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Abstract

The Born–Oppenheimer (BO) approximation is the bedrock of quantummechanical cal-
culations of atomic and molecular systems. However, there are effects in these systems
that require departure from the BO approximations. We start this review with describing
these effects and some of the previous works where calculations were performed to
account for their magnitude in various atomic and molecular properties. In particular,
the problem of selecting appropriate basis functions for non-BO calculations is analyzed
and some examples of such calculations are presented. The last part of this review is
devoted to perspectives in carrying out quantummechanical studies of structures, spec-
tra, and other properties of atoms and molecules in isolation and in confinement and
treating both nuclei and electrons in these studies on on equal footing.
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1. Introduction

Even though the application of the quantum mechanics to study

bound ground and excited states of atomic and molecular systems has been

solidly based on the Bon–Oppenheimer (BO) approximation, there has

been considerable interest in obtaining quantum mechanical description

of these systems without assuming the approximation.1–3 There are several

reasons for departing from the BO approximations in the calculations of

bound states of atoms and molecules. Some of these reasons are mentioned

below.

From the very beginning of the atomic and molecular quantummechan-

ics development of theoretical models that produce results agreeing with the

most up-to-date high-resolution spectroscopy measurements performed on

light atomic and molecular has been an important part of research. It has

allowed validation of the existing models and development of better ones.

As the experimental techniques advance and achieve higher levels of preci-

sion, refinements have been made in the theoretical models to describe

effects and interactions neglected (or treated more approximately) in the

previous models. In recent years, the accuracy of measuring such quantities

as molecular rovibrational transition energies, ionization potentials, elec-

tron affinities, and fine and hyperfine splitting has achieved the precision

of 0.01–0.001 cm�1. The breadth and accuracy of the experimental data

have been increasing rapidly and further major improvements are expected

due to the development of new experimental methods for UV laser gener-

ation and frequency metrology with phase-locked femtosecond combs.4

The data collected using those new techniques are beginning to reveal

deviations that suggest that the accuracy of the existing calculations is no

longer adequate.

Achieving the 0.01–0.001 cm�1 precision in the theoretical calculations

requires the inclusion of effects reaching beyond the second-order in the fine

structure constant α ¼ 1
c
and the effects due to the finite structures of the

nuclei. These types of effects have already been calculated for two- and

three-electron atomic systems leading to theoretical results which are very

precise.5–13 Now the challenge is to extend these types of calculations to

small molecular systems with more than two nuclei. New high-precision

theoretical results for such systems, when compared with new more exact

experimental values, will provide new grounds for validation of the theoret-

ical models and for the assessment of their limitations.
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The development of high-end quantum mechanical methods has always

been an important source of ideas and technical solutions for the develop-

ment of less accurate approaches which can be applied to larger systems. The

constantly increasing power of computers has made possible to extend

the use of techniques developed for small systems to larger systems. For

example, the use of so-called explicitly correlated basis functions for expan-

ding the electronic wave function of the system becomes increasingly pop-

ular. In particular, the techniques related to the use of explicitly correlated

Gaussian (ECG) functions in atomic and molecular calculations featured in

this article, such as, for example, the techniques of employing analytical

derivatives of the energy with respect to the Gaussian exponential param-

eters in the variational energy minimization and in the optimizations of

the basis functions, have already been utilized by our group in less accurate

BO and non-BO calculations for larger molecules.14–17 As the correlated

Gaussians will start to replace Gaussian orbitals as basis functions in expan-

ding correlated wave functions in high-end molecular BO calculations,

these techniques may find new applications. For example, further develop-

ment of such approaches as the R12 (or F12) method of Kutzelnigg et al.18

may benefit from utilizing the analytical gradient technique. Another

example is the use of the ECGs with time-dependent nonlinear parameters

(e.g., Gaussian centers) in studying the dynamics of chemical processes such

as, for example, processes initiated by photo-excitations in clusters. The

non-BO methods can also provide useful tools for the development of

methods for describing the dynamics of the coupled nucleus–electron
motion in atomic and molecular systems. This phenomenon can now be

studied experimentally with the femto- and attosecond spectroscopies.

When the BO approximation is not assumed in nonrelativistic atomic or

molecular calculations, the wave functions and the corresponding nonrela-

tivistic energy levels explicitly include effects originating from the finite

masses of the nuclei and from the coupling of the motions of the nuclei

and electrons. If such non-BO wave functions are then used to calculate rel-

ativistic and QED corrections, these corrections also directly include the

finite-nuclear-mass (FNM) effects, i.e., the so-called recoil effects. This con-

tributes to the enhancement of the calculation accuracy. We have showed

that such an approach can produce results whose accuracy match the accu-

racy of the most accurate experimental measurements.3

The interest in carrying out the non-BO atomic and molecular calcula-

tions also stems from the strive to describe various properties and structures

of molecules and atoms with quantum mechanical calculations where all
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particles forming the system are treated equivalently.With that the structural

parameters of the molecule, the dipole moment, polarizabilities, etc., are cal-

culated as expectation values of operators representing these properties using

the non-BOwave functions. In such calculations (see, for example, Ref. 19),

for molecules containing identical nuclei, the indistinguishability principle

leads to interesting effects not present in the calculations performed based

on the BO approximation, where identical nuclei are distinguishable.

