2)
rel + α3E (3)

QED + α4E (4)
HQED + · · ·, (4)

where Enr is the nonrelativistic energy of the state being
considered, the second term (α2E (2)

rel ) represents the leading
relativistic corrections, the third term (α3E (3)

QED) represents

the leading QED corrections, and the fourth term (α4E (4)
HQED)

represent higher-order QED corrections, and so on. Each of
these terms is evaluated as an expectation value of a certain
operator.

Quantity E (2)
rel corresponds to the expectation value of the

Dirac–Breit Hamiltonian in the Pauli approximation, Hrel

[39,40]. Hrel is transformed from the laboratory coordinates Ri

to the internal coordinates ri and for the S states includes what
are known as the mass-velocity HMV, Darwin HD, orbit-orbit
HOO, and spin-spin HSS terms, respectively,

Hrel = HMV + HD + HOO + HSS. (5)

Their explicit forms in the internal coordinates are [17]

HMV = −1

8

⎡
⎣ 1
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(
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HD = −π
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and

HSS = −8π

3

5∑
i, j = 1

j > i

qiq j

mimj
(s′

is j )δ(ri j ). (9)

In the above formulas δ(. . .) is the three-dimensional Dirac
delta function and si are spin operators for individual elec-
trons. For all states considered in this work, s′

is j = −3/4. It
should be noted that E (2)

rel effectively contains both nonrecoil
and recoil contributions if the nonrelativistic variational wave
function used in the calculation of the expectation values of
the relativistic and QED operators is generated using a finite
mass of the nucleus in the nonrelativistic Hamiltonian.

Quantity E (3)
QED represents the leading QED correction. For

an atomic system, it accounts for the two-photon exchange,
the vacuum polarization, and the electron self-energy effects.
The explicit form of the corresponding operator is

HQED =
5∑

i, j = 1
j > i

[(
164

15
+ 14

3
ln α

)
δ(ri j ) − 7

6π
P

(
1

r3
i j

)]

+
5∑

i=1

(
19
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− 2 ln α − ln k0

)
4q0

3
δ(ri ), (10)

where the first sum represents the Araki-Sucher term [41–45],
while the expectation value of P(1/r3

i j ) is defined as〈
P

(
1

r3
i j

)〉
= lim

a→0

〈
1

r3
i j

�(ri j − a) + 4π (γ + ln a)δ(ri j )

〉
.

(11)
In the last expression, � is the Heaviside step function and
γ = 0.577215 . . . is the Euler–Mascheroni constant.

Expression (10) also contains a term that includes the
so-called Bethe logarithm, ln k0. This term represents the
dominant part of the electron self-energy. Accurate calcula-
tion of this quantity for multielectron systems still represents
a major difficulty. However, it is known that the dominant
contribution to ln k0 comes from the inner shell electrons. This
was first demonstrated by Drake and Goldman [46] and stated
explicitly by Yan et al. [47]. The latter paper presented results

TABLE I. Approximate values of the Bethe logarithm used in
the calculations of the QED corrections for the lowest five 2S states
of C+. All values are in atomic units.

State no. Dominant configuration ln k0 ln(k0/Z2)

1 1s22s2p2 (2S) 6.5598 2.9763
2 1s22s23s (2S) 6.5574 2.9739
3 1s22s24s (2S) 6.5574 2.9739
4 1s22s25s (2S) 6.5574 2.9739
5 1s22s26s (2S) 6.5574 2.9739

for Be+ and Li that can be extrapolated to C+. The paper
also showed the Bethe logarithm is not just approximately
independent of the state, but also of the nuclear charge and
the ionization stage of the atom. The approximate invari-
ance of the Bethe logarithm becomes more apparent upon
subtraction of ln(Z2) as in this case it becomes close to the
2.984128556...value for the 1s electron [46].

Therefore, at the lowest level of approximation, one can
use the Bethe logarithm values for the C4+ or C2+ ions.
The former is known to high accuracy [9] and is equal to
6.566235886(1) a.u. The latter was computed in work [48]
for the two lowest singlet S-states with dominant electronic
configurations 1s22s2 and 1s22p2. The corresponding values
are 6.5574(4) and 6.5642(8) a.u. Table I lists the values of the
Bethe logarithm, which we adopted for each of the states of
C+ considered in this work. We approximated the values of
the Bethe logarithm (β) based on the number of 2s (n2s) and
2p (n2p) electrons in the dominant configuration of each state
by means of the following linear expression:

β = β1s2 + [β1s22s2 − β1s2 ]
n2s

2
+ [β1s22p2 ) − β1s2 ]

n2p

2
.

For the lowest state, which corresponds to configuration
1s22s2p2, it gives the value of 6.5598 a.u.

The last term in (4), E (4)
HQED, is computed as an expecta-

tion value of the following approximate operator derived by
Pachucki et al. [49,50]:

HHQED = πq2
0

(
427

96
− 2 ln 2

) 5∑
i=1

δ(ri ). (12)

E (4)
HQED includes the dominating electron-nucleus one-loop

radiative correction and neglects the two-loop radiative
correction, electron-electron radiative correction, and the
higher-order relativistic corrections.

It should be mentioned that Eq. (12) was previously pro-
posed and used by Drake and Martin [51] and it is a simple
generalization of the Kabir–Salpeter formula [43] for two
electrons applied to the five-electron Lamb shift (also, see the
work of Ermolaev [52] for additional insight on the matter).
Based on the data available for smaller atoms one can expect
that Eq. (12) should capture the bulk of the higher-order QED
effects with the overall error being less than 50%.

