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ABSTRACT
In this work, we present a series of benchmark variational calculations for the ground and 19 lowest bound excited singlet S and P states of
the beryllium atom. The nonrelativistic wave functions of the states that represent the motion of the nucleus and the four electrons around
the center of mass of the atom are expanded in terms of up to 17 000 all-particle explicitly correlated Gaussians. The Gaussians are optimized
independently for each state. The leading relativistic corrections to the energy levels are computed in the framework of the perturbation theory
and they explicitly include the nuclear recoil effects. We also calculate the leading quantum electrodynamics (QED) corrections for each
considered state. Using the obtained energy levels and the corresponding wave functions, we compute the transition frequencies, transition
dipole moments, and oscillator strengths. A comparison with the available experimental data shows very good agreement. The results of this
most comprehensive set of calculations of spectroscopic accuracy for Be to date may open up new applications pertinent to the precision tests
of QED, determination of the nuclear charge radius, and modeling matter-radiation equilibria of the beryllium gas that has relevance to the
physics of interstellar media.
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1. Introduction
Atomic spectra recorded from astrophysical observations pro-

vide rich information on the composition of interstellar objects.
Properties such as abundances of elements, their densities, temper-
ature, and other physical parameters can be inferred from these
spectra.1,2 Based on these properties, models of the chemical and
physical transformations can be constructed to explain the phenom-
ena observed in interstellar media. Various space missions that have
carried out instruments for very precise measurements of the incom-
ing interstellar radiation have provided a wealth of spectral data
for the analysis. However, for the analysis to be carried out with
sufficient accuracy, it has to be aided by high-resolution atomic
spectra obtained through precision measurements performed in the
laboratory and by spectra obtained with high-accuracy theoretical
calculations. As more of such new reference data become available,
the probing of the physical and chemical conditions of astro-
physical objects can be extended to a wider range of interstellar
domains.

The present work is concerned with the first-principle
quantum-mechanical calculations of the oscillator strengths of
atomic inter-state transitions. Accurate values of inter-state-
transition oscillator strengths to be used in astrophysical analysis
are needed to carry out various astrophysical applications and for

the modeling of interstellar media. Data provided so far have often
been insufficiently complete and not accurate enough for the anal-
ysis of, for example, stellar atmospheres and plasmas. Continuous
progress in the development of new computational methods pro-
vides the capability to perform more accurate oscillator strength
calculations. However, it takes the combined efforts of theorists and
experimentalists to generate data sufficiently accurate for astrophys-
ical applications, as the values obtained from the calculations have
to be checked against the laboratory measurements for accuracy and
precision. It also happens that the oscillator strengths obtained in
current high-precision quantum-mechanical calculations are often
considerably more accurate than the measured values, which pro-
vides ground for the interplay between the theory and experiment
and may lead to re-measurements. Moreover, the present calcula-
tions of the oscillator strengths of Be take into account the finite
nuclear mass and, thus, can clearly discriminate between various
Be isotopes. Previous calculations for lithium, beryllium, and boron
atoms (see Refs. 3–6) show that the total uncertainty of the tran-
sition energies calculated with explicitly correlated wave functions
is smaller than the isotope shifts. Thus, oscillator strengths can
be reliably calculated for different isotopes. While, to the best of
our knowledge, it is not yet possible to experimentally measure
the isotopic shifts of the oscillator strengths for any of the few-
electron atoms or ions, such measurements may become possible in
the future.

The accuracy of the calculations of atomic oscillator strengths
is primarily dependent on the quality of the wave functions used in
the calculations. One needs to go beyond the simplest Hartree–Fock
model and account for a large fraction of the electron correla-
tion effects to obtain quality oscillator strengths. Wave functions
obtained with various methods have been used to calculate the oscil-
lator strengths. In principle, by including the majority of the electron
correlation effects, one should be able to obtain almost exact wave
functions in the calculations. However, as obtaining the exact solu-
tion of the Schrödinger equation is only possible for one-electron
atomic systems, some inaccuracy is always present in the results of
the calculations.

Among the methods used to calculate the oscillator strengths
for the atomic electronic transitions, the MCHF method has
been most frequently used. For example, Fleming et al.7–9 imple-
mented the multi-configurational Dirac–Fock/Dirac–Hartree–Fock
(MCDF/MCDHF) method in the CIV3 code10 and used it in their
atomic oscillator-strength calculations. For the beryllium atom,
oscillator-strength calculations were performed by Tachiev and
Froese Fischer11 using the aforementioned method. Their results
were confirmed by Ynnerman and Froese Fischer12 in their inde-
pendent MCDF/MCDHF calculations.

The calculations presented in this work focus on the elec-
tronic transitions involving 1S and 1P states of the beryllium
atom. The transition energies and the corresponding oscillator
strengths are calculated with high accuracy using variationally opti-
mized Gaussian functions that explicitly depend on the distances
between the electrons, i.e., the so-called explicitly correlated Gaus-
sian functions (ECGs). The calculations include the leading relativis-
tic and quantum-electrodynamics effects and are performed with an
approach where the finite mass of the nucleus is directly incorpo-
rated in the Hamiltonian representing the system. This Hamilto-
nian is used to generate the nonrelativistic wave function and the
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corresponding energy for each considered state of the system. The
nonrelativistic wave function is expanded in terms of all-particle
ECGs, where the term all-particle refers to both electrons and the
nucleus.

Different types of explicitly correlated basis functions have been
used in the calculations of atomic ground and excited states for sev-
eral decades now. It has been shown that these types of functions
have a clear advantage over single-particle orbitals in calculations
aiming to generate almost exact solutions to the Schrödinger equa-
tion. For two- and three-electron atomic systems, the best results
have been obtained with Hylleraas-type explicitly correlated func-
tions.13 For example, for the ground state of helium, the calculations
with the Hylleraas basis, in particular, its variant that includes the
logarithmic terms that help describe the proper analytic behavior of
the wave function at the three-particle coalescence point, yielded the
total nonrelativistic ground-state energy with the accuracy exceed-
ing 40 decimal figures.14–19 Results obtained with Hylleraas-type
basis sets for lithium are accurate up to 15 digits.4,20–22

The most accurate results for atoms and ions with four elec-
trons, including beryllium, have been obtained with the all-electron
explicitly correlated Gaussian functions.23–27 In our recent two
works, we used ECGs to calculated some lowest 1S and 1P states of
the beryllium atom. The calculations included the leading relativis-
tic and quantum electrodynamics (QED) corrections. The correc-
tions were calculated using the perturbation theory at the first-order
level with the zero-order wave function being the nonrelativistic
wave function obtained variationally with the finite-nuclear-mass
(FNM) approach mentioned before. With that, the relativistic cor-
rections included contributions from the so-called recoil effects, i.e.,
the effects due to the dependency of the relativistic corrections on the
finite mass of the nucleus. The frequencies of the inter-state transi-
tions calculated for the four lowest 1S states considered in Ref. 26
agreed with the experimental values to 0.02–0.09 cm−1. Similar
accuracy was achieved in the calculations for the 1P states in
Ref. 27.

The main task carried out in the present work is the devel-
opment of the algorithm for calculating the oscillator strengths
for atomic S–P transitions. It is applied to calculate the oscillator
strengths for the 1S→1 P and 1P →1 S transitions in beryllium. In
the first step of the calculations, ECG basis sets for 1S and 1P states
are generated in an iterative process, in which the size of the basis for
each state is increased gradually while performing a thorough opti-
mization of both the added basis functions and the functions already
included in each basis. The procedure for enlargement of the basis
set and variational optimization of the ECG exponential parameters
was described previously in Refs. 26 and 27. Due to the use of the
analytical energy gradient determined with respect to the parame-
ters of the procedure, the variational energy minimization can be
carried out very efficiently. The availability of the analytical gradient
in our ECG atomic variational calculations is an important feature
that allows us to achieve very high accuracy of the results.

The 2s2 1S0 → 2s2p 1P1 transition has been calculated with
rather high accuracy before. Puchalski et al.23 used ECG to per-
form high-precision calculations of the 2s2 1S0 → 2s2p 1P1 transition
energy and obtained the value of 42 565.441(11) cm−1. The calcu-
lations included the leading relativistic, QED, and finite-nuclear-
mass corrections. Their calculated transition energy agrees with
the recent saturated absorption measurement of this transition at

42 565.4501(13) cm−1 performed by Cook et al.28 The oscillator
strength of the transition, however, was not reported by Puchal-
ski et al. On the experimental side, one should mention the precise
measurements of the energy levels of the 9Be isotope of beryl-
lium by Bozman et al.29 and the measurements of several beryl-
lium transitions performed by Johansson.30 The energy for the
2s2 1S0 → 2s2p 1P1 transition obtained in Johansson’s experiment
was 42 565.35(18) cm−1. An important conclusion that emerged
from comparing the calculated 2s2 1S0 → 2s2p 1P1 transitions energy
by Puchalski et al. and the measured values was that the high-
precision atomic transition-energy calculations have to account for
the QED effects in addition to the relativistic and finite-nuclear-mass
(FNM) effects in order to achieve an accuracy approaching that of
high-precision experiments. For example, the QED contribution to
the 2s2 1S0 → 2s2p 1P1 excitation energy determined by Puchalski
et al. was equal to 1.048(9) cm−1. The FNM, relativistic, and QED
effects are included in the calculations performed in this work.