For example, according the quantum mechanics, in order to determine

the structure of a molecule one needs to calculate the expectation values

of the geometrical parameters (i.e., internuclear distances and angles) using

the non-BO wave function. If this is done for a molecule with identical

nuclei, e.g., H+
3 or H3, as we did in Ref. 19, one only obtains a single

bond-distance value, which for H+
3 is an average of the three internuclear

distances, i.e., the distance between proton one and proton two, the dis-

tance between proton two and proton three, and the distance between pro-

ton three and proton one (and analogically only one bond angle). Based on a

single internuclear distance and a single angle one cannot determine the

molecular structure of H+
3. The same happens for electrons. Let us consider

a molecule with three electrons. Due to indistinguishability, if one takes a

properly antisymmetrized electronic wave function and calculates the inter-

electron distances, one only obtains a single value, not three values. So the

“structure of the electrons in the molecule,” analogically to the structure of

the protons (i.e., the molecular structure) cannot be determined. If one

treats the nuclei and the electrons on an equal footing, as happens in the

non-BO calculations, similar effects appear for both types of particles.

In our works concerning the use of ECGs, both BO and non-BO

approaches have been employed. Despite the fact that both these approaches

are based on the principles of quantum mechanics, there are significant dif-

ferences in the way the calculations are carried out using the approaches. For

example, in order to determine the rovibrational spectrum of a molecule

within the BO approximation, one needs to perform separate calculations

of the electronic wave functions and the corresponding energies at some

selected molecular geometries (i.e., configurations of the nuclei) where

the nuclei are placed in different fixed positions in space. These calculations

yield the so-called potential energy surface (PES), which is subsequently

used to calculate the rovibrational states of the molecule by solving the

nuclear-motion Schr€odinger equation where the PES is used as the potential
energy operator. In the non-BO approach, as the nuclei and the electrons

forming the molecule are treated on equal footing, the calculations yield
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the total energies and the corresponding total wave functions, which explic-

itly depend on the coordinates of both nuclei and electrons. Both the ener-

gies and wave functions directly include all effects (including the high-order

ones) that originate from the coupling of the motion of the nuclei and the

motion of the electrons, i.e., adiabatic and nonadiabatic effects. Thus, there

is no separation between the electronic wave function and the rovibrational

nuclear wave function. The total non-BO wave functions, besides being

eigenfunctions of the Hamiltonian, are also eigenfunctions, of the square

of the total angular momentum operator and its projection on the z-axis.

They are also eigenfunctions of the corresponding total spin operators

(S2 and Sz). They represent the states of the systems that only approxima-

tely can be assigned particular vibrational and nuclear rotational quantum

numbers (more on this later is this article).

The “good” quantum numbers, which can be used to label the

eigenstates of the non-BO nonrelativistic Hamiltonian that describes the

internal state of the system (see the next section), are the quantum numbers

that quantize the square of the total angular momentum and its projection

on the z-axis (also the quantum numbers that quantize the eigenvalues of S2

and Sz). As the Hamiltonian is isotropic (i.e., invariant with respect to rota-

tions about the center of the internal coordinate system described later in

this work) the wave functions are atom-like (i.e., they transform according

to the irreducible representations of the SO(3) rotation group). It is conve-

nient to use basis functions that are eigenfunctions of the square of the total

orbital angular momentum and its projection on the z-axis in the non-BO

calculations because then the problem of calculating atomic or molecular

bound states separates into independent calculations, each corresponding

to states with different total-orbital-angular-momentum quantum number

and its z-axis projection quantum number.

2. Separating out the center-of-mass motion

The starting point of our non-BO approach for non-BO atomic and

molecular calculations is the total nonrelativistic Hamiltonian that depends

on laboratory-frame Cartesian coordinates of all particles forming the sys-

tem. This Hamiltonian describes two types of motion. The first part is

the motion of the particles around the center of mass of the system. We call

this motion the internal motion. The second type of motion is the transla-

tional motion of the center of mass in 3D space. If the system is isolated, the

motion of the system as a whole, i.e., the second type of motion, has a
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continuous (i.e., nondiscrete) energy spectrum. If the system is placed in

some-type of a confining potential well (e.g., in a magnetic trap), the whole

or a part of the energy spectrum becomes discrete (quantized). The spectrum

of the internal states of the system may have a part which is discrete (i.e., the

bound states) and a part which is quantized. For some systems, some of

the quantized states may be embedded in the energy continuum.

In most atomic and molecular non-BO calculations, e.g., calculations of

rovibrational spectrum of a molecules, we are only interested in the bound

states of the internal motion. Thus, it is convenient to separate out the oper-

ator representing the center-of-mass-motion from the total nonrelativistic

laboratory-frame Hamiltonian. We have used two ways of performing this

separation.

First let us consider an isolated atom or molecule consisting of N par-

ticles with masses {Mi} and charges {Qi}. To write the laboratory-frame

Hamiltonian, we use the lab-frame position vectors, {Ri}, defining the posi-

tions of the particle relative to a space-fixed origin of the lab-frame coordi-

nate system. The {Ri} vectors are collected in the 3N dimensional vectorR.

P is the corresponding vector of the linear momenta of the particles:

R ¼

R1

R2

⋯
RN

2
6664

3
7775 ¼

X1

Y 1

Z1

⋮
ZN

2
6666664

3
7777775
, P ¼

P1

P2

⋯
PN

2
6664

3
7775 ¼

Px1

Py1

Pz1

⋮
PzN

2
6666664

3
7777775
: (1)

With that, the lab-frame nonrelativistic Hamiltonian of the system is:

HnrðRÞ¼
XN
i¼1

P2
i

2Mi

+
XN
i¼1

XN
j>i

QiQj

jRi�Rjj : (2)

Next, the above Hamiltonian is separated into two independent

Hamiltonians, the first representing the motion of the center of mass of

the system and the second representing the internal motion of the particles

forming the system. The dimensions of the two Hamiltonians are three

and 3N � 3ð Þ, respectively. The separation of the lab-frameHamiltonian into

the center-of-mass Hamiltonian and the internal Hamiltonian can be per-

formed rigorously by expressing the lab-frame Hamiltonian in a new coordi-

nate system whose first three coordinates are the Cartesian coordinates of
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the center of mass, r0, in the laboratory coordinate frame and the remaining

3N � 3ð Þ coordinates are the so-called internal coordinates. The internal

coordinates, which are Cartesian, are denoted as ri (i ¼ 1,…,N � 1), where

ri is the position vector of particle i + 1 with respect to particle 1 which is

called the reference particle. Even though any particle in the system can

be chosen as the reference particle, it usually the heaviest particle (nucleus).