It should be noted that the expectation values of both
HQED and HHQED Hamiltonians are calculated with the in-
finite nuclear mass wave functions, because the underlying
formalism in the first approximation was been developed
under the assumption of a clamped nucleus. Hence, no
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TABLE II. Some key expectation values (all in atomic units) for the five lowest 2S states of 12C+, 13C+, 14C+, and ∞C+ ions computed
with the largest basis sets of 16 000 ECG functions used in this work. The tilde sign indicates that the regularization technique was used to
compute the expectation value. The numbers in parentheses are estimated uncertainties due to the basis truncation.

State Isotope 〈H̃MV〉 〈δ̃(ri )〉 〈δ̃(ri j )〉 〈HOO〉 〈P (1/r3
i j )〉

2s2p2 12C+ −1461.2153(5) 25.109474(3) 0.6503804(3) −0.062781(1)
13C+ −1461.2368(5) 25.109753(3) 0.6503867(3) −0.054542(1)
14C+ −1461.2551(5) 25.109991(3) 0.6503921(3) −0.047506(1)
∞C+ −1461.4932(5) 25.113086(3) 0.6504620(3) 0.043986(1) −6.6842(50)

2s23s 12C+ −1511.4368(2) 25.912321(4) 0.6763524(3) −2.251523(4)
13C+ −1511.4580(2) 25.912592(4) 0.6763585(3) −2.242852(4)
14C+ −1511.4761(2) 25.912823(4) 0.6763636(3) −2.235447(4)
∞C+ −1511.7117(2) 25.915830(4) 0.6764310(3) −2.139159(4) −7.4489(30)

2s24s 12C+ −1511.5693(2) 25.921466(3) 0.6758074(2) −2.395628(2)
13C+ −1511.5909(2) 25.921744(3) 0.6758137(2) −2.386976(2)
14C+ −1511.6094(2) 25.921982(3) 0.6758190(2) −2.379587(2)
∞C+ −1511.8501(2) 25.925070(3) 0.6758889(2) −2.283510(2) −7.5038(20)

2s25s 12C+ −1510.6305(5) 25.908809(5) 0.6752095(4) −2.393486(4)
13C+ −1510.6522(5) 25.909087(5) 0.6752158(4) −2.384841(4)
14C+ −1510.6707(5) 25.909325(5) 0.6752212(4) −2.377457(4)
∞C+ −1510.9112(5) 25.912412(5) 0.6752910(4) −2.281451(4) −7.5069(50)

2s26s 12C+ −1510.2470(10) 25.903643(15) 0.6749708(10) −2.391852(12)
13C+ −1510.2687(10) 25.903921(15) 0.6749771(10) −2.383209(12)
14C+ −1510.2872(10) 25.904158(15) 0.6749824(10) −2.375828(12)
∞C+ −1510.5277(10) 25.907247(15) 0.6750523(10) −2.279848(12) −7.5122(100)

recoil effects are included in E (3)
QED and E (4)

HQED computed in
this work. However, it should be noted that the finite-mass
corrections to the lowest-order QED corrections (radiative
recoil) are well known from the works of Pachucki and
Sapirstein [53] and Yan and Drake [54] and could be included
within the conventional approach where the zero-order ap-
proximation is obtained from an infinite-mass nonrelativistic
calculation.

Operators (6), (7), (9), (10), and (12) contain singular terms
[e.g., δ(ri j )], whose expectation values are known to converge
rather slowly with increasing the length of the basis used to
expand the wave function. The primary reason for this is that
when these expectation values are computed, the approximate
variational wave function ψappr is sampled locally (in a sub-
space) rather than globally. The accuracy of the final result
then depends on the residual value, εδψ = ψ − ψappr, aver-
aged in the subspace (here δψ is a normalized function and
ε is a parameter that becomes small when ψappr → ψ , with
ψ being the exact wave function) and may behave as O(ε).
At the same time, the error in the energy in the variational
method behaves as O(ε2). Thus the number of converged
figures in the expectation values of singular operators can be
twice fewer than in the nonrelativistic energy. This behavior
is general and occurs in the case of any basis set employed.
On top of that, Gaussian basis functions (3) have improper
behavior in the vicinity of particle coalescence points and their
linear combinations cannot satisfy the Kato cusp conditions
[55]. While it does not render them unusable for variational
calculations, it does cause an additional slow down in the
convergence of the expectation values of δ(ri j ) and some
other singular operators. In order to overcome these issues,
we employed a regularization technique implemented in the
spirit of works [56,57]. For the expectation values of the delta

functions, we employ the following Drachman identities in the
internal coordinates:

〈ψ |δ(ri )|ψ〉 = μi

π

[〈
ψ

∣∣∣∣E − V

ri

∣∣∣∣ψ
〉
−

〈
∇rψ

∣∣∣∣M
ri

∣∣∣∣∇rψ

〉]
,

(13)

〈ψ |δ(ri j )|ψ〉 = μi j

π

[〈
ψ

∣∣∣∣E − V

ri

∣∣∣∣ψ
〉
−

〈
∇rψ

∣∣∣∣M
ri j

∣∣∣∣∇rψ

〉]
.

(14)

In the above expressions, μi j ≡ mimj/(mi + mj ), V is the
potential energy operator, and E is the variational energy.
The identities hold for the exact wave function, ψ . When
the wave function is approximated by a linear combination
with a progressively larger number of expansion terms, the
right hand sides of expressions (13) and (14) converge to the
corresponding exact limits much faster than the unregularized
series because they do not contain any singular operators.

The presence of the fourth power of linear momenta in
HMV [Eq. (6)] also causes slow convergence of the corre-
sponding expectation values. To remedy this, HMV can be
written in the matrix form as

HMV = −(∇′
rβ0J∇r )2 −

5∑
i=1

(∇′
rβiJii∇r )2

, (15)

where β0 = 1/
√

8m3
0 , βi = 1/

√
8m3

i , J = (J ⊗ I3), Jii =
Jii ⊗ I3J is a 5 × 5 matrix with all its elements equal to 1, and
Jii is a 5 × 5 matrix that has only a single nonzero element,
(Jii )ii = 1.