This work is structured as follows. In Sec. 2, we provide a brief
description of the approach used in the calculations. This includes
the formulas for the FNM nonrelativistic Hamiltonian used in the
calculations, the ECG basis function used for expanding the wave
functions of the S and P states considered in this work, and the
oscillator strength calculated for the considered interstate S→ P
and P → S transitions. Some details concerning the computational
implementation of the formulas, as well as the strategy used in the
optimization of the ECG non-linear parameters, are also described
in Sec. 2. In Sec. 3, the results of the calculations performed in this
work are presented. The results concern the ten lowest 1S states and
the ten lowest 1P states of 9Be and∞Be (i.e., the beryllium atom with
an infinitely heavy nucleus). The presented results include the non-
relativistic total energies and relativistic and QED corrections. These
quantities are used to calculate the interstate transition energies and
the corresponding oscillator strengths. These latter results are com-
pared with the available experimental values. It should be noted that
the present results are of benchmark quality, which required several
months of continuous computing with hundreds of cores on a par-
allel computer system. The bulk of the computational time has gone
into the optimization of the non-linear parameters of the ECGs,
which, as mentioned, are performed variationally with the aid of the
analytically calculated energy gradient. The total variational ener-
gies for all considered states are notably lower than those obtained
in our previous calculations and the calculations performed by
others.

In order to put the present calculations in perspective of over
80 years of theoretical works devoted to the calculations of S and P
bound states of the beryllium atom, we include Table 1 that shows
the progress achieved over the years in calculating the energies of
the ground and excited S and P states of the beryllium atom with an
infinite-nuclear-mass (INM). Results obtained with different meth-
ods are surveyed in the table; most of the methods are based on
the variational principle. As one can see, the best results to date
have been obtained using ECG expansions of the wave functions.
It should be noted that some of the energy values listed in Table 1
have reported uncertainties that are considerably smaller than the
actual difference between those values and the corresponding non-
relativistic limit. The reasons for this discrepancy range from overly
optimistic assessment of the uncertainty due to the basis truncation
to reporting only the statistical errors in the calculations.
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TABLE 1. Comparison of nonrelativistic energies of ∞Be obtained with various theoretical methods: Hartree–Fock (HF),
configuration interaction method (CI), poly-detor variational method with exponential functions (PDVM), many-body pertur-
bation theory (MBPT), Hylleraas-type functions (Hy), Hylleraas-CI method (Hy-CI), multiconfiguration Hartree–Fock method
(MCHF), estimated exact method (EE), explicitly correlated Gaussian functions (ECG), density matrix renormalization group
(DMRG), explicitly correlated coupled cluster (CCSDT1-R12), diffusion Monte Carlo (DMC), local Schrödinger equation over
free iterative-complement-interaction wave function (LSE-ICI), and explicitly correlated factorizable coupled-cluster method
(ECFCC). Some of the quoted values represent an extrapolation to the infinite basis set limit. All energies are in atomic units

Work Year State Method Energy

Hartree and Hartree31 1935 2 1S HF −14.57
Boys32 1950 2 1S CI −14.58

Boys33 1953 2 1S PDVM −14.637
2 1P −14.434

Brigman et al.34 1958 2 1S CI −14.581 5
Watson35 1960 2 1S CI −14.657 40
Weiss36 1961 2 1S CI −14.660 90
Kelly37 1963 2 1S MBPT −14.663 11
Szasz and Byrne38 1967 2 1S Hy −14.656 5
Gentner and Burke39 1968 2 1S Hy −14.657 9
Bunge40 1968 2 1S CI −14.664 19
Sims and Hagstrom41 1971 2 1S Hy-CI −14.666 547
Perkins42 1973 2 1S Hy −14.661 1
Froese Fischer and Saxena43 1974 2 1S MCHF −14.665 870
Bunge44 1976 2 1S CI −14.666 902
Clementi et al.45 1991 2 1S CI −14.666 96
Mårtensson-Pendrill et al.46 1991 2 1S MCHF −14.667 37
Davidson et al.47 1991 2 1S EE −14.667 36
Froese Fischer48 1993 2 1S MCHF −14.667 113
Chakravorty et al.49 1993 2 1S EE −14.667 36
Komasa et al.50 1995 2 1S ECG −14.667 360(2)
Noga et al.51 1995 2 1S CCSDT1-R12 −14.667 261
Jitrik and Bunge52 1997 2 1S CI −14.667 275 57
Busse and Lüchow53 1997 2 1S Hy −14.667 354 7

Komasa54

2001 2 1S ECG −14.667 355 536
2 1P −14.473 444 33
3 1P −14.393 113 93
4 1P −14.361 789 21

Pachucki and Komasa55 2004 2 1S ECG −14.667 355 627
Pachucki and Komasa56 2006 2 1S ECG −14.667 355 748
Nakatsuji et al.57 2007 2 1S LSE-ICI −14.667 300
Toulouse and Umrigar58 2008 2 1S DMC −14.667 27(1)

Stanke et al.24

2009 2 1S ECG −14.667 356 486
3 1S −14.418 240 328
4 1S −14.370 087 876
5 1S −14.351 511 654
6 1S −14.342 403 552

Verdebout et al.59 2010 2 1S MCHF −14.667 114 52
Bunge60 2010 2 1S CI −14.667 355(1)
King et al.61 2011 2 1S Hy −14.667 02
Sims and Hagstrom62 2011 2 1S Hy-CI −14.667 356 411
Komasa et al.63 2013 2 1S ECG −14.667 356 4

Puchalski et al.23 2013 2 1S ECG −14.667 356 498
2 1P −14.473 451 370
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TABLE 1. (Continued)

Work Year State Method Energy

Sharma et al.64 2014 2 1S DMRG −14.667 207
Sims and Hagstrom65 2014 2 1S Hy-CI −14.667 356 407 951

Bubin and Adamowicz66

2014 2 1P ECG −14.473 451 378
3 1P −14.393 143 528
4 1P −14.361 938 388
5 1P −14.347 876 275
6 1P −14.340 470 145
7 1P −14.336 115 562
8 1P −14.333 344 814

Przybytek and Lesiuk67 2018 2 1S ECFCC −14.667 351

Hornyák et al.26

2019 2 1S ECG −14.667 356 508(1)
3 1S −14.418 240 368(2)
4 1S −14.370 087 938(4)
5 1S −14.351 511 736(7)

Stanke et al.27

2019 2 1P ECG −14.473 451 3882
3 1P −14.393 143 5385
4 1P −14.361 938 3998
5 1P −14.347 876 2953
6 1P −14.340 470 194 4
7 1P −14.336 115 706 0
8 1P −14.333 345 316 8
9 1P −14.331 475 953 7

10 1P −14.330 154 912 7
11 1P −14.329 185 241 1

Nasiri and Zahedi68 2020 2 1S DMC −14.667 34(5)

Sims69

2020 3 1S Hy-CI −14.418 240 346
4 1S −14.370 087 890
5 1S −14.351 511 676
6 1S −14.342 403 578
7 1S −14.337 266 500

2. Formalism
2.1. Nonrelativistic nuclear-mass-dependent
Hamiltonian

In this work, we are concerned with the quantum bound states
of the atom. These states represent the motion of the particles form-
ing the atom, i.e., the nucleus and the electrons, around the center
of mass of the atom. To calculate the wave functions and the corre-
sponding energies of such states, one needs to first derive a Hamil-
tonian operator that describes the intrinsic motion of all particles in
the atom. In our approach, such a Hamiltonian is derived by starting
with the standard nonrelativistic laboratory frame Hamiltonian rep-
resenting the kinetic and potential energies of the nucleus and the
electrons and partitioning this Hamiltonian into an operator repre-
senting the kinetic energy of the center-of-mass (COM) motion and
the remaining part of the Hamiltonian that represents the “internal”
state of the system. We call this latter part of the Hamiltonian “the
internal Hamiltonian.” It is possible to rigorously make this parti-
tioning by a transformation of the coordinates from the laboratory

frame coordinates, which can be, for example, the Cartesian coordi-
nates of the particles forming the atom defined with respect to a par-
ticular chosen fixed point in space, to a new set of coordinates. This
new set can be chosen to consist, for example, of three coordinates
representing the position of the center of mass in the Cartesian lab-
oratory coordinate systems and 3N − 3 = 3n “internal” coordinates.
There are different ways these internal coordinates can be chosen.
One possibility is to use the textbook approach employed in solving
the Schrödinger equation for the hydrogen atom, where the inter-
nal coordinates are the coordinates of the vector with the origin at
the proton and the end at the electron. Generalizing this approach to
an atom with n electrons, the internal coordinates can be chosen as a
superposition of n sets of the coordinates, ri, i = 1, . . ., n, where the ri
is a vector consisting of the xi, yi, and zi coordinates with the origin at
the nucleus and with the end at electron i. Thus, the new coordinate
system consists of the lab-frame coordinates of the center of mass,
XCM , YCM , and ZCM and the internal coordinates, ri, i = 1, . . ., n.