The obvious choice of the reference particle for an atom is its nucleus. The

simplest case, where such a coordinate system has been used, is the textbook

approach applied to solve the time-independent Schr€odinger equation

for the hydrogen atom. After the transformation of Hamiltonian (2) to

be expressed in terms of the new coordinate system, it rigorously separa-

tes into the operator only dependent on r0 representing the kinetic energy

of the motion of the center of mass of the system, Hnr
cm(r0), and the

“internal” Hamiltonian, dependent on the 3N � 3ð Þ internal coordinates
ri (i ¼ 1,…,N � 1) representing the internal motion, Hnr

int(r):

H tot
nr ðr0,rÞ¼Hcm

nr ðr0Þ+H int
nr ðrÞ, (3)

where r is a 3n-component column vector whose first three components are

the coordinates of r1, the next three are the coordinates of r2, etc. A more

detail form of Hnr
tot(r0, r) is:

H tot
nr ðr0,rÞ¼ �1

2

1

Mtot

r2
r0

� �

+ �1

2

Xn
i

1

μi
r2

ri
�1

2

Xn
i6¼j

1

m0

r0
ri
rrj +

Xn
i<j

qiqj

rij
+
Xn
i¼1

q0qi

ri

 !
, (4)

where qi ¼Qi+1 (i ¼ 0,…, n) are the charges of the particles, μi ¼ m0mi

m0 + mi
are

their reduced masses,Mtot is the total mass of the system,m0 is the mass of the

reference particle, and mi ¼ Mi+1 are the masses of the particles. rri
is the

gradient vector expressed in terms of the xi, yi, and zi coordinates of vector

ri, rij ¼ jri �rjj ¼ jRi+1 �Rj+1j, and r0i ≡ ri ¼ jrij ¼ jRi+1 �R1j. The prime

symbol denotes the vector/matrix transposition.

The internal Hamiltonian is:

HintðrÞ¼ �1

2

Xn
i

1

μi
r2

ri
�1

2

Xn
i6¼j

1

m0

r0
ri
rrj +

Xn
i<j

qiqj

rij
+
Xn
i¼1

q0qi

ri

 !
: (5)
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As in most non-BO calculations one is only concerned with the internal

bound states of the system, eigenvalues and eigenfunctions of the internal

Hamiltonian are calculated.

The internal Hamiltonian,Hint(r), describes a system of n pseudoparticles

with the masses equal to reduced masses μi and charges qi (i ¼ 1,…, n) mov-

ing in the central field of the charge of the reference particle, q0. We use the

term “pseudoparticles” because, even though their charges are the same as the

charges of the original particles, their masses are different. The motions of the

pseudoparticles are coupled (correlated) through the Coulomb interactions

and through the so-called mass-polarization terms, �1
2

Pn
i6¼j

1
m0
r0

ri
rrj .

Hamiltonian (5) has the symmetry of an atomic Hamiltonian. Thus, as men-

tioned, its eigenfunctions are one-center functions that provide bases for

irreducible representations of the SO(3) group of rotations. It should be noted

that these symmetry properties equally apply to atoms and molecules regard-

less of the number of the nuclei.

Another way of separating out the center of mass motion fromHnr
tot(r0, r)

is an effective way introduced some time ago by our group.20 In the

approach, instead of separating out the center-of-mass motion by introduc-

ing a new set of coordinates consisting of two subsets each describing a dif-

ferent type of motion, i.e., either the motion of the center of mass or the

internal motion, the separation is done at the level of operators. Namely,

we take the total Hamiltonian written in terms of the laboratory coordinates

of all particles in the system, Hnr(R), and subtract from it the Hamiltonian

representing the kinetic energy of the center of mass motion. In this way, the

Hamiltonian representing the internal motion is obtained:

HintðRÞ¼�
XN
i¼1

P2
i

2Mi

+
XN
i¼1

XN
j>i

QiQj

jRi�Rjj�
1

2Mtot

P2
cm (6)

where Pcm is the momentum operator associated with the motion of the

center of mass. Pcm is a sum of the operators representing the canonical

momenta, p(Ri), of all particles forming the system:

PcmðRÞ¼
XN
i¼1

pðRiÞ: (7)

Note that, as the effective internal Hamiltonian,Hint(R), depends on the lab-

oratory coordinates of all particles forming the system, the wave function is

also a function of all these coordinates. Thus, in the approach, the dimension
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of the problem is not reduced by three, as happens in the first above-described

approach. However, the effective internal Hamiltonian is also isotropic as is

the internal Hamiltonian in the first approach. Thus, the calculations can be

performed in a similar way using the two approaches.

We recently used the second approach to performed calculations of

bound states of a molecule spatially confined by magnetic fields.21–23 The

wave functions in the calculations were expanded in terms of explicitly cor-

related Gaussian functions with shifted centers (see the next section). Two

types of states of the molecule were considered in the calculations where the

molecule was placed in a trap of rotating magnetic field with a constant

strength.23 The first type of states were internal bound states. They were

calculated using the effective internal Hamiltonian of the second approach.

The second type were translational and rotational states of the molecule

within the trap. The calculations for those states were done using the full

laboratory-frame Hamiltonian that included the interactions of the particles

forming the molecule (i.e., the nuclei and the electrons) with the potential

of the magnetic trap. The plots of the single-particle densities23 enabled to

elucidate the character of the states.