For HMV, we use the identity

〈ψ |HMV|ψ〉
= −λ2〈ψ |(E − V )2|ψ〉 − λ2〈ψ |(E − V )(∇′

rB∇r )|ψ〉
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TABLE III. Nonrelativistic and total energies computed with the
largest basis sets of 16 000 ECGs along with their extrapolated
values. All energies are in atomic units.

State Isotope Basis Enr Etot

2s2p2 12C+ 16 000 −36.99019765 −37.00228427
∞ −36.99019791(15) −37.00228451(15)

13C+ 16 000 −36.99032676 −37.00241337
∞ −36.99032702(15) −37.00241361(15)

14C+ 16 000 −36.99043702 −37.00252362
∞ −36.99043727(15) −37.00252386(15)

∞C+ 16 000 −36.99187059 −37.00395712
∞ −36.99187084(15) −37.00395736(15)

2s23s 12C+ 16 000 −36.89819206 −36.91095784
∞ −36.89819216(6) −36.91095793(6)

13C+ 16 000 −36.89832441 −36.91109016
∞ −36.89832450(6) −36.91109026(6)

14C+ 16 000 −36.89843742 −36.91120316
∞ −36.89843752(6) −36.91120325(6)

∞C+ 16 000 −36.89990687 −36.91267237
∞ −36.89990697(6) −36.91267246(6)

2s24s 12C+ 16 000 −36.71277198 −36.72552973
∞ −36.71277208(7) −36.72552984(7)

13C+ 16 000 −36.71290407 −36.72566181
∞ −36.71290417(7) −36.72566192(7)

14C+ 16 000 −36.71301688 −36.72577461
∞ −36.71301698(7) −36.72577471(7)

∞C+ 16 000 −36.71448359 −36.72724115
∞ −36.71448369(7) −36.72724126(7)

2s25s 12C+ 16 000 −36.63936599 −36.65210721
∞ −36.63936624(16) −36.65210745(16)

13C+ 16 000 −36.63949782 −36.65223902
∞ −36.63949807(16) −36.65223926(16)

14C+ 16 000 −36.63961039 −36.65235158
∞ −36.63961064(16) −36.65235182(16)

∞C+ 16 000 −36.64107412 −36.65381514
∞ −36.64107437(16) −36.65381538(16)

2s26s 12C+ 16 000 −36.60330234 −36.61603673
∞ −36.60330306(47) −36.61603745(47)

13C+ 16 000 −36.60343403 −36.61616841
∞ −36.60343475(47) −36.61616913(47)

14C+ 16 000 −36.60354649 −36.61628085
∞ −36.60354721(47) −36.61628157(47)

∞C+ 16 000 −36.60500870 −36.61774290
∞ −36.60500942(47) −36.61774362(47)

+ λ2〈ψ |(∇′
rM∇r )2|ψ〉 + λ2〈ψ |(∇′

rM∇r )(∇′
rB∇r )|ψ〉

−β0〈ψ |(∇′
rJ∇r )2|ψ〉 −

n∑
i=1

βi〈ψ |(∇′
rJii∇r )2|ψ〉. (16)

Parameter λ and matrix B = B ⊗ I3 in this identity are chosen
such that the element(s) of the diagonal matrix B correspond-
ing to the lightest particle(s) in the system vanish. Namely,
if particle k is the lightest one (in the present case it is an
electron), we adopt

λ2 = β2
0 + β2

k

(M )2
kk

, (17)

and then the elements of B are

(B)ii = β2
0 + β2

k

λ2(M )ii
− (M )ii. (18)

When the difference between the lightest mass, mk , and the
masses of other particles in the system (in our case m0) is very
large, the right-hand side of expression (16) converges to the
exact limit considerably faster upon increasing the basis size.

III. RESULTS

The numerical value of the conversion factor from Hartrees
to wave numbers used in present work is 1 Hartree =
2.194 746 313 702 × 105 cm−1 [58]. The value of the fine
structure constant used in the calculations of the rela-
tivistic and QED corrections to the total energy is α =
7.297 352 5664 × 10−3 [58].

The present calculations concern the five lowest 2S states
of the three isotopes of the carbon cation, i.e., 12C+, 13C+,
and 14C+, as well as the carbon cation with an infinite nuclear
mass, ∞C+. The basis set optimization is performed for each
of the five states of the main isotope, 12C+, and then reused
in the calculations for the corresponding states of the other
two isotopes and for ∞C+. Thus, the relatively small change
of the wave function due to the change of the nuclear mass is
only described through the adjustment of the linear expansion
coefficients of the basis functions. Such an approach has been
found sufficient in our previous atomic calculations [36].

Generating the basis set for the lowest-energy state is
initiated with a small set of randomly selected Gaussians
and involves variational reoptimization of their nonlinear
exponential parameters using a scheme that employs the an-
alytically calculated gradient of the energy of the state with
respect to the parameters. Next, the basis set is enlarged by
an addition of some fixed number of functions (usually from
20 to 100). The functions are added one by one. The initial
guess for an added function is obtained by taking a subset of
functions already included in the basis set that give the largest
contribution to the energy of the state, randomly perturbing
their nonlinear parameters, and selecting the function that
lowers the energy the most. Next, the nonlinear parameters of
the selected function are optimized and, if the function after
the optimization is not linearly dependent with other functions
in the basis set, the function is added to the set. After a certain
number of functions are added to the basis set, the whole set is
reoptimized. After a fairly good set of functions is generated
for the lowest-energy state, the set is used as an initial basis
set for the next state and, after its reoptimization for that state,
it is used as the initial basis set for the following state, etc. The
basis sets for all five considered states of 12C+ are enlarged to
the size of 16 000 functions. At that point several additional
optimization cycles are performed for each set. At the final
stages of basis growing and optimization we use the so-called
extended computer precision (80-bit per number; about 19
decimal figures of precision) as it increased the numerical ac-
curacy of the calculations and allows to noticeably accelerate
the energy convergence.