To separate the full nonrelativistic laboratory frame Hamil-
tonian into the center-of-mass kinetic-energy operator and the
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internal operator, the Hamiltonian is expressed in terms of the new
coordinates. This facilitates the separation. The internal Hamilto-
nian is only a function of the ri, i = 1, . . ., n coordinates and has the
following form (atomic units are assumed throughout):

Hint
nr = −

1
2
⎛
⎝

n

∑
i=1

1
μi
∇2

ri +
n

∑
i=1

n

∑
j≠i

1
m0
∇′ri∇rj

⎞
⎠
+

n

∑
i=1

q0qi

ri
+

n

∑
i=1

n

∑
j<i

qiqj

rij
,

(1)

where q0 is charge of the nucleus, qi = −1(i = 1, . . . , n) are the elec-
tron charges, m0 is the nuclear mass (m0 = 16 424.2055me for 9Be),
mi = 1 are the electron masses, μi = m0mi/(m0 +mi) is the reduced
mass of electron i, ri is the distance between the nucleus and elec-
tron i, and rij = ∣rj − ri∣ is the distance between electrons i and j.
In this work, we use the following 9Be nuclear mass: m0(9Be)
= 16 424.2055me,70 where me is the mass of the electron. By setting
m0 to infinity in Hint

nr , one gets the INM Hamiltonian that is used in
the standard calculations based on the Born–Oppenheimer approx-
imation. Both FNM and INM Hamiltonians are used in the present
calculations. When the FNM Hamiltonian is used, both the energy
and the wave function depend on the mass of the nucleus. In this
work, we report both the finite-mass and infinite-mass results.

Hamiltonian (1) can also be written in a compact matrix form71

as

Hint
nr = −∇′rM∇r +

n

∑
i=1

q0qi

ri
+

n

∑
i=1

n

∑
j<i

qiqj

rij
, (2)

where

∇r =
⎛
⎜⎜⎜⎜
⎝

∇r1

⋮
∇rn

⎞
⎟⎟⎟⎟
⎠

is a n-component gradient vector and M =M ⊗ I3 is the Kro-
necker product of a n × n matrix M and 3 × 3 identity matrix I3.
Matrix M has diagonal elements 1/(2μ1), . . ., and 1/(2μn), while
all off-diagonal elements are equal to 1/(2m0). The prime symbol
denotes the matrix/vector transpose. Hamiltonian (2) is used in the
present variational calculations of the nonrelativistic internal energy
and the corresponding internal wave function. The internal wave
function describing a state of the atom is a function of internal
coordinates ri, i = 1, . . ., n.

2.2. Basis functions
The basis functions of all-electron explicitly correlated Gaus-

sians are used in the present calculations to construct the spatial
parts of the wave functions for the P and S states considered in this
work. The S-type Gaussians have the following form:

ϕk = exp[−r′(Ak ⊗ I3)r], (3)

where Ak is an n × n real symmetric matrix, ⊗ is the Kro-
necker product, and I3 is a 3 × 3 identity matrix. The P-type Gaus-
sians have the following form:

ϕk = zik exp[−r′(Ak ⊗ I3)r], (4)

where zik is the z-coordinate of the ith electron and ik is the elec-
tron label, which varies in the (1, . . ., n) range and is an adjustable
parameter in our calculations. The parameter is specific for each

basis function, ϕk, and its value is determined variationally when the
ECG basis set is being extended. The above ECG contains an angu-
lar pre-exponential factor zik that makes it suitable for expanding
the wave functions of L = 1 states. The factor is a Cartesian spher-
ical harmonic corresponding to L = 1 and ML = 0. A proper L = 1
ECG is obtained regardless of the value of the electron-label index ik
of the pre-exponential z factor. In order to make the initial random
choice and subsequent optimization of ECGs more efficient, we treat
the index as an additional variational parameter. This is optional, as
choosing a fixed value of the electron index of z and not optimizing
it, but only optimizing the non-linear exponential ECG parameters,
should, in principle, lead to identical results.

The Gaussian basis functions [(3) and (4)] have to be square
integrable to represent wave functions of bound S and P states of the
atom. This happens when the matrix Ak is positive definite. To fulfill
this requirement, Ak is represented in the Cholesky-factored form ad
Ak = LkL′k, where Lk is a lower triangular matrix. The Ak matrix given
in the Cholesky-factored form is always positive definite regard-
less of the values of the Lk matrix elements. Thus, if these matrix
elements are used as the variational parameters of the Gaussians
and optimized by the minimization of the total energy of the state
under the consideration, they can be varied without any constrains
from −∞ to∞. This is convenient because any constraint imposed
on the variational parameters would make the optimization more
cumbersome.

Before either S or P Gaussians given by expressions (3) or (4)
are used in expanding the wave function of a state, they have to
be appropriately symmetry adapted. In the present approach, we
use the spin-free formalism to ensure the correct permutational
symmetry properties of each matrix element. For this purpose, an
appropriate permutational symmetry projector is constructed and
applied to basis functions (3) and (4). To construct the permutation-
symmetry projector, the standard procedure involving the Young
operators is used.72,73 In the case of the singlet S and P states of
beryllium, the permutation operator, Y , can be chosen in the form
Y = (1 − P13)(1 − P24)(1 + P12)(1 + P34), where Pij denotes the
permutation of the spatial coordinates of the ith and jth electrons
(assuming particle 0 is the nucleus). More details about the gener-
ation of the wave function and its variational optimization can be
found in Refs. 74 and 75. It should be noted that the variational opti-
mization of the exponential parameters of the S and P basis functions
and the electron indices, ik, of the zik factors in the P basis functions
is only carried out for the wave functions of the 9Be isotope and then
reused in the ∞Be calculations without reoptimization. Our exten-
sive experience with atomic calculations has shown that just rediag-
onalizing the Hamiltonian matrix by adjusting the linear variational
parameters provides a sufficiently accurate way to account for a rela-
tively small change of the wave function caused by the change in the
nuclear mass.

2.3. Relativistic and QED corrections
In order to determine atomic transition energies with the accu-

racy that matches the accuracy of the most precise experiments,
the state energies have to be calculated with account for the lead-
ing relativistic and quantum-electrodynamics (QED) effects. The
most practical way for calculating these effects for few-electron light
atoms is to use the standard perturbation theory and to expand the
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total energy in powers of the fine-structure constant, α.76,77 The first
term in this expansion is the nonrelativistic energy of the considered
state, Enr,

Etot = Enr + α2E(2)rel + α
3E(3)QED + α

4E(4)HQED + ⋅ ⋅ ⋅ , (5)

the second term, α2E(2)rel , represents the leading relativistic correc-
tions, the third term, α3E(3)QED, represents the leading QED correc-

tions, and the fourth term, α4E(4)HQED, represents higher-order QED
corrections.

The corrections are evaluated as expectation values of the effec-
tive operators representing some physical effects using the nonrel-
ativistic wave function. This wave function can be obtained with
either the FNM or INM approach. The α2E(2)rel term is calculated as
the expectation value of the Dirac–Breit Hamiltonian in the Pauli
approximation, Hrel.78,79 In the present calculations of the 1S and 1P
states of beryllium, the Hamiltonian for the relativistic correction,
Hrel, contains the following terms:

Hrel = HMV +HD +HOO +HSS, (6)

where operators HMV, HD, HOO, and HSS represent the mass-
velocity, Darwin, orbit–orbit, and spin–spin corrections, respec-
tively. As all states considered in this work are singlet states, the
spin–orbit interaction vanishes. The explicit form of the operators in
the right-hand side of (6) in the internal coordinates, ri, i = 1, . . ., n,
is given in our previous publications.26,27 It should be mentioned
that, when the finite-nuclear-mass approach is used in the calcu-
lations of the nonrelativistic energy and the corresponding wave
function and of the relativistic corrections, these corrections explic-
itly depend on the nuclear mass. Thus, the so-called recoil effects are
directly accounted for in the calculations.