3. Basis functions used in atomic and molecular, ground
and excited states non-BO calculations

The central issues in atomic and molecular non-BO calculations is

selecting appropriate and effective basis functions for expanding the spatial

part of the wave function. In this selection, the physical nature of the prob-

lem at hand needs to be considered and how this nature can be quantum-

mechanically described with basis functions. In the BO quantum chemistry,

there has been a lot of experience gathered concerning the coupled motion

of the electrons around a stationary nucleus in an atom or around several

stationary nuclei in a molecule. The key effects that have been considered

for as long as quantum chemical calculations have been performed are the

electron correlation effects. Even though these effects usually have a rela-

tively small contribution to the total energy of the system, they play critical

role in determining such atomic and molecular properties as spectral tran-

sitions, polarizabilities, intermolecular interaction energies, etc. The most

popular way to account for the electron correlation effects in the electronic

structure calculations is by expanding the wave functions in terms of a

linear combination of Slater determinants constructed using a set of (usually

mutually orthogonal) spin–orbitals. The linear coefficients multiplying the
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determinants in the expansion can be determined either variationally (as it is

done in the CI, MCSCF, CASSCF methods), perturbationally (as it is done

in methods, like MPn, n ¼ 1,…, 4, based on the perturbation theory, or by

solving a set of equations originating from projecting the Schr€odinger
equation on each determinant in the expansion (as it is done in the

CCSD, CCSDT, CCSDTQ, …methods). In some methods, the orbitals

used to construct the determinants are also can be variationally optimized

(as in CASSCF). Although not perfects, the methods based on orbital

expansions are effective in performing electronic structure calculations

even when the dynamic and nondynamic electron correlations effects

are significant.

In non-BO calculations, the electron–electron (e–e) correlation effects

are also important but two new types of correlations now come to play a

role, the nucleus–nucleus (n–n) and nucleus–electron (n–e) correlations.
The basis functions used in the calculation need to describe all three corre-

lation types in addition to describing the radial and angular nodes that appear

in the wave functions of excited states. For a set of particles interacting via a

potential comprising pair-wise contributions (e.g., the Coulombic interac-

tions) very effective basis functions for expanding the wave function of the

system are functions that explicitly depend on the interparticle distances.

Such functions, called explicitly correlated functions, have been adopted

in quantum mechanical calculations of atomic and molecular systems within

the BO approximation. Most commonly used are Gaussian explicitly corre-

lated functions (ECGs).20,24–26

In non-BO calculations of ground and excited states of atoms and mol-

ecules we have used different forms of all-particle explicitly correlated

Gaussians. For an atomic system with only s-electrons, the simplest ECG

has the following one-center form:

ϕk ¼ exp �α1kr21 � α2kr22 �⋯� αnkr2n
�

�β12,kr
2
12 � β13,kr

2
13 �⋯� βnn�1,kr

2
nn�1

�
,

(8)

where ri is the distance between particle i and the center of the Gaussian, and

αik and βij, k and the nonlinear parameters of the Gaussian. This Gaussian can

be represented in a more compact form as:

ϕkðrÞ ¼ exp �r0 �Ak r½ �, (9)

where �Ak is a 3n � 3n real symmetric matrix of exponential parameters. �Ak

can be represented as: �Ak ¼ Ak � I3, where I3 is the 3 � 3 unit matrix,

� denotes the Kronecker product, and Ak is a n � n symmetric matrix.
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To be used as a basis function in expanding the wave function of a bound

state of the system, function ϕk(r) needs to be square-integrable. To ensure

this, matrix Ak must be positive definite. This automatically happens if Ak is

written in the Cholesky factored form as: Ak ¼ LkL
0
k, where Lk is an n � n,

rank n, lower triangular matrix. If the matrix elements of Lk are any real

numbers, ϕk(r) is automatically square-integrable. The matrix elements of

Lk are variationally optimized in our calculations. The energy gradient vec-

tor, which is used in the variational optimization, is determine with respect

to these matrix elements.

In ECG basis functions for expanding the wave functions of states of the

atom with one or more p, d, or f electrons, one needs to include angular

preexponential factors.26,27 In our works, we implemented basis functions

where the ECG exponential are multiplied by Cartesian spherical har-

monics. For P states of atoms with one p electron and other electrons being

s electrons, the following Gaussians have been used:

ϕkðrÞ ¼ zik exp �r0 �Ak r½ �, (10)

where index i varies from 1 to n and is also variationally optimized. For

atomic D states the Gaussians are:

ϕkðrÞ ¼ ð2zikzjk
� xikxjk � yikyjkÞ exp �r0 �Ak r½ �, (11)

where indices ik and jk vary from 1 to n and they are variationally optimized

in the calculations. We have also developed algorithms for performing ECG

variational calculations for atomic F states with one f electron and other elec-

tron being s electrons27,28 and algorithms for calculating states of atoms with

two (carbon ground state) and three p electrons (nitrogen ground state).29,30

In the nitrogen calculations the basis functions were:

ϕkðrÞ ¼ ðx jk
yik � xiky jkÞzkk + ðxikykk � xikyikÞz jk

h
+ ðxiky jk � x jk

ykkÞzik � exp �r0 �Ak r½ �, (12)

where indices ik, jk, and kk were variationally optimized along with the

matrix elements of Lk.