The results presented next (in tables) are limited to the
values obtained using the largest basis sets of 16 000 Gaus-
sians. The values obtained with smaller basis sets are used to
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TABLE IV. Transition energies, �E (in cm−1), between adjacent 2S states of the 12C+, 13C+ and 14C+ ions computed using infinite nuclear
mass (INM,i) nonrelativistic energies, and then gradually corrected by including finite nuclear mass (FNM,f), relativistic, and QED effects.
As the QED and HQED Hamiltonians are only valid for INM, the corresponding energy corrections are computed using the wave functions
obtained in INM calculations. The estimated uncertainties shown for the extrapolated transition energies are due to the basis truncation.

Isotope Contributions included in �E Basis size 2s2p2 ←2s23s 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s

12C+ nr(i) 16 000 20 183.70 40 695.71 16 111.52 7915.44
nr(f) 16 000 20 192.89 40 695.01 16 110.75 7915.06
nr(f)+rel(f) 16 000 20 032.06 40 696.61 16 114.56 7916.62
nr(f)+rel(f)+QED(i) 16 000 20 042.97 40 696.76 16 114.40 7916.56
nr(f)+rel(f)+QED(i)+HQED(i) 16 000 20 043.83 40 696.77 16 114.38 7916.55
nr(f)+rel(f)+QED(i)+HQED(i) ∞ 20 043.88(5) 40 696.77(1) 16 114.34(4) 7916.45(10)
Experiment, NIST ASD [59] 20 043.91(1) 40 696.42(1) 16 113.77(1) 7916.40 (1)

13C+ nr(i) 16 000 20 183.70 40 695.71 16 111.52 7915.44
nr(f) 16 000 20 192.18 40 695.06 16 110.81 7915.09
nr(f)+rel(f) 16 000 20 031.36 40 696.66 16 114.62 7916.65
nr(f)+rel(f)+QED(i) 16 000 20 042.26 40 696.81 16 114.46 7916.59
nr(f)+rel(f)+QED(i)+HQED(i) 16 000 20 043.13 40 696.82 16 114.44 7916.58
nr(f)+rel(f)+QED(i)+HQED(i) ∞ 20 043.18(5) 40 696.82(1) 16 114.40 (4) 7916.48(10)

14C+ nr(i) 16 000 20 183.70 40 695.71 16 111.52 7915.44
nr(f) 16 000 20 191.58 40 695.11 16 110.86 7915.11
nr(f)+rel(f) 16 000 20 030.75 40 696.71 16 114.67 7916.68
nr(f)+rel(f)+QED(i) 16 000 20 041.66 40 696.85 16 114.51 7916.62
nr(f)+rel(f)+QED(i)+HQED(i) 16 000 20 042.53 40 696.86 16 114.49 7916.61
nr(f)+rel(f)+QED(i)+HQED(i) ∞ 20 042.58(5) 40 696.86(1) 16 114.45(4) 7916.51(10)

extrapolate the results to an infinite number of basis functions
and to estimate their uncertainties. First, we discuss the data
shown in Tables II and III. The data in Table II concern
expectation values of the operators involved in the expres-
sions for the leading relativistic correction and the leading
QED corrections. Three of the quantities shown in the table,
namely, 〈H̃MV〉, 〈δ̃(ri )〉, and 〈δ̃(ri j )〉, are calculated using the
regularization procedure described in Section II, while the
other two quantities, i.e., 〈HOO〉 and 〈P (1/r3

i j )〉, are computed
directly without regularization. The quantities are calculated
for the three carbon cation isotopes and for ∞C+ for all
five considered states. An estimated uncertainty due to basis
incompleteness is shown for each quantity. In Table III, we
show the total nonrelativistic energies calculated for the five
states of all isotopes and the total energies that include the
corresponding relativistic and QED corrections (Enr and Etot)
calculated using the quantities from Table II. Besides the
energies obtained with 16 000 basis functions, the energies
extrapolated to the basis set limit are also shown along with
their estimated uncertainties.

In general, the quantities presented in Tables II and III
show monotonic behavior in terms of increasing the nuclear
mass (from 12C to ∞C) and in terms of increasing the level
of the electronic excitation of the system. The mass effects
are pronounced and their contribution vary from affecting the
fifth significant figure in the results for 〈H̃MV〉 and the two
delta functions to affecting the first significant figure in the
results for 〈HOO〉. The latter quantity shows some interesting
behavior with respect to the level of the electronic excitation.
While the 〈HOO〉 values for the second, third, fourth, and fifth
states lie in the range from −2.1 to −2.4 a.u., the value for
the first, lowest-energy state is about 4–5 times lower and for
infinite nuclear mass it is positive. Clearly, this is a result of
the configurational composition of the wave functions of the

states. While, the former states are conventional Rydberg-type
excitations with the valence electron being successively pro-
moted from the 3s orbital to the ns orbital (with n = 4, 5, and
6), for the first state the dominant configuration is 1s22s2p2. In
that configuration one valence electron occupies the 2s orbital
and two valence electrons occupies two different p orbitals.
That makes the orbit-orbit interactions between the electrons
significantly smaller for the lowest-energy state than for the
other states.