The leading QED effects in (5) are represented by the α3E(3)QED
term. For an atom, this term accounts for the two-photon exchange,
the vacuum polarization, and the electron self-energy effects. The
operator has the following form in the internal coordinates:

H(3)QED =
n

∑
i,j=1
j>i

⎡⎢⎢⎢⎢⎣
(164

15
+ 14

3
ln α)δ(rij) −

7
6π

𝒫
⎛
⎝

1
r3

ij

⎞
⎠

⎤⎥⎥⎥⎥⎦

+
n

∑
i=1
(19

30
− 2 ln α − ln k0)

4q0

3
δ(ri), (7)

where the first term represents the so-called Araki–Sucher
correction.80–84 The correction involves the principal value 𝒫 (1/r3

ij)
defined as

⟨𝒫
⎛
⎝

1
r3

ij

⎞
⎠
⟩ = lim

a→0
⟨ 1

r3
ij
Θ(rij−a) + 4π(γ + ln a)δ(rij)⟩. (8)

Here, Θ(⋅ ⋅ ⋅) is the Heaviside step function and γ = 0.577 215 . . . is
the Euler–Mascheroni constant.

The last term in H(3)QED represents the electron self-energy. Its
dominant contribution is the term involving the so-called Bethe
logarithm, ln k0. The main obstacle in computing the QED correc-
tion accurately for a multi-electron atomic system comes from ln k0,
which is difficult to calculate. However, ln k0 is known to mostly

depend on the contributions from the core electrons. In Sec. 2.4,
the procedure used to determine the ln k0 values for the considered
states is described.

The last term in expansion (5) is the E(4)HQED term. It can be
calculated as the expectation value of the following approximate
operator derived by Pachucki et al.:55,85

H(4)HQED = πq2
0(

427
96
− 2 ln 2)

n

∑
i=1
δ(ri). (9)

E(4)HQED includes the dominating electron-nucleus one-loop radia-
tive correction but neglects the two-loop radiative, electron–electron
radiative, and the higher-order relativistic corrections. The expecta-
tion value of (9) only provides a rough approximation to E(4)HQED for
light atoms with the overall error being of the order of 50%.

The expectation values of the H(3)QED and H(4)HQED Hamiltoni-
ans are calculated in this work with the INM wave functions. This
is because the formulas used in the calculations were derived for
the clamped nucleus.55,85 Thus, the E(3)QED and E(4)HQED corrections
computed in this work do not include the recoil effects.

Some of the operators used in the calculations of the relativistic
and QED effects include singular terms. Examples of such terms are
the ∇4

ri operator in HMV and the one- and two-electron Dirac delta
functions, δ(ri) and δ(rij), in HD, HSS, HQED, and HHQED. The con-
vergence of the expectation values of operators involving singular
terms with the number of basis functions used to expand the wave
function of the atom is usually much slower than for non-singular
operators—the number of converged significant figures is typically
about twice smaller. However, there have been studies that proposed
neat workarounds to this problem.86–91 One way to improve the con-
vergence is to employ expectation value identities, which involve
certain global operators whose expectation values coincide with the
expectation values of the singular operators in the case of the exact
wave function. When an approximate wave function is used instead,
the expectation values of those global operators typically converge to
the infinite basis set limit at a much faster rate. The original idea was
laid out by Drachman91 based on the work of Trivedi.90 Drachman’s
approach has been adopted in several works published in recent
decades with a good level of success. It has been demonstrated in
comparative studies that the convergence of the expectation values
of the operators found in the leading relativistic and QED correc-
tions is significantly accelerated by using Drachman’s approach.26,92

In this work, we also adopt an approach in the same spirit to com-
pute the expectation values of δ(ri), δ(rij), and ∇4

ri . More details on
this can be found in Refs. 5 and 26.

2.4. Bethe logarithm fitting
Expression (7) contains a term that includes Bethe logarithm,

ln k0. This term represents the dominant part of the electron self-
energy. Accurate calculation of this quantity for multi-electron sys-
tems represents a major difficulty. In the case of the beryllium atom,
Puchalski et al.4,23 studied the three lowest singlet states (2 1S, 2 1P,
and 3 1S) and reported the Bethe logarithms for them. Those are
currently the most accurate values available for Be in the literature.
For other states, the ln k0 values have been either computed less
accurately or not computed at all. Drake and Goldman93 showed
that the value of the Bethe logarithm for atomic Rydberg states has
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the following asymptotic behavior: A + B/n3, where n is the princi-
pal quantum number and A and B are constants. In this work, we
employ a fitting procedure with the above expression to estimate the
values of Bethe logarithm for the S and P states using the available
ln k0 values for S(2 1S, 3 1S) and P(2 1P) states of the Be atom. In
our fitting, the Bethe logarithm value for the ground 22S state of Be+

ion94 is used as the asymptotic value when n→∞. The values of
ln k0 we adopted for the S and P states of Be considered in this work
are shown in Table 2. To show how those differ from the ground-
state value of the hydrogen-like atom, in Table 2, we also list the
values of ln k0/q2

0 (where q0 is the nuclear charge).

2.5. Oscillator strength
In the length formalism, the absorption oscillator strength fif

for a transition between an initial state i and a final state f is
defined as95,96

fi f =
2

3gi
(Zr

Zp
)ΔEi f ∣⟨ψi∣μ∣ψf ⟩∣

2, (10)

where gi = 2Ji + 1 is the statistical weight of the lower level, ΔEif

= ∣Ei − Ef ∣ is the transition energy, Zr = q0me+m0
nme+m0

and Zp = q0me+m0
m0

are effective radiative charges (q0 is the charge of the nucleus, m0
is the nuclear mass, me is the mass of the electron, and n is the
number of electrons), and μ is the electric dipole-moment operator.
For an atom containing n electrons, μ = ∑n

i=1 qiri, where qi and ri is
the charge of electron i and its position in the internal coordinate

TABLE 2. Approximate values of the Bethe logarithm used in the calculations of the
QED corrections for the lowest ten 1S and 1P states of beryllium. All values are in
atomic units

State Reference ln k0 ln(k0/q2
0)

2 1S 4 5.750 46 2.977 871
3 1S 4 5.751 49 2.978 901
4 1S 5.751 698 2.979 109
5 1S 5.751 783 2.979 195
6 1S 5.751 821 2.979 232
7 1S 5.751 840 2.979 252
8 1S 5.751 851 2.979 262
9 1S 5.751 858 2.979 269
10 1S 5.751 862 2.979 273
11 1S 5.751 865 2.979 276

2 1P 4 5.752 320 2.979 731
3 1P 5.751 989 2.979 401
4 1P 5.751 909 2.979 320
5 1P 5.751 880 2.979 291
6 1P 5.751 867 2.979 279
7 1P 5.751 861 2.979 272
8 1P 5.751 857 2.979 269
9 1P 5.751 855 2.979 266
10 1P 5.751 854 2.979 265
11 1P 5.751 853 2.979 264

22S Be+ 94 5.751 849 2.979 260
1 2S H 93 2.984 128 2.984 128

system, respectively. Wave functions ψi and ψf are nonrelativistic
wave functions obtained in variational calculations using Hamilto-
nian (2). As the Hamiltonian explicitly depends on the mass of the
nucleus, ψi and ψf also depend on the nuclear mass, i.e., they are
slightly different for 9Be and ∞Be. It is worth mentioning that for a
charge-neutral system, μ has the same form in the laboratory Carte-
sian coordinate system as in the coordinate system where the nucleus
is placed at the origin of the internal coordinate system. The tran-
sition dipole moment associated with the i→ f transition can be
written in the following form:

∣μi f ∣2 = ∣⟨ψi∣μ∣ψf ⟩∣
2 = ∣⟨ψi∣μx∣ψf ⟩∣

2 + ∣⟨ψi∣μy∣ψf ⟩∣
2 + ∣⟨ψi∣μz∣ψf ⟩∣

2.
(11)

For oscillator strengths, only the transition dipole moments between
the S(L = 0, ML = 0) and P(L = 1, ML = 0) states need to be eval-
uated [in this case, only the last of the three terms in Eq. (11) is
non-zero]. Restricting the calculations to the transitions between
the S(L = 0, ML = 0) and P(L = 1, ML = 0) states only is possible
because of symmetry. Effectively, one can obtain the transition
dipole moments for all P states with ML = ±1 by knowing the
corresponding values for ML = 0 (for more information, see Ref. 97).

The transition dipole moment matrix elements with S and P
ECG basis functions (3) and (4) can be evaluated in a similar way as
the overlap matrix elements (Refs. 74 and 98 contain detailed deriva-
tions of the latter, as well as other relevant matrix elements). For
the sake of consistency and convenience, below we adopt the same
notation scheme as in Refs. 74 and 98. The z-component of the tran-
sition dipole-moment matrix element between S(L = 0, ML = 0) and
P(L = 1, ML = 0) ECGs can be expressed as

⟨P̂kϕ
(0)
k ∣ zi∣ P̂lϕ

(1)
l ⟩ = ⟨ϕ̃

(0)
k ∣ zi∣ ϕ̃(1)l ⟩

=∫ exp[−r′(Ãk ⊗ I3)r] zi zm̃l

× exp[−r′(Ãl ⊗ I3)r] dr

=∫ (vi′r) exp[−r′Ãkr] (ṽl′r) exp[−r′Ãlr] dr.