For molecules, the non-BO wave functions need to describe a compli-

cated physical situation due to the nuclear–nuclear correlation effects com-

ing to play. For the electrons, which are light particles, their wave functions

overlap to significant extent. When this happens, the dependency of the

basis functions on the interparticle distances only in the Gaussian exponential

factors is quite sufficient to describe the e–e correlation effects. However, as
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the probability of finding two nuclei at the same spatial point is much smaller

than for the electrons due to their heavier masses, additional correlation fac-

tors need to be included in the explicitly correlated Gaussians used to expand

the wave function in non-BO calculations. One needs such factors because

at coalescent points (rij ! 0) the Gaussians with interparticle distances in the

exponent have maxima, which are desirable to describe the n–e correlation,
but not desirable in describing the n–n correlation. Different preexponential

factors can be chosen for ECGs to better describe the n–n correlation, but, in
general, these factors should significantly lower the probability of finding

two nuclei at the same point of space (or even make the probability to go

to zero). This effect can be most effectively achieved by making the factors

dependent on the internuclear distances. Note, that using the orbital

approach, which is a fairly accurate approach for electrons, to perform a

non-BOmolecular calculation would give inaccurate results, as the n–n cor-
relation is very strong. The factors should also be capable of describing radial

oscillations (and nodes) of the wave functions for vibrationally excited states.

The nodes in these wave functions appear in terms of internuclear distances.

It should be noted that the angular nodes in the wave functions are described

by Cartesian spherical harmonics.

About two decades ago we showed31–34 that, in the case of diatomic

molecule, effective preexponential correlation factors for ECGs are nonneg-

ative power of the internuclear distance and for molecules with more than

two nuclei the factors are products of nonnegative powers of all inter-

molecular distances. We call the Gaussians with such multipliers “power

Gaussians”. For a diatomic system the power Gaussian used in expanding

wave functions of diatomic in states with rotational quantum number of zero

has the following form:

ϕkðrÞ ¼ r
2pk
1 exp �r0 �Ak r½ �, (13)

where r1 is the distance between the reference nuclei and particle i, which is

usually chosen to be the second nucleus. 2pk is the integer nonnegative

power of r1 (ranging from 0 to 250) in our calculations; we only use even

powers as this considerably simplifies the calculation of the Hamiltonian

integrals; using only even powers has almost no effect on the accuracy of

the calculation).

When the 2pk power value at fixed Ak in (13) increases, the average dis-

tance between the two nuclei also increases. Gaussians with the zero value of

2pk need to be included in the basis set to account for residual probability of
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finding both nuclei in the same point in space. The 2pk power is variationally

optimized in the calculation. The other purpose of including the r
2pk
1 mul-

tipliers in the Gaussians, is, as mentioned, to describe the wave-function

oscillations (nodes) due to vibrational excitations. The multipliers are very

effective in performing this task.

For a triatomic molecule the power Gaussian has the following form35:

ϕkðrÞ ¼ r
2p

ð1Þ
k

1 r
2p

ð2Þ
k

2 r
2p

ð12Þ
k

12 exp �r0 �Ak r½ �, (14)

where r1, r2, and r12 are internuclear distances and 2p
ð1Þ
k , 2p

ð2Þ
k , and 2p

ð12Þ
k are

their respective nonnegative even-integer powers. We should mention that

we encountered some difficulties in the implementation of basis functions

(14).35 They originated from numerical instabilities and divergence of the

algorithms for calculating Hamiltonian matrix elements with these

functions.

Basis functions (13) has been implemented and used to perform calcula-

tions of rotation-less vibrational spectra of diatomic molecules.36 We also

implemented the following power Gaussians for expanding the wave func-

tions of diatomic states corresponding to the rotational quantum number

of one37:

ϕkðrÞ ¼ zik r
2pk
1 exp �r0 �Ak r½ �, (15)

where the particle index ik is a variational parameter. An interesting aspect of

using Gaussians (15) in calculating rovibrational states with L ¼ 1 for

diatomic is related the values of i that come out from the calculation. As

the second nucleus is the number one pseudoparticle in the internal

Hamiltonian and pesudoparticles 2, 3,…, n are the electrons, one would

expect that the non-BO wave functions corresponding to the first rotational

excitation to be primarily formed by basis functions with index i of one. This

type of basis functions represent the L ¼ 1 angular excitation of the nuclei.

This indeed happens, but there also are nonnegligible contributions from

basis functions with i’s not equal to one. The contributions of these func-

tions, which represent angular excitations of the electrons, increase with

the vibrational excitation. This shows that there is some coupling between

angular excitations of the nuclei (i.e., the conventional rotational excita-

tions) and angular excitations of the electrons (i.e., some basis functions rep-

resentingΠ excited electronic states mix in with basis functions representing

L ¼ 1 angular excitations of the nuclear motion).
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Amidst the inability of extending the power Gaussian approach to tri-

atomics we have been searching for other forms of preexponential multi-

pliers that would produce a similar behavior of the wave function as

products of powers of internuclear distances. One possibility that came to

mind was to use products of sin and cos functions of the internuclear distances

multiplied by variational parameters (or sin and cos functions of squares of

the internuclear distances). However, as the sin and cos functions can be

expressed in terms of complex exponentials, one can construct basis func-

tions for non-BO atomic and molecular calculations as products of these

complex exponentials and the Gaussian exponents.

This is the approach we have been developing and testing in recent

years as an alternative form of ECGs for molecular non-BO calcula-

tions.38–40 These alternative basis functions are all-particle explicitly cor-

related Gaussians with complex exponential parameters (complex ECGs

or CECGs, for short). For expanding the wave functions of states

corresponding to the total-rotational quantum number of zero we use

the following complex Gaussians38:

ϕkðrÞ ¼ exp �r0 �Ck r½ � ¼ exp �r0 �Ak + i�Bkð Þ r½ �, (16)

where �Ak, as in (9), is a real symmetric positive-definite matrix, �Bk is a real

symmetric matrix, and i ¼ ffiffiffiffiffiffiffi�1
p

. The matrix elements of both matrices are

variational parameters that are optimized in the calculation. �Ak and �Bk can

be written as: �Ak ¼ Ak � I3 and �Bk ¼ Bk � I3: For L ¼ 1 (ML ¼ 0) states

the CECGs are40:

ϕkðrÞ ¼ zik exp �r0 �Ck r½ � ¼ zik exp �r0 �Ak + i�Bkð Þ r½ �, (17)

where zik, as before, is the z internal coordinate of particle ik. Index ik is also

variationally optimized. For L ¼ 2 (ML ¼ 0) states the CECGs are:

ϕkðrÞ ¼ ð2zikzjk � xikxjk � yikyjkÞ exp �r0 �Ck r½ �
¼ exp �r0 �Ak + i�Bkð Þ r½ �: (18)

It should be noted that the above-defined CECGs are equally well suited to

perform atomic and molecular non-BO calculations. Thus, a single com-

puter code is used for both types of calculations. The development of the

CECG approach is an active project in our research group.