The quantities from Tables II and III are used to calcu-
late the transition energies between adjacent states. These
energies are shown in Table IV, where all values are given
in cm−1. The transition energies are calculated using the
results obtained with 16 000 ECGs. The values obtained
by extrapolating to the basis set limits are also shown in
the table. For each transition and for each carbon isotope,
the contributions to the transition energy are shown start-
ing from the nonrelativistic infinite-nuclear-mass value and
then successively including the contributions due the finite-
nuclear-mass effects, relativistic corrections, and QED effects.
For the lowest 2s2p2 ← 2s23s transition, the FNM-effect
contribution amounts to about 9 cm−1, but the contribu-
tion decreases to less than 1 cm−1 for the other transitions.
The infinite-nuclear-mass contribution is calculated from the
total nonrelativistic energies obtained from the ∞C+ calcula-
tions and the finite-nuclear-mass contribution is obtained by
subtracting the infinite-nuclear-mass nonrelativistic transition
energy from the finite-nuclear-mass nonrelativistic transition
energy. By far the largest of all additional contributions is
the contribution due to the relativistic effects. For the lowest
transition this contribution is about −150 cm−1, but it signif-
icantly decreases for the other transitions. For the 2s25s ←
2s26s transition it is only about 1.5 cm−1. The leading QED
effects contribute to the lowest transition energy by about
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TABLE V. Expectation values of powers of the interparticle distances, 〈rp
i 〉 and 〈rp

i j〉 (p = −2, . . . , 2), computed with the largest basis sets
of 16 000 ECG functions used in this work. All values are in atomic units.

State Isotope 〈r−2
i 〉 〈r−2

i j 〉 〈r−1
i 〉 〈r−1

i j 〉 〈ri〉 〈ri j〉 〈r2
i 〉 〈r2

i j〉
2s2p2 12C+ 27.319692(3) 2.728177(2) 2.7977255(1) 0.9951368(0) 1.054674(0) 1.724375(0) 1.967321(1) 4.075430(2)

13C+ 27.319894(3) 2.728191(2) 2.7977345(1) 0.9951381(0) 1.054674(0) 1.724377(0) 1.967331(1) 4.075449(2)
14C+ 27.320065(3) 2.728202(2) 2.7977422(1) 0.9951392(0) 1.054675(0) 1.724378(0) 1.967339(1) 4.075465(2)
∞C+ 27.322300(3) 2.728355(2) 2.7978425(1) 0.9951534(0) 1.054680(0) 1.724399(0) 1.967446(1) 4.075672(2)

2s23s 12C+ 27.893464(3) 2.603788(2) 2.7518376(1) 0.8758744(3) 1.455866(1) 2.498558(2) 4.661907(5) 9.633307(10)
13C+ 27.893658(3) 2.603805(2) 2.7518477(1) 0.8758782(3) 1.455858(1) 2.498544(2) 4.661856(5) 9.633205(10)
14C+ 27.893824(3) 2.603819(2) 2.7518563(1) 0.8758814(3) 1.455851(1) 2.498532(2) 4.661811(5) 9.633119(10)
∞C+ 27.895985(3) 2.604009(2) 2.7519684(1) 0.8759238(3) 1.455761(1) 2.498377(2) 4.661238(5) 9.631992(10)

2s24s 12C+ 27.875852(3) 2.558729(1) 2.7192474(1) 0.8151880(1) 2.327263(2) 4.201103(5) 16.76223(2) 33.72007(5)
13C+ 27.876052(3) 2.558745(1) 2.7192571(1) 0.8151906(1) 2.327255(2) 4.201088(5) 16.76210(2) 33.71983(5)
14C+ 27.876222(3) 2.558758(1) 2.7192654(1) 0.8151928(1) 2.327248(2) 4.201075(5) 16.76200(2) 33.71962(5)
∞C+ 27.878441(3) 2.558932(1) 2.7193729(1) 0.8152219(1) 2.327155(2) 4.200907(5) 16.76064(2) 33.71692(5)

2s25s 12C+ 27.859356(5) 2.548749(3) 2.7067644(1) 0.7924201(1) 3.476398(20) 6.486172(40) 45.74634(50) 91.65383(100)
13C+ 27.859556(5) 2.548765(3) 2.7067740(1) 0.7924226(1) 3.476386(20) 6.486150(40) 45.74603(50) 91.65321(100)
14C+ 27.859727(5) 2.548778(3) 2.7067823(1) 0.7924247(1) 3.476376(20) 6.486131(40) 45.74576(50) 91.65267(100)
∞C+ 27.861945(5) 2.548951(3) 2.7068891(1) 0.7924526(1) 3.476246(20) 6.485889(40) 45.74227(50) 91.64570(100)

2s26s 12C+ 27.852724(10) 2.544884(10) 2.7004194(3) 0.7805979(7) 4.922314(200) 9.371746(300) 103.1373(50) 206.4175(200)
13C+ 27.852924(10) 2.544899(10) 2.7004290(3) 0.7806003(7) 4.922301(200) 9.371722(300) 103.1367(50) 206.4163(200)
14C+ 27.853095(10) 2.544913(10) 2.7004372(3) 0.7806024(7) 4.922290(200) 9.371702(300) 103.1363(50) 206.4154(200)
∞C+ 27.855314(10) 2.545085(10) 2.7005436(3) 0.7806293(7) 4.922149(200) 9.371437(300) 103.1300(50) 206.4028(200)

11 cm−1, but this contribution also significantly decreases to
below 0.2 cm−1 for the 2s23s ← 2s24s transition and to 0.06
for the 2s25s ← 2s26s transition. The estimated contribution
from the higher-order QED effects is below 1 cm−1 for the
lowest transition and also significantly decreases for the tran-
sitions between higher states.