(12)

Here, P̂k and P̂l are the particle permutation operators for the bra
and ket wave functions, respectively, Ak ≡ Ak ⊗ I3, Ak ≡ Ak ⊗ I3, and
vl ≡ vl ⊗ εz , where εz′ ≡ (0, 0, 1). vl is a sparse n-component vec-
tor with all components equal to zero, except the mlth component.
The scalar product of a 3n-component vector vl with another 3n-
component vector r yields a single coordinate, zml = vl′r. The tilde
symbol denotes the action of the permutation matrices Pk ≡ Pk ⊗ I3
and Pl ≡ Pl ⊗ I3 corresponding to operators P̂k and P̂l on matrices
Ak, Al, and vector vl,

Ãk = P′kAkPk, Ãl = P′l AlPl, ṽl = P′l v
l, zm̃k = ṽl′r.

The integral in Eq. (12) is given by formula (28) in Ref. 74. In
that formula, one needs to make a replacement vk → vi. With that
expression, (12) becomes

⟨ϕ̃(0)k ∣ zi∣ ϕ̃(1)l ⟩ =
π

3n
2

2
vi′Ã−1

kl ṽl

∣Ãkl∣
3
2

, (13)

where Ãkl = Ãk + Ãl.
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2.6. Electronic and nuclear densities
The density of particle i in the center-of-mass (COM)

coordinate frame is defined as ρi(ξ) = ⟨δ(Ri − Rcm − ξ)⟩, where
i = 1, . . ., N and Rcm is the position vector of the center of mass in
the laboratory coordinate frame. In this work, the COM-frame den-
sity plots are generated for both the nucleus and the electrons. These
density distributions provide a representation of the coupled motion
of the nucleus and the electrons around the center of mass in the
beryllium atom. If the atom is excited to an increasingly higher Ryd-
berg state, the average radius of the electronic density increases, as
manifested by the increasing value of the nucleus-electron average
distance and by increasing diffuseness of the COM-frame electron
density. At the same time, the electronic density becomes more oscil-
latory. The oscillations of the electronic density are mirrored by
the oscillations of the density of the nucleus in the COM-frame.
The matching number of the maxima in the electronic and nuclear
densities for a given state occurs because only then the center-of-
mass of the atom can remain immobile. However, due to the much
larger mass of the nucleus in comparison with the electron mass,
the average radius of the nuclear motion around the center of mass
is orders of magnitude smaller than the average radius of the elec-
tronic motion. A pictorial comparison of the two motions using the
electronic and nuclear COM-frame densities is presented Sec. 3. The
feature to notice in the plots is the difference in the scales used to
plot the electronic and nuclear densities.

3. Results
For calculating atomic S and P states in the framework of the

ECG method, we used our in-house parallel computer code written
in FORTRAN and employing MPI (Message Passing Interface) for
communication between parallel processes. The generation of large
ECG basis sets together with high accuracy targeted in the calcu-
lations requires the use of extended precision (80-bits) arithmetic,
which has a hardware implementation in floating-point modules
on the ×86 architecture. The calculations performed with extended
precision are typically slower by a factor of 2–3, yet they provide
additional 12 bits (or about four decimal figures) of accuracy com-
pared to the standard double precision. Ten singlet S states and ten
singlet P states of beryllium have been calculated in this work. In
the first step of the calculations, the nonrelativistic wave functions
and the corresponding energies are obtained. The calculations are
carried out using the standard variational method and involve the
generation of sets of basis functions for each state with different
sizes. The growing of the basis set for a particular state is performed
independently from other states. It involves adding new functions
to the set and variationally optimizing their non-linear parameters
using a procedure that employs the analytical energy gradient deter-
mined with respect to the parameters. More details about the basis-
set enlargement procedure can be found in our previous works.99,100

It should be noted that the generation of the basis set for each con-
sidered state is by far the most time-consuming step of the calcula-
tions. It required about a year of continuous computing using several
100 cores of parallel computer systems equipped with Intel Xeon
E5-2695v3 and AMD EPYC 7642 central processing units (CPUs).

In generating the ECG basis sets, the internal Hamiltonian
explicitly dependent on the mass of the nucleus of the 9Be iso-
tope, i.e., the FNM Hamiltonian (2) is used. The basis sets are

subsequently used in the calculations for ∞Be. The nonrelativistic
energies are shown in Table 3. The results for the 9Be isotope and
for ∞Be are shown as well. For each 1S and 1P state of 9Be, the
nonrelativistic energy is reported for three to six basis set sizes to
demonstrate the convergence with the number of basis functions.
The nonrelativistic energy for ∞Be is only shown for the largest
basis set generated for each state, as the convergence of these val-
ues has essentially the same pattern as those for 9Be. These ener-
gies are compared with the best previously published results. Our
largest basis sets range from 16 000 basis functions for the lower
states to 17 000 for the top states. For all states, the values of
the nonrelativistic 9Be and ∞Be energies are notably lower than
the values previously reported in the literature. For example,
for the ground 1S state, the present energy value of ∞Be,
−14.667 356 508 8 a.u., is lower than the value of −14.667 356 498(3)
a.u. reported in 2013 by Puchalski et al.23 by about 1 × 10−8

a.u. For the lowest 1P state, the analogous comparison is
−14.473 451 389 5 a.u. (our present value) and −14.473 451 37(4)
a.u. (the value of Puchalski et al.23). Another example con-
cerns our previous calculations of the five lowest 1S states.26 The
9Be and ∞Be energies obtained in that work with 7000 ECGs
for the ground state are −14.666 435 525 and −14.667 356 507
a.u., respectively, while the corresponding values obtained in the
present calculations are −14.666 435 526 4 and −14.667 356 508 4
a.u., respectively. For 5 1S, the corresponding comparison is
−14.350 610 425 9 and −14.351 511 733 9 a.u. (the present calcula-
tions) and −14.350 610 414 and −14.351 511 722 in the calculations
of Hornyák et al.26 As one can notice, the improvement is larger for
5 1S than for the 2 1S state. In general, due to a larger number of
radial nodes in the wave functions of higher excited states, the num-
ber of basis functions used in the calculations needs to be increased
to maintain a similar level of accuracy for all states. In the present
calculations, the number of the basis functions for lower states (up
to n = 8) is kept constant and and then increased by 1000 for the
higher states (n = 9–11). The main factor that limits the increase of
the basis size in the present calculations is the CPU time needed to
optimize a very large number of ECGs. The results presented in this
work reflect a practical limit of the computational resources we have
been able to allocate for our calculations at present.

The wave functions calculated for the S and P states for 9Be
and ∞Be are used to calculate the expectation values of the opera-
tors representing the leading relativistic and QED corrections. The
results of the calculations of these quantities are shown in Table 3.
The results include the expectation values of the mass-velocity cor-
rection, ⟨HMV⟩, the orbit–orbit correction, ⟨HOO⟩, and the one-
and two-electron δ-functions [⟨δ(ri)⟩ and ⟨δ(rij)⟩ respectively]. The
⟨𝒫 (1/r3

ij)⟩ expectation value is also shown. For the 9Be isotope, the
results obtained using basis sets with different numbers of ECGs
are shown to assess the convergence. For ∞Be, we only show the
results obtained with the largest basis sets. The sum of the nonrel-
ativistic energy and the relativistic corrections for each state, Etot, is
shown in the last column of Table 3 along with an estimated uncer-
tainty of the result (for more details on uncertainty evaluations,
see Ref. 6). Etot values are used to calculate the interstate transition
energies.