Finally, there are the ECGs with shifted centers. The functions have the

following form:

ϕkðrÞ ¼ exp �ðr� skÞ0 �Ak ðr� skÞ
� �

, (19)
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where sk is a vector of the Gaussian shifts, whose coordinates are variational

parameters which are optimized in the calculation, and �Ak is a symmetric

positive-definite matrix of exponential variational parameters. We have

developed and implemented algorithms for calculating Hamiltonian and

overlap matrix elements, as well as the matrix elements of the energy gradi-

ent vector determinedwith respect to the variational parameters.19,41–46 The

ECGs with shifted centers were employed in non-BO calculations of the

dipole moments of isotopologues of H2 and LiH
43,45 and in non-BO calcu-

lations of molecules placed in magnetic traps.21–23 They were also used in

the non-BO calculations of isotopologues of H3.
19 The project concerning

non-BO calculations of molecules trapped in molecular clathrates and of

molecules in magnetic traps is active in our research group.

4. Numerical example

One of the main results that can be obtained from non-BO calcula-

tions are isotopic shifts of the transition energies. As the variational ECG cal-

culations are performed for different nuclear masses, slightly different

transition energies are obtained for different isotopes. For an atom, the dif-

ference between a transition energy calculated at the non-BO nonrelativistic

level of theory using an infinite nuclear mass and the transition energy cal-

culated for a particular isotope accounts for the sum of so-called adiabatic

and nonadiabatic corrections. In conventional calculations, one usually

employs the perturbation theory to account for these corrections.47 The

value of the isotopic energy shift we obtain in our calculations is equivalent

to accounting for the adiabatic and nonadiabatic corrections to infinite order

of the perturbation theory.

To illustrate how isotopic shifts of transition energies are calculated for an

atomic system, we perform calculations in this work of ten lowest singlet

states of each of the S, P, and D symmetries for the helium atom. The basis

set for each S state is grown to the size 2000 Gaussians by starting with small a

number of functions obtained using an orbital approximation for the lowest

state and then gradually increasing the number of functions by adding sets of

10–20 Gaussians and optimizing them using the gradient-aided variational

energy minimization subroutine. After each addition of a set of 10-20

Gaussians the whole basis set is reoptimized. The basis sets are generated

for∞He. The energies obtained in the calculations with 2000 basis functions

are shown in Table 1 and compared with the ∞He energies calculated

by Drake with Hylleraas-type explicitly correlated functions.48 As the

Hylleraas functions are better than the Gaussians because they have proper
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Table 1 Convergence of the total energies of S, P, and D states of 3He, 4He, and ∞He
with the number of ECGs.
Isotope State Basis Energy State Basis Energy

3He 11S 2000 �2.903 167 210 711 60 21S 2000 �2.145 581 923 703 81

4He 2000 �2.903 304 557 729 85 2000 �2.145 678 587 580 72

∞He 2000 �2.903 724 377 034 11 2000 �2.145 974 046 054 37

∞He 2000 �2.903 724 377 034

119(5)

Ref. 48 �2.145 974 046 054

419(6)

3He 31S 2000 �2.060 896 524 124 36 41S 2000 �2.033 216 570 275 63

4He 2000 �2.060 989 082 349 11 2000 �2.033 307 817 481 22

∞He 2000 �2.061 271 989 740 82 2000 �2.033 586 717 030 53

∞He Ref. 48 �2.061 271 989 740

911(5)

Ref. 48 �2.033 586 717 030

72(1)

3He 51S 2000 �2.020 809 059 314 57 61S 2000 �2.014 196 551 201 72

4He 2000 �2.020 899 726 173 69 2000 �2.014 286 911 184 33

∞He 2000 �2.021 176 851 574 35 2000 �2.014 563 098 446 43

∞He Ref. 48 �2.021 176 851 574

363(5)

Ref. 48 �2.014 563 098 446

60(1)

3He 71S 2000 �2.010 259 966 179 61 81S 2000 �2.007 728 284 333 27

4He 2000 �2.010 350 144 450 84 2000 �2.007 818 346 200 10

∞He 2000 �2.010 625 776 210 19 2000 �2.008 093 622 103 36

∞He Ref. 48 �2.010 625 776 210

87(2)

Ref. 48 �2.008 093 622 105

61(4)

3He 91S 2000 �2.006 004 535 897 12 101S 2000 �2.004 778 202 005 56

4He 2000 �2.006 094 518 749 84 2000 �2.004 868 128 777 66

∞He 2000 �2.006 369 553 090 63 2000 �2.005 142 991 666 85

∞He Ref. 48 �2.006 369 553 107

85(3)

Ref. 48 �2.005 142 991 748

00(8)

3He 21P 2000 �2.123 448 345 018 21 31P 2000 �2.054 769 843 455 48

4He 2000 �2.123 545 654 127 41 2000 �2.054 862 661 148 41

∞He 2000 �2.123 843 086 498 08 2000 �2.055 146 362 091 91

∞He Ref. 48 �2.123 843 086 498

093(2)

Ref. 48 �2.055 146 362 091

94(3)

3He 41P 2000 �2.030 699 019 274 66 51P 2000 �2.019 537 939 377 19
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Table 1 Convergence of the total energies of S, P, and D states of 3He, 4He, and ∞He
with the number of ECGs.—cont’d
Isotope State Basis Energy State Basis Energy