The results shown in Table IV allow for an estimation
of the isotopic effects in the transition energies. Using the
transition energies obtained with 16 000 basis functions at
the highest level of the theory, i.e., the nonrel + rel + QED +
HQED level, the isotopic shift for the lowest 12S ← 22S
transition in going from 12C+ to 13C+ amounts to about
−0.7 cm−1 and to about −0.6 cm−1 in going from 13C+ to
14C+ (i.e., the transition energy decreases in this case). The
isotopic shift is much smaller for the 2s25s ← 2s26s transi-
tion, but it has the opposite sign (+0.03 cm−1). Finally, the
calculated transitions for the 12C+ isotope can be compared
with the experimental values. The comparison is shown in Ta-
ble IV. Let us consider the results obtained at the highest level
of theory (without the extrapolation to the basis set limit).
For the lowest 2s2p2 ← 2s23s transition, our calculated value
of 20 043.83 cm−1 is very close to the experimental re-
sult, deviating by only 0.08 cm−1. For the 2s23s ← 2s24s
transition, the calculated value is 40 696.77 cm−1 and the
experiment gives 40 696.42 cm−1. For the last two transitions,
i.e., 2s24s ← 2s25s and 2s25s ← 2s26s, the calculated values
vs. the experimental values are: 16 114.38 and 7916.55 cm−1,
and 16 113.77 and 7916.40 cm−1, respectively. Our calculated
transition energies for the lowest and higher transitions agree
with the experimental values within the uncertainty due to
the basis-set truncation. For the other two transitions, the
discrepancy is small, about 0.1–0.6 cm−1, yet well outside
of both the experimental and numerical error bar. The exact
origin of this discrepancy is not immediately clear. It may

come from the approximate treatment of the HQED correction
in our calculations or from even higher order QED corrections
missing in our model. It is also possible that actual accuracy
of the experimentally derived transition energies in the NIST
database is lower than the quoted value of 0.01 cm−1.

In the last table, Table V, the expectation values of some
positive and negative powers of the electron-nucleus distance
ri and the electron-electron distance ri j are shown for all con-
sidered states and for all considered isotopes including ∞C+.
By looking at this data one can compare the isotopic shifts
of the 〈ri〉 and 〈ri j〉 expectation values for the lowest 2s2p2

FIG. 1. Nucleus-electron correlation functions for the 1s22s2p2,
1s22s23s, and 1s22s26s states of 12C+ ion. The same plots for 13C+

and 14C+ are virtually indistinguishable and are not shown here.
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FIG. 2. Electron-electron correlation functions for the 1s22s2p2,
1s22s23s, and 1s22s26s states of 12C+ ion. The same plots for 13C+

and 14C+ are virtually indistiguishable and are not shown here.

state and the 2s26s state. The isotopic shift of 〈ri〉 and 〈ri j〉 for
the former state is only +0.000001 and +0.000003 a.u., but
it changes sign and becomes −0.000024 and −0.000044 a.u.,
respectively, for the latter state.

Lastly, we find it interesting to show plots comparing the
nucleus–electron correlation functions calculated for different
states of 12C. In Fig. 1, a comparison of these functions
is shown for states 2s2p2, 2s23s, and 2s26s. All correlation
functions clearly show the electronic shell structure of the
different states of the carbon cation with more maxima ap-
pearing for the higher 2s26s state than for lowest two states.
The shell structure of the electrons also manifests itself in the
plots of the electron–electron correlations functions, which
are presented in Fig. 2. The fact that the nucleus is treated
on equal footing with the electrons in or calculations makes
it possible to also look at its density distribution. The plots of

FIG. 3. The densities of the nucleus in the center-of-mass coor-
dinate frame for the 1s22s2p2, 1s22s23s, and 1s22s26s states of C+.

the nuclear density (in the center-of-mass frame of reference)
are presented in Fig. 3. In this figure the isotopic effect for
the nuclear density is clearly visible. As one can expect, the
nuclear density, regardless of the state, is much (4–5 orders of
magnitude) more localized around the center of mass of the
atom than the electronic density (make note of the scale of
horizontal axis in Figs. 1 and 3). This reflects the fact that the
nucleus is nearly fixed in space.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education
and Science of Kazakhstan via state-targeted program “Center
of Excellence for Fundamental and Applied Physics” (Grant
No. BR05236454), Nazarbayev University (faculty develop-
ment Grant No. 090118FD5345), and the National Science
Foundation (Grant No. 1856702).

[1] E. A. Hylleraas, Neue berechnung der energie des heliums
im grundzustande, sowie des tiefsten terms von ortho-helium,
Z. Phys. 54, 347 (1929).

[2] W. H. Heitler and F. W. London, Wechselwirkung neutraler
atome und homöopolare bindung nach der quantenmechanik,
Z. Phys. 44, 455 (1927).

[3] T. Kinoshita, Ground state of the helium atom, Phys. Rev. 105,
1490 (1957).

[4] C. L. Pekeris, Ground state of two-electron atoms, Phys. Rev.
112, 1649 (1958).

[5] G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Ground-state
energies for helium, h− and ps−, Phys. Rev. A 65, 054501
(2002).

[6] C. Schwartz, Experiment and theory in computations of
the he atom ground state, Int. J. Mod. Phys. E 15, 877
(2006).

[7] C. Schwartz, Further computations of the he atom ground state,
arXiv:math-ph/0605018.

[8] H. Nakashima and H. Nakatsuji, Solving the schrödinger equa-
tion for helium atom and its isoelectronic ions with the free
iterative complement interaction (ici) method, J. Chem. Phys.
127, 224104 (2007).

[9] V. A. Yerokhin and K. Pachucki, Theoretical energies of low-
lying states of light helium-like ions, Phys. Rev. A 81, 022507
(2010).