The S→ P and P → S transition energies for 9Be and ∞Be cal-
culated using Etot values taken from Table 3 are shown in Table 4.
The values derived from experimental data are also included for
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TABLE 4. Transition energies, ΔEif (in cm−1). The numbers in the parentheses are estimated uncertainties due to the basis
set truncation and due to neglecting higher order corrections (both uncertainties are considered independent in our estimates).
The experimental values, ΔEExp

i f , have been taken from NIST Atomic Spectra Database (ver. 5.8).101 It should be noted that

the experimental energy levels for n1P(n = 7–11) states in NIST ASD were determined by extrapolation of values with lower
n using a quantum-defect expansion formula along the Rydberg series

Transition ΔEi f (∞Be) ΔEi f (9Be) ΔEExp
i f

2 1S→ 2 1P 42 568.372(9) 42 565.443(9) 42 565.4502(10)
Ref. 4 42 565.441(11)
2 1S→ 3 1P 60 191.905(7) 60 187.444(7) 60 187.443(21)
2 1S→ 4 1P 67 039.288(6) 67 034.814(6) 67 034.80(3)
2 1S→ 5 1P 70 125.089(6) 70 120.578(6) 70 120.59(3)
2 1S→ 6 1P 71 750.342(6) 71 745.796(6) 71 746.17(6)
2 1S→ 7 1P 72 705.938(11) 72 701.365(11) 72 701.8(5)
2 1S→ 8 1P 73 313.90(3) 73 309.31(3) 73 309.7(5)
2 1S→ 9 1P 73 724.12(2) 73 719.51(2) 73 709.4(5)
2 1S→ 10 1P 74 013.86(8) 74 009.24(8) 74 009.2(5)
2 1S→ 11 1P 74 226.3(2) 74 221.7(2) 74 221.1(5)

2 1P → 3 1S 12 112.435(4) 12 111.906(4) 12 111.898(21)
2 1P → 4 1S 22 681.144(4) 22 680.000(4) 22 679.986(21)
2 1P → 5 1S 26 758.283(4) 26 756.894(4) 26 756.84(7)
2 1P → 6 1S 28 757.323(4) 28 755.812(4) 28 755.79(8)
2 1P → 7 1S 29 884.811(5) 29 883.232(5) 29 882.92(18)
2 1P → 8 1S 30 582.82(3) 30 581.19(3) 30 581.21(19)
2 1P → 9 1S 31 044.89(2) 31 043.24(2) 31 043.1(3)
2 1P → 10 1S 31 366.767 31 365.09(11) 31 365.0(3)
2 1P → 11 1S 31 600.4(3) 31 598.7(3) 31 598.0(3)

3 1S→ 3 1P 5 511.098(3) 5 510.095(3) 5 510.094(30)
3 1S→ 4 1P 12 358.480(1) 12 357.465(1) 12 357.45(4)
3 1S→ 5 1P 15 444.282(2) 15 443.230(2) 15 443.24(4)
3 1S→ 6 1P 17 069.534(3) 17 068.447(3) 17 068.82(6)
3 1S→ 7 1P 18 025.131(10) 18 024.016(10) 18 024.4(5)
3 1S→ 8 1P 18 633.09(3) 18 631.96(3) 18 632.3(5)
3 1S→ 9 1P 19 043.31(2) 19 042.16(2) 19 032.0(5)
3 1S→ 10 1P 19 333.05(8) 19 331.89(8) 19 331.8(5)
3 1S→ 11 1P 19 545.5(2) 19 544.3(2) 19 543.7(5)

3 1P → 4 1S 5 057.611(2) 5 057.998(2) 5 057.993(30)
3 1P → 5 1S 9 134.750(2) 9 134.893(2) 9 134.856(73)
3 1P → 6 1S 11 133.790(2) 11 133.811(2) 11 133.80(8)
3 1P → 7 1S 12 261.278(4) 12 261.230(4) 12 260.93(18)
3 1P → 8 1S 12 959.28(3) 12 959.19(3) 12 959.2(2)
3 1P → 9 1S 13 421.35(2) 13 421.24(2) 13 421.1(3)
3 1P → 10 1S 13 743.22(11) 13 743.09(11) 13 743.0(3)
3 1P → 11 1S 13 976.8(3) 13 976.7(3) 13 976.0(3)

4 1S→ 4 1P 1 789.771 6(10) 1 789.371 4(10) 1 789.36(37)
4 1S→ 5 1P 4 875.573(1) 4 875.136(1) 4 875.15(37)
4 1S→ 6 1P 6 500.826(2) 6 500.353(2) 6 500.73(64)
4 1S→ 7 1P 7 456.422(9) 7 455.923(9) 7 456.3(5)
4 1S→ 8 1P 8 064.38(3) 8 063.86(3) 8 064.2(5)
4 1S→ 9 1P 8 474.60(2) 8 474.06(2) 8 463.9(5)
4 1S→ 10 1P 8 764.35(8) 8 763.80(8) 8 763.7(5)
4 1S→ 11 1P 8 976.8(2) 8 976.2(2) 8 975.6(5)
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TABLE 4. (Continued)

Transition ΔEi f (∞Be) ΔEi f (9Be) ΔEExp
i f

4 1P → 5 1S 2 287.3679(9) 2 287.5231(9) 2 287.50(76)
4 1P → 6 1S 4 286.4074(10) 4 286.4411(10) 4 286.45(85)
4 1P → 7 1S 5 413.896(3) 5 413.861(3) 5 413.58(18)
4 1P → 8 1S 6 111.90(3) 6 111.82(3) 6 111.87(19)
4 1P → 9 1S 6 573.97(2) 6 573.87(2) 6 573.8(3)
4 1P → 10 1S 6 895.84(11) 6 895.72(11) 6 895.7(3)
4 1P → 11 1S 7 129.4(3) 7 129.3(3) 7 128.7(3)

5 1S→ 5 1P 798.4338(9) 798.2415(9) 798.29(76)
5 1S→ 6 1P 2 423.686(2) 2 423.459(2) 2 423.87(92)
5 1S→ 7 1P 3 379.283(9) 3 379.028(9) 3 379.5(5)
5 1S→ 8 1P 3 987.24(3) 3 986.97(3) 3 987.4(5)
5 1S→ 9 1P 4 397.46(2) 4 397.17(2) 4 387.1(5)
5 1S→ 10 1P 4 687.21(8) 4 686.90(8) 4 686.9(5)
5 1S→ 11 1P 4 899.630(2) 4 899.3(2) 4 898.8(5)

5 1P → 6 1S 1 200.6057(5) 1 200.6764(5) 1 200.66(76)
5 1P → 7 1S 2 328.094(2) 2 328.096(2) 2 327.79(18)
5 1P → 8 1S 3 026.10(3) 3 026.06(3) 3 026.0(2)
5 1P → 9 1S 3 488.17(2) 3 488.10(2) 3 488.01(3)
5 1P → 10 1S 3 810.04(11) 3 809.95(11) 3 809.91(3)
5 1P → 11 1S 4 043.6(3) 4 043.5(3) 4 042.91(3)

6 1S→ 6 1P 424.647(2) 424.541(2) 424.92(10)
6 1S→ 7 1P 1 380.243(9) 1 380.110(9) 1 380.5(5)
6 1S→ 8 1P 1 988.20(3) 1 988.05(3) 1988.4(5)
6 1S→ 9 1P 2 398.42(2) 2 398.25(2) 2 388.1(5)
6 1S→ 10 1P 2 688.17(8) 2 687.99(8) 2 687.9(5)
6 1S→ 11 1P 2 900.6(2) 2 900.4(2) 2 899.8(5)

6 1P → 7 1S 702.8414(10) 702.8786(10) 702.21(19)
6 1P → 8 1S 1 400.85(2) 1 400.84(2) 1 400.5(20)
6 1P → 9 1S 1 862.92(2) 1 862.88(2) 1 862.4(3)
6 1P → 10 1S 2 184.79(11) 2 184.73(11) 2 184.3(3)
6 1P → 11 1S 2 418.4(3) 2 418.3(3) 2 417.3(3)

7 1S→ 7 1P 252.755(6) 252.691(6) 253.4(5)
7 1S→ 8 1P 860.72(3) 860.63(3) 861.3(5)
7 1S→ 9 1P 1 270.93(2) 1 270.83(2) 1 261.0(5)
7 1S→ 10 1P 1 560.68(8) 1 560.57(8) 1 560.8(5)
7 1S→ 11 1P 1 773.1(2) 1 773.0(2) 1 772.7(5)

7 1P → 8 1S 445.25(2) 445.27(2) 444.87(5)
7 1P → 9 1S 907.32(2) 907.31(2) 906.8(6)
7 1P → 10 1S 1 229.19(11) 1 229.16(11) 1 228.7(6)
7 1P → 11 1S 1 462.8(3) 1 462.8(3) 1 461.7(6)

8 1S→ 8 1P 162.711(6) 162.669(6) 163.0(5)
8 1S→ 9 1P 572.93(2) 572.87(2) 562.7(5)
8 1S→ 10 1P 862.67(8) 862.61(8) 862.5(5)
8 1S→ 11 1P 1 075.1(2) 1 075.0(2) 1 074.4(5)

8 1P → 9 1S 299.36(2) 299.37(2) 298.9(6)
8 1P → 10 1S 621.23(11) 621.22(11) 620.8(6)
8 1P → 11 1S 854.8(3) 854.8(3) 853.8(6)
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TABLE 4. (Continued)

Transition ΔEi f (∞Be) ΔEi f (9Be) ΔEExp
i f

9 1S→ 9 1P 110.856(7) 110.827(7) 100.8(6)
9 1S→ 10 1P 400.60(6) 400.56(6) 400.6(6)
9 1S→ 11 1P 613.0(2) 613.0(2) 612.5(6)

9 1P → 10 1S 211.01(10) 211.02(10) 221.1(6)
9 1P → 11 1S 444.62(2) 445.13(2) 454.1(6)

10 1S→ 10 1P 78.73(3) 78.71(3) 78.7(6)
10 1S→ 11 1P 291.2(2) 291.1(2) 290.6(6)

10 1P → 11 1S 154.9(2) 154.9(2) 154.3(6)