4He 2000 �2.030 790 385 850 43 2000 �2.019 628 669 880 63

∞He 2000 �2.031 069 650 450 21 2000 �2.019 905 989 900 82

∞He Ref. 48 �2.031 069 650 450

24(3)

Ref. 48 �2.016 905 989 900

83(2)

3He 61P 2000 �2.013 467 279 455 70 71P 2000 �2.009 803 406 706 90

4He 2000 �2.013 557 677 135 81 2000 �2.009 893 609 078 17

∞He 2000 �2.013 833 979 671 71 2000 �2.010 169 314 529 25

∞He Ref. 48 �2.013 833 979 671

73(2)

Ref. 48 �2.010 169 314 529

35(2)

3He 81P 2000 �2.007 423 723 160 05 91P 2000 �2.005 791 320 599 70

4He 2000 �2.007 513 801 342 14 2000 �2.005 881 314 995 65

∞He 2000 �2.007 789 127 132 75 2000 �2.006 156 384 639 40

∞He Ref. 48 �2.007 789 127 133

22(2)

Ref. 48 �2.006 156 384 652

86(5)

3He 101P 2000 �2.004 623 159 551 20 111P 2000 �2.003 758 543 164 83

4He 2000 �2.004 713 094 792 39 2000 �2.003 848 435 093 31

∞He 2000 �2.004 987 983 575 47 2000 �2.004 123 191 461 86

∞He Ref. 48 �2.004 987 983 802

22(4)

3He 31D 1600 �2.055 246 819 104 31 41D 1600 �2.030 910 337 853 95

4He 1600 �2.055 338 994 793 63 1600 �2.031 001 427 686 13

∞He 1600 �2.055 620 732 852 09 1600 �2.031 279 846 178 51

∞He Ref. 48 �2.055 620 732 852

246(6)

Ref. 48 �2.031 279 846 178

687(7)

3He 51D 2000 �2.019 648 362 990 92 61D 2000 �2.013 531 864 960 64

4He 2000 �2.019 738 952 225 18 2000 �2.013 622 179 400 54

∞He 2000 �2.020 015 832 509 75 2000 �2.013 898 227 424 13

∞He Ref. 48 �2.020 015 836 159

984(4)

Ref. 48 �2.013 898 227 424

286(5)

3He 71D 2000 �2.009 844 334 034 71 81D 2000 �2.007 451 251 857 90

4He 2000 �2.009 934 483 813 42 2000 �2.007 541 294 732 41

Continued
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asymptotic behavior, it takes more Gaussians to match the results obtained

with the Hylleraas-type functions. The same procedure is used to generate

basis set for the ten lowest P states and ten lowestD states. Note that a couple

of top P and D states were not calculated by Drake.

The present ECG results for ∞He are in very good agreement with

Drake’s energies. The agreement is particularly good for lower states where

almost all 15 digits shown by Drake are reproduced by the present calcula-

tions. For top states the agreement is somewhat lower, but still 10–11 digits
are reproduced. The basis sets for all considered states obtained from the

optimizations performed for ∞He are used in the calculations for 3He and
4He, and the results are also shown in Table 1. So, only the linear expansion

coefficients in the wave functions are adjusted when going from∞He to 4He

and to 3He. Our previous experience indicates that this suffices for obtaining

quite accurate values of the isotopic energy shifts.

Next, the energies obtained for the S, P, and D states of 3He, 4He, and
∞He are used to calculate transition energies relative to the lowest state of the

particular symmetry for the given isotope. The results are shown in Table 2.

The values shown for ∞He are the whole transition energies, but the values

shown for 3He and 4He are differences between the transition energies for the

particular states of the particular isotopes and the corresponding values for
∞He. Thus, the values shown in columns marked as 3He and 4He are the

isotopic shifts, i.e., the sums of the adiabatic and nonadiabatic corrections.

Table 1 Convergence of the total energies of S, P, and D states of 3He, 4He, and ∞He
with the number of ECGs.—cont’d
Isotope State Basis Energy State Basis Energy

∞He 2000 �2.010 210 028 456 14 2000 �2.007 816 512 559 50

∞He Ref. 48 �2.010 210 028 457

98(1)

Ref. 48 �2.007 816 512 563

811(7)

3He 91D 2100 �2.005 810 708 148 99 101D 2200 �2.004 637 320 667 84

4He 2100 �2.005 900 677 712 97 2200 �2.004 727 237 837 91

∞He 2100 �2.006 175 671 416 39 2200 �2.005 002 071 264 43

∞He Ref. 48 �2.006 175 671 437

641(6)

Ref. 48 �2.005 002 071 654

250(6)

3He 111D 2300 �2.003 769 198 030 09 121D 2300 �2.003 108 951 617 70

4He 2300 �2.003 859 076 423 47 2300 �2.003 198 800 508 45

∞He 2300 �2.004 133 791 233 01 2300 �2.003 473 425 087 32

All values are given in a.u.
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Table 2 Transition energies of S, P, and D states of 3He, 4He, and ∞He with respect to the lowest state of the particular symmetry.