[10] D. T. Aznabaev, A. K. Bekbaev, and V. I. Korobov, Nonrela-
tivistic energy levels of helium atoms, Phys. Rev. A 98, 012510
(2018).

[11] M. Puchalski and K. Pachucki, Relativistic, QED, and finite
nuclear mass corrections for low-lying states of li and Be+,
Phys. Rev. A 78, 052511 (2008).

[12] J. S. Sims and S. A. Hagstrom, Hylleraas-configuration-
interaction study of the 22s ground state of neutral lithium and
the first five excited 2s states, Phys. Rev. A 80, 052507 (2009).

[13] L. M. Wang, C. Li, Z.-C. Yan, and G. W. F. Drake, Isotope shifts
and transition frequencies for the s and p states of lithium: Bethe

062825-8

https://doi.org/10.1007/BF01375457
https://doi.org/10.1007/BF01397394
https://doi.org/10.1103/PhysRev.105.1490
https://doi.org/10.1103/PhysRev.112.1649
https://doi.org/10.1103/PhysRevA.65.054501
https://doi.org/10.1142/S0218301306004648
http://arxiv.org/abs/arXiv:math-ph/0605018
https://doi.org/10.1063/1.2801981
https://doi.org/10.1103/PhysRevA.81.022507
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.80.052507


LOW-LYING 2S STATES OF THE SINGLY CHARGED … PHYSICAL REVIEW A 102, 062825 (2020)

logarithms and second-order relativistic recoil, Phys. Rev. A 95,
032504 (2017).

[14] F. W. King, D. Quicker, and J. Langer, Compact wave func-
tions for the beryllium isoelectronic series, Li− to Ne6+: A
standard hylleraas approach, J. Chem. Phys. 134, 124114
(2011).

[15] J. S. Sims and S. A. Hagstrom, Hylleraas-configuration-
interaction nonrelativistic energies for the 1s ground states
of the beryllium isoelectronic sequence, J. Chem. Phys. 140,
224312 (2014).

[16] Y. Suzuki and K. Varga, Stochastic Variational Approach to
Quantum-Mechanical Few-Body Problems, Lecture Notes in
Physics (Springer, Berlin, 1998).

[17] S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L.
Adamowicz, Born–oppenheimer and non-born–oppenheimer,
atomic and molecular calculations with explicitly correlated
gaussians, Chem. Rev. 113, 36 (2013).

[18] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz,
W. Cencek, K. Szalewicz, J. Komasa, D. Blume, and K. Varga,
Theory and application of explicitly correlated gaussians, Rev.
Mod. Phys. 85, 693 (2013).

[19] S. Bubin and L. Adamowicz, Accurate variational calculations
of the ground 2 po(1s22s22p) and excited 2s(1s22s2p2) and
2 po(1s22s23p) states of singly ionized carbon atom, J. Chem.
Phys. 135, 214104 (2011).

[20] M. Puchalski, K. Pachucki, and J. Komasa, Isotope shift in a
beryllium atom, Phys. Rev. A 89, 012506 (2014).

[21] S. Bubin and L. Adamowicz, Prediction of 1 p rydberg
energy levels of beryllium based on calculations with ex-
plicitly correlated gaussians, J. Chem. Phys. 140, 024301
(2014).

[22] M. Puchalski, J. Komasa, and K. Pachucki, Explicitly correlated
wave function for a boron atom, Phys. Rev. A 92, 062501
(2015).

[23] S. Bubin and L. Adamowicz, Lowest 2s Electronic Excitations
of the Boron Atom, Phys. Rev. Lett. 118, 043001 (2017).

[24] I. Hornyák, L. Adamowicz, and S. Bubin, Ground and excited
1s states of the beryllium atom, Phys. Rev. A 100, 032504
(2019).

[25] K. L. Sharkey and L. Adamowicz, An algorithm for non-
relativistic quantum-mechanical finite-nuclear-mass variational
calculations of nitrogen atom in l = 0, m = 0 states using
all-electrons explicitly correlated gaussian basis functions,
J. Chem. Phys. 140, 174112 (2014).

[26] J. G. Ingalls, R. A. Chamberlin, T. M. Bania, J. M. Jackson,
A. P. Lane, and A. A. Stark, Atomic carbon in south-
ern hemisphere high-latitude clouds, Astrophys. J. 479, 296
(1997).

[27] U. J. Sofia, J. A. Cardelli, K. P. Guerin, and D. M. Meyer,
Carbon in the diffuse interstellar medium, Astrophys. J. 482,
L105 (1997).

[28] C. D. Wilson, Atomic carbon emission from individual molec-
ular clouds in m33, Astrophys. J. 487, L49 (1997).

[29] W. E. C. J. van der Veen, P. J. Huggins, and H. E. Matthews,
Atomic carbon in the circumstellar envelopes of evolved stars,
Astrophys. J. 505, 749 (1998).

[30] U. Amaldi and G. Kraft, Radiotherapy with beams of carbon
ions, Rep. Prog. Phys. 68, 1861 (2005).

[31] O. Jäkel, State of the art in hadron therapy, AIP Conf. Proc. 958,
70 (2007).

[32] S. Bubin and L. Adamowicz, Computer program atom-mol-
nonbo for performing calculations of ground and excited
states of atoms and molecules without assuming the born–
oppenheimer approximation using all-particle complex explic-
itly correlated gaussian functions, J. Chem. Phys. 152, 204102
(2020).

[33] S. Bubin and L. Adamowicz, Matrix elements of n-particle
explicitly correlated gaussian basis functions with com-
plex exponential parameters, J. Chem. Phys. 124, 224317
(2006).

[34] M. Hamermesh, Group Theory and Its Application to Physical
Problems (Addison-Wesley, Reading, MA, 1962).