11 1S→ 11 1P 57.6(2) 57.5(2) 57.6(6)

TABLE 5. The squares of the transition dipole moments, ∣μif ∣
2, and oscillator strengths, fif , between 1S and 1P states. For ∣μif ∣

2, the numbers in parentheses are estimated
uncertainties due to the basis truncation. The oscillator strength uncertainties are taken as root mean squares of the uncertainties of ∣μif ∣

2 and ΔEif . Numbers in square brackets,
[s], denote a multiplication factor 10s

Transition ∣μif ∣
2 (∞Be) ∣μif ∣

2 (9Be) fif (∞Be) fif (9Be) fif (∞Be)a fif (∞Be)b fif (∞Be)c

2 1S→ 2 1P 1.063 146 385(10) [+1] 1.063 255 365(10) [+1] 1.374 689 2(3) [0] 1.374 400 8(3) [0] 1.375 [0] 1.38 [0] 1.380 [0]
2 1S→ 3 1P 4.703 28(2) [−2] 4.695 34(2) [−2] 8.599 31(4) [−3] 8.582 06(4) [−3] 9.01 [−3] 8.98 [−3] 8.985 [−3]
2 1S→ 4 1P 1.319 61(4) [−3] 1.329 66(4) [−3] 2.687 20(9) [−4] 2.706 82(9) [−4] 2.30 [−4] 1.20 [−4]
2 1S→ 5 1P 4.026 52(7) [−3] 4.038 60(7) [−3] 8.576 84(14) [−4] 8.599 94(14) [−4] 8.10 [−4] 6.90 [−4]
2 1S→ 6 1P 3.622 30(13) [−3] 3.630 70(13) [−3] 7.894 7(3) [−4] 7.910 5(3) [−4] 7.50 [−4] 6.80 [−4]
2 1S→ 7 1P 2.760 62(14) [−3] 2.766 31(14) [−3] 6.096 8(3) [−4] 6.107 5(3) [−4] 5.90 [−4] 5.40 [−4]
2 1S→ 9 1P 1.524 52(2) [−3] 1.527 54(2) [−3] 3.414 03(4) [−4] 3.41974(4) [−4] 3.20 [−4] 3.07 [−4]
2 1S→ 10 1P 1.154(2) [−3] 1.156(2) [−3] 2.594(5) [−4] 2.599(5) [−4]
2 1S→ 11 1P 8.90(7) [−4] 8.92(7) [−4] 2.01(2) [−4] 2.01(2) [−4]

2 1P → 3 1S 9.613 578 7(15) [0] 9.613 186 1(15) [0] 1.179 016 1(5) [−1] 1.178 629 3(5) [−1] 1.18 [−1] 1.15 [−1] 1.147 [−1]
2 1P → 4 1S 4.280 48(6) [−1] 4.280 54(6) [−1] 9.830 15(14) [−3] 9.827 42(14) [−3] 9.82 [−3] 9.80 [−3]
2 1P → 5 1S 1.340 7(2) [−1] 1.340 8(2) [−1] 3.632 4(6) [−3] 3.631 7(6) [−3] 3.62 [−3] 3.55 [−3]
2 1P → 6 1S 6.776 3(2) [−2] 6.777 9(2) [−2] 1.973 1(5) [−3] 1.972 9(5) [−3] 1.96 [−3] 1.88 [−3]
2 1P → 7 1S 4.223 04(9) [−2] 4.224 96(9) [−2] 1.277 85(3) [−3] 1.278 05(3) [−3] 1.23 [−3] 1.18 [−3]
2 1P → 8 1S 2.943 73(5) [−2] 2.945 90(5) [−2] 9.115 45(15) [−4] 9.119 48(15) [−4] 9.08 [−4] 8.11 [−4]
2 1P → 9 1S 2.193 74(2) [−2] 2.196 04(2) [−2] 6.895 71(8) [−4] 6.900 87(8) [−4] 6.94 [−4] 5.92 [−4]
2 1P → 10 1S 1.706(2) [−2] 1.709(2) [−2] 5.420(7) [−4] 5.425(7) [−4] 5.62 [−4]
2 1P → 11 1S 1.370(7) [−2] 1.372(7) [−2] 4.38(2) [−4] 4.39(2) [−4]

3 1S→ 3 1P 5.713 342 8(3) [+1] 5.713 911 1(3) [+1] 9.564 292(5) [−1] 9.561 174(5) [−1] 9.58 [−1] 9.57 [−1] 9.465 [−1]
3 1S→ 4 1P 2.762 51(5) [−1] 2.769 26(5) [−1] 1.037 04(2) [−2] 1.039 23(2) [−2] 9.82 [−2] 9.80 [−2]
3 1S→ 5 1P 3.153 21(2) [−1] 3.157 18(2) [−1] 1.479 26(8) [−2] 1.480 66(8) [−2] 1.45 [−2] 1.45 [−2]
3 1S→ 6 1P 2.103 53(5) [−1] 2.105 71(5) [−1] 1.090 67(2) [−2] 1.091 47(2) [−2] 1.07 [−2] 1.08 [−2]
3 1S→ 7 1P 1.389 96(2) [−1] 1.391 27(2) [−1] 7.610 34(14) [−3] 7.615 22(14) [−3] 7.51 [−3] 7.50 [−3]
3 1S→ 8 1P 9.503 6(5) [−2] 9.512 6(5) [−2] 5.379 0(3) [−3] 5.382 4(3) [−3] 5.29 [−3] 4.73 [−3]
3 1S→ 9 1P 6.738 1(14) [−2] 6.744 9(14) [−2] 3.897 7(8) [−3] 3.900 4(8) [−3] 3.79 [−3] 3.87 [−3]
3 1S→ 10 1P 4.934(10) [−2] 4.940(10) [−2] 2.897(6) [−3] 2.900(6) [−3]
3 1S→ 11 1P 3.72(3) [−2] 3.72(3) [−2] 2.21(2) [−3] 2.21(2) [−3]

3 1P → 4 1S 4.060 230(3) [+1] 4.059 474(3) [+1] 2.079 214(2) [−1] 2.078 480(2) [−1] 2.09 [−1] 2.12 [−1]
3 1P → 5 1S 2.630 541(4) [0] 2.630 732(4) [0] 2.433 016(3) [−2] 2.432 638(3) [−2] 2.43 [−2] 2.44 [−2]
3 1P → 6 1S 7.612 7(7) [−1] 7.614 0(7) [−1] 8.582 0(7) [−3] 8.581 3(7) [−3] 8.57 [−3] 8.59 [−3]
3 1P → 7 1S 3.407 8(5) [−1] 3.408 7(5) [−1] 4.230 8(6) [−3] 4.230 8(6) [−3] 4.23 [−3] 4.22 [−3]
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TABLE 5. (Continued)

Transition ∣μif ∣
2 (∞Be) ∣μif ∣

2 (9Be) fif (∞Be) fif (9Be) fif (∞Be)a fif (∞Be)b fif (∞Be)c

3 1P → 8 1S 1.874 3(3) [−1] 1.875 0(3) [−1] 2.459 3(4) [−3] 2.459 6(4) [−3] 2.47 [−3] 2.44 [−3]
3 1P → 9 1S 1.161 85(10) [−1] 1.162 45(10) [−1] 1.578 89(13) [−3] 1.579 30(13) [−3] 1.60 [−3] 1.56 [−3]
3 1P → 10 1S 7.791(9) [−2] 7.796(9) [−2] 1.084(13) [−3] 1.085(13) [−3] 1.14 [−3]
3 1P → 11 1S 5.53(2) [−2] 5.54(2) [−2] 7.83(3) [−4] 7.83(3) [−4]

4 1S→ 4 1P 2.631 297 0(6) [+2] 2.631 708 6(6) [+2] 1.430 513 2(9) [0] 1.430 068 9(9) [0] 1.43 [0]
4 1S→ 5 1P 1.230 43(14) [−1] 1.237 64(14) [−1] 1.822 24(20) [−3] 1.832 31(20) [−3] 1.59 [−3] 1.67 [−3]
4 1S→ 6 1P 2.616 7(2) [−1] 2.622 2(2) [−1] 5.167 1(4) [−3] 5.176 4(4) [−3] 4.95 [−3] 5.10 [−3]
4 1S→ 7 1P 1.857 1(8) [−1] 1.860 0(8) [−1] 4.206(2) [−3] 4.212(2) [−3] 4.08 [−3] 4.17 [−3]
4 1S→ 8 1P 1.256 3(2) [−1] 1.258 0(2) [−1] 3.077 4(5) [−3] 3.080 8(5) [−3] 2.98 [−3] 2.71 [−3]
4 1S→ 9 1P 8.726(2) [−2] 8.738(2) [−2] 2.246(5) [−3] 2.249(5) [−3] 2.16 [−3] 2.23 [−3]
4 1S→ 10 1P 6.269(6) [−2] 6.278(6) [−2] 1.669(2) [−3] 1.671(2) [−3]
4 1S→ 11 1P 4.65(3) [−2] 4.66(3) [−2] 1.27(9) [−3] 1.27(9) [−3]