Transition

S

Transition

P

Transition

D

∞He 4He 3He ∞He 4He 3He ∞He 4He 3He

21S ! 11S 166 306.951 �27.294 �36.223 31P ! 21P 150 77.186 �3.014 �3.999 41D ! 31D 534 2.206 �0.729 �0.967

31S ! 11S 184 896.901 �30.049 �39.879 41P ! 21P 203 61.413 �3.987 �5.292 51D ! 31D 781 4.371 �1.066 �1.414

41S ! 11S 190 973.115 �30.928 �41.046 51P ! 21P 228 11.553 �4.414 �5.858 61D ! 31D 915 7.030 �1.249 �1.657

51S ! 11S 193 696.765 �31.318 �41.563 61P ! 21P 241 44.205 �4.637 �6.154 71D ! 31D 996 6.496 �1.359 �1.804

61S ! 11S 195 148.316 �31.524 �41.836 71P ! 21P 249 48.506 �4.769 -6.328 81D ! 31D 104 91.812 �1.431 �1.899

71S ! 11S 196 012.458 �31.646 �41.998 81P ! 21P 254 70.896 �4.852 �6.439 91D ! 31D 108 51.935 �1.480 �1.964

81S ! 11S 196 568.202 �31.724 �42.101 91P ! 21P 258 29.242 �4.908 �6.513 101D ! 31D 111 09.511 �1.515 �2.011

91S ! 11S 196 946.591 �31.777 �42.172 101P ! 21P 260 85.676 �4.948 �6.566 111D ! 31D 113 00.076 �1.541 �2.046

101S ! 11S 197 215.790 �31.814 �42.222 111P ! 21P 262 75.476 �4.977 �6.605 121D ! 31D 114 45.010 �1.561 �2.072

For ∞He the whole transition energy is given. For 3He and 4He the differences with respect to the transition energy of ∞He are shown, for example, to get the transition energy of
3He the value shown in the 3He column should be added to the ∞He transition energy. All values are given in cm�1.



An analysis of the results shown in Table 2 shows that the the mass effect

is quite significant, particularly for the S states. The transition energy for the

lowest S state, 21S, shifts by �27.294 cm�1 from ∞He to 4He and by

�36.223 cm�1 from ∞He to 3He. So, this transition frequency shifts by

�8.929 cm�1 in going from 4He to 3He. The other S-state transitions shift

by similar amounts. The transition for the top 101S state shifts by

�31.814 cm�1 for 4He and by �42.222 cm�1 for 3He. So, the transition

for 3He is shifted with respect to the transition for 4He by 10.408 cm�1.

For the P states, the transition energy shifts are smaller and range from

�3.014 cm�1 for the lowest excited P state of 4He to �4.977 cm�1 for

the top state. For 3He the values are�3.999 cm�1 and�6.605 cm�1, respec-

tively. So, from 4He to 3He the lowest P transition shifts by�0.985 cm�1 and

the highest P transition shifts by �1.628 cm�1. For the D states the shifts are

even smaller and for 4He they are �0.729 cm�1 and �1.561 cm�1 for the

bottom and top states, respectively, and for 3He they are �0.967 and

�2.072 cm�1, respectively. So, from 4He to 3He the lowestD transition shifts

by �0.238 cm�1 and the highest D transition shifts by �0.511 cm�1.

Even though the Hylleraas functions give better results for higher states,

as shown in Table 1, the difference can be reduced if more Gaussians are

included in the basis set. Obviously, the number of ECGs of 2000 which

gives very good results for the lowest states cannot be expected to produce

results of the same quality for the top states. Also, it should be mentioned

that, while the use of the Hylleraas functions is limited to atomic systems

with up to three electrons, the use of ECGs is only limited by the available

computational resources. We should note that the timing for the variational

ECG atomic calculation scales as the factorial of the number of electrons in

the system. This makes the calculations for the carbon and nitrogen atoms

much more time consuming than the calculations for helium.

5. Perspectives

There is number of directions the ECG techniques can be developed

and applied in future research. Let us mention a few of these directions that

can evolve from the work described in this review.

1. We see a big potential in the all-particle complex explicitly correlated

Gaussian functions to calculate ground and excited states of first- and

second-row atoms. By incorporating Cartesian spherical harmonics in

these functions, calculations for atomic spectra can be performed with
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high accuracy. We have already implemented the algorithms for calcu-

lating the leading relativistic corrections for the S states. Extending these

calculations for states with higher angular momenta is forthcoming. Also,

an approach to calculate the fine and hyperfine atomic splitting has been

implemented for real Gaussians and will be soon extended to the com-

plex Gaussians. With that extension, the calculation of the fine and

hyperfine splitting will become possible for higher-angular-momenta

atomic states. The complex-Gaussian approach will also be applied in

non-BO calculations of rovibrational spectra of small molecules. As

the same computer code is used in both atomic and molecular calcula-

tions, the properties calculated for atoms (e.g., fine and hyperfine split-

ting) can also be calculated for molecules. Particularly interesting will

be non-BO calculations of rovibrational spectra of the H+
3 ion and its

isotopologues.

2. An interesting problem to study is bound states of atoms and molecules

spatially confined by optical and magnetic traps, or confined to cages

formed by molecular networks. The non-BO approach and the explic-

itly correlated Gaussians with shifted centers are very well suited to cal-

culate such states, which can be either internal states, or translational/

rotational states, or have characteristics of both types of states. The study

of confined molecules is related, for example, to storing hydrogen gas in

molecular cages as fuel. The study of confined atoms is related, for exam-

ple, to use of single Rydberg atoms as so-called qubits in quantum com-

puters. Another example is the behavior of small molecular systems in

interstellar space trapped by quickly rotating, very strongmagnetic fields.

Molecular phenomena related to the interaction with very strong mag-

netic fields cannot be studied in the laboratory because such magnetic

field strengths are not attainable on earth.

3. With the advent of ultrashort, intense laser pulses capable of probing

electronic processes with high resolution in both space and time, there

is a demand for highly accurate simulations of many-electron dynamics.

As the fast motion of the electrons and slower motion of the nuclei cou-

ple in these processes, an adequate dynamical model has to enable to treat

electrons and nuclei on an equal footing. The approach based on using

ECGs described in this review, especially the methods employing the

effective internal Hamiltonian and explicitly correlated Gaussians with

shifted centers seem promising to be applied to study the electronic-

nuclear molecular dynamics.
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