[35] R. Pauncz, Spin Eigenfunctions (Plenum, New York, 1979).
[36] M. Stanke and L. Adamowicz, Finite-nuclear-mass calculations

of the leading relativistic corrections for atomic d states with
all-electron explicitly correlated gaussian functions, Phys. Rev.
A 100, 042503 (2019).

[37] W. E. Caswell and G. P. Lepage, Effective lagrangians for bound
state problems in QED, qCD, and other field theories, Phys.
Lett. B 167, 437 (1986).

[38] K. Pachucki, Effective hamiltonian approach to the bound state:
Positronium hyperfine structure, Phys. Rev. A 56, 297 (1997).

[39] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Plenum, New York, 1977).

[40] A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics
(Wiley, New York, 1965).

[41] H. Araki, Quantum-electrodynamical corrections to energy-
levels of helium, Prog. Theor. Phys. 17, 619 (1957).

[42] J. Sucher, Energy levels of the two-electron atom to order α3 ry;
ionization energy of helium, Phys. Rev. 109, 1010 (1958).

[43] P. K. Kabir and E. E. Salpeter, Radiative corrections to the
ground-state energy of the helium atom, Phys. Rev. 108, 1256
(1957).

[44] Z.-C. Yan and G. W. F. Drake, Relativistic and QED Energies
in Lithium, Phys. Rev. Lett. 81, 774 (1998).

[45] K. Pachucki, Simple derivation of helium lamb shift, J. Phys. B
31, 5123 (1998).

[46] G. W. F. Drake and S. P. Goldman, Bethe logarithms for ps−,
h−, and heliumlike atoms, Can. J. Phys. 77, 835 (2000).

[47] Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, High Preci-
sion Atomic Theory for Li and Be+: QED Shifts and Isotope
Shifts, Phys. Rev. Lett. 100, 243002 (2008).

[48] S. Bubin, J. Komasa, M. Stanke, and L. Adamowicz, Iso-
tope shifts of the 1s22s2(1s0) → 1s22p2(1s0) transition in the
doubly ionized carbon ion c2+, Phys. Rev. A 81, 052504
(2010).

[49] K. Pachucki and J. Komasa, Relativistic and QED Correc-
tions for the Beryllium Atom, Phys. Rev. Lett. 92, 213001
(2004).

[50] K. Pachucki, α4r corrections to singlet states of helium, Phys.
Rev. A 74, 022512 (2006).

[51] G. W. F. Drake and W. C. Martin, Ionization energies and
quantum electrodynamic effects in the lower 1sns and 1snp
levels of neutral helium (4He I), Can. J. Phys. 76, 679 (1998).

[52] A. M. Ermolaev, Lamb shift in heliumlike ions, Phys. Rev. A 8,
1651 (1973).

062825-9

https://doi.org/10.1103/PhysRevA.95.032504
https://doi.org/10.1063/1.3569565
https://doi.org/10.1063/1.4881639
https://doi.org/10.1021/cr200419d
https://doi.org/10.1103/RevModPhys.85.693
https://doi.org/10.1063/1.3664900
https://doi.org/10.1103/PhysRevA.89.012506
https://doi.org/10.1063/1.4858275
https://doi.org/10.1103/PhysRevA.92.062501
https://doi.org/10.1103/PhysRevLett.118.043001
https://doi.org/10.1103/PhysRevA.100.032504
https://doi.org/10.1063/1.4873916
https://doi.org/10.1086/303876
https://doi.org/10.1086/310681
https://doi.org/10.1086/310881
https://doi.org/10.1086/306191
https://doi.org/10.1088/0034-4885/68/8/R04
https://doi.org/10.1063/1.2825836
https://doi.org/10.1063/1.5144268
https://doi.org/10.1063/1.2204605
https://doi.org/10.1103/PhysRevA.100.042503
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1103/PhysRevA.56.297
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRev.108.1256
https://doi.org/10.1103/PhysRevLett.81.774
https://doi.org/10.1088/0953-4075/31/23/010
https://doi.org/10.1139/p00-010
https://doi.org/10.1103/PhysRevLett.100.243002
https://doi.org/10.1103/PhysRevA.81.052504
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1139/p98-044
https://doi.org/10.1103/PhysRevA.8.1651


HORNYÁK, ADAMOWICZ, AND BUBIN PHYSICAL REVIEW A 102, 062825 (2020)

[53] K. Pachucki and J. Sapirstein, Recoil corrections to the lamb
shift in helium, J. Phys. B 33, 455 (2000).

[54] Z.-C. Yan and G. W. F. Drake, Lithium transition energies and
isotope shifts: QED recoil corrections, Phys. Rev. A 66, 042504
(2002).

[55] T. Kato, On the eigenfunctions of many-particle systems in
quantum mechanics, Commun. Pure Appl. Math. 10, 151
(1957).

[56] R. J. Drachman, A new global operator for two-particle delta
functions, J. Phys. B 14, 2733 (1981).

[57] K. Pachucki, W. Cencek, and J. Komasa, On the acceleration of
the convergence of singular operators in gaussian basis sets, J.
Chem. Phys. 122, 184101 (2005).

[58] P. J. Mohr, D. B. Newell, and B. N. Taylor, Codata
recommended values of the fundamental physical
constants: 2014, Rev. Mod. Phys. 88, 035009
(2016).

[59] A. E. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team,
NIST Atomic Spectra Database (ver. 5.7.1), 2019, available at
http://physics.nist.gov/asd.

062825-10

https://doi.org/10.1088/0953-4075/33/3/314
https://doi.org/10.1103/PhysRevA.66.042504
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1088/0022-3700/14/16/003
https://doi.org/10.1063/1.1888572
https://doi.org/10.1103/RevModPhys.88.035009
http://physics.nist.gov/asd