4 1P → 5 1S 1.266 409(2) [+2] 1.266 156(2) [+2] 2.933 007(4) [−1] 2.931 905(4) [−1] 2.95 [−1]
4 1P → 6 1S 8.287 77(7) [0] 8.288 28(7) [0] 3.596 95(3) [−2] 3.596 32(3) [−2] 3.60 [−3] 3.61 [−3]
4 1P → 7 1S 2.312 0(5) [0] 2.312 4(5) [0] 1.267 4(3) [−2] 1.267 2(3) [−2] 1.27 [−2] 1.27 [−2]
4 1P → 8 1S 1.009 2(2) [0] 1.009 5(2) [0] 6.245 3(11) [−3] 6.245 4(11) [−3] 6.27 [−3] 6.25 [−3]
4 1P → 9 1S 5.459 4(6) [−1] 5.461 7(6) [−1] 3.634 0(4) [−3] 3.634 5(4) [−3] 3.69 [−3] 3.63 [−3]
4 1P → 10 1S 3.348(3) [−1] 3.351(3) [−1] 2.338(2) [−3] 2.339(2) [−3] 2.45 [−3]
4 1P → 11 1S 2.232(8) [−1] 2.234(8) [−1] 1.611(6) [−3] 1.612(6) [−3]

5 1S→ 5 1P 7.481 658(8) [+2] 7.482 926(8) [+2] 1.814 518(3) [0] 1.813 946(3) [0] 1.82 [0]
5 1S→ 6 1P 8.401(5) [−2] 8.496(5) [−2] 6.185(3) [−4] 6.253(3) [−4] 4.78 [−4]
5 1S→ 7 1P 3.272(4) [−1] 3.281(4) [−1] 3.359(4) [−3] 3.367(4) [−3] 3.16 [−3] 3.32 [−3]
5 1S→ 8 1P 2.420 7(9) [−1] 2.424 8(9) [−1] 2.931 8(11) [−3] 2.935 9(11) [−3] 2.79 [−3] 2.59 [−3]
5 1S→ 9 1P 1.673(3) [−1] 1.676(3) [−1] 2.235(4) [−3] 2.237(4) [−3] 2.10 [−3] 2.22 [−3]
5 1S→ 10 1P 1.179(2) [−1] 1.181(2) [−1] 1.679(3) [−3] 1.681(3) [−3]
5 1S→ 11 1P 8.57(5) [−2] 8.59(5) [−2] 1.28(7) [−3] 1.28(7) [−3]

5 1P → 6 1S 3.157 64(2) [+2] 3.157 04(2) [+2] 3.838 54(3) [−1] 3.837 10(3) [−1] 3.86 [−1]
5 1P → 7 1S 2.031 3(2) [+1] 2.031 5(2) [+1] 4.788 4(6) [−2] 4.787 6(6) [−2] 4.79 [−2]
5 1P → 8 1S 5.498 6(8) [0] 5.499 8(8) [0] 1.684 8(3) [−2] 1.684 7(3) [−2] 1.69 [−2]
5 1P → 9 1S 2.350(2) [0] 2.351(2) [0] 8.299(9) [−3] 8.300(9) [−3] 8.45 [−2] 8.32 [−3]
5 1P → 10 1S 1.257(3) [0] 1.257(3) [0] 4.848(12) [−3] 4.849(12) [−3] 5.10 [−2]
5 1P → 11 1S 7.66(3) [−1] 7.67(3) [−1] 3.14(13) [−3] 3.14(13) [−3]

6 1S→ 6 1P 1.691 681(10) [+3] 1.691 971(10) [+3] 2.182 081(16) [0] 2.181 379(16) [0] 2.19 [ 0]
6 1S→ 7 1P 4.85(2) [−2] 4.96(2) [−2] 2.03(9) [−4] 2.08(9) [−4] 1.12 [−4]
6 1S→ 8 1P 4.238(8) [−1] 4.251(8) [−1] 2.560(5) [−3] 2.567(5) [−3] 2.30 [−3]
6 1S→ 9 1P 3.257(13) [−1] 3.261(13) [−1] 2.373(9) [−3] 2.375(9) [−3] 2.12 [−3]
6 1S→ 10 1P 2.272(6) [−1] 2.276(6) [−1] 1.855(5) [−3] 1.858(5) [−3]
6 1S→ 11 1P 1.606(4) [−1] 1.608(4) [−1] 1.415(3) [−3] 1.417(3) [−3]

6 1P → 7 1S 6.706 9(4) [+2] 6.705 8(4) [+2] 4.772 9(3) [−1] 4.771 2(3) [−1] 4.79 [−1]
6 1P → 8 1S 4.231(2) [+1] 4.231(2) [+1] 6.001(2) [−2] 6.000(2) [−2] 6.03 [−2]
6 1P → 9 1S 1.119 4(14) [+1] 1.119 7(14) [+1] 2.111 4(26) [−2] 2.111 4(26) [−2] 2.15 [−2]
6 1P → 10 1S 4.705(3) [0] 4.708(3) [0] 1.041(7) [−2] 1.041(7) [−2] 1.10 [−2]
6 1P → 11 1S 2.485(6) [0] 2.487(6) [0] 6.084(16) [−3] 6.088(16) [−3]

7 1S→ 7 1P 3.316 5(2) [+3] 3.317 0(2) [+3] 2.546 2(2) [0] 2.545 4(2) [0] 2.56 [0]
7 1S→ 8 1P 1.307(7) [−2] 1.387(7) [−2] 3.418(19) [−5] 3.624(19) [−5] 5.00 [−8] 5.00 [−8]
7 1S→ 9 1P 5.380(8) [−1] 5.384(8) [−1] 2.077(3) [−3] 2.078(3) [−3] 1.64 [−3]
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TABLE 5. (Continued)

Transition ∣μif ∣
2 (∞Be) ∣μif ∣

2 (9Be) fif (∞Be) fif (9Be) fif (∞Be)a fif (∞Be)b fif (∞Be)c

7 1S→ 10 1P 4.31(3) [−1] 4.30(3) [−1] 2.04(1) [−3] 2.04(1) [−3]
7 1S→ 11 1P 3.00(6) [−1] 3.00(6) [−1] 1.62(3) [−3] 1.62(3) [−3]

7 1P → 8 1S 1.269 9(3) [+3] 1.269 7(3) [+3] 5.725 2(13) [−1] 5.723 2(13) [−1] 5.75 [−1]
7 1P → 9 1S 7.869(7) [+1] 7.869(7) [+1] 7.229(6) [−2] 7.228(6) [−2] 7.33 [−2]
7 1P → 10 1S 2.045(5) [+1] 2.046(5) [+1] 2.546(6) [−2] 2.546(6) [−2] 2.68 [−2]
7 1P → 11 1S 8.46(4) [0] 8.47(4) [0] 1.25(5) [−2] 1.25(5) [−2]

8 1S→ 8 1P 5.888 2(12) [+3] 5.888 9(12) [+3] 2.910 2(6) [0] 2.909 1(6) [0] 2.94 [0]
8 1S→ 9 1P 1.6(4) [−3] 1.3(4) [−3] 2.8(8) [−6] 2.3(8) [−6] 1.47 [−6]
8 1S→ 10 1P 6.59(4) [−1] 6.57(4) [−1] 1.73(1) [−3] 1.72(1) [−3]
8 1S→ 11 1P 5.42(14) [−1] 5.41(14) [−1] 1.77(5) [−3] 1.76(5) [−3]

8 1P → 9 1S 2.207 0(8) [+3] 2.206 5(8) [+3] 6.689 5(24) [−1] 6.686 9(24) [−1] 6.73 [−2]
8 1P → 10 1S 1.349(7) [+2] 1.349(7) [+2] 8.49(4) [−2] 8.48(4) [−2] 8.82 [−2]
8 1P → 11 1S 3.47(5) [+1] 3.47(5) [+1] 3.00(5) [−2] 3.00(5) [−2]

9 1S→ 9 1P 9.719 9(11) [+3] 9.720 7(11) [+3] 3.273 0(4) [0] 3.271 6(4) [0] 3.34 [0]
9 1S→ 10 1P 5.(5) [−2] 5.(5) [−2] 6.(6) [−5] 6.(6) [−5]
9 1S→ 11 1P 8.(2) [−1] 8.(2) [−1] 1.(3) [−3] 1.(3) [−3]

9 1P → 10 1S 3.583(13) [+3] 3.582(13) [+3] 7.656(27) [−1] 7.652(27) [−1] 7.80 [−1]
9 1P → 11 1S 2.19(6) [+2] 2.19(6) [+2] 9.84(26) [−2] 9.85(26) [−2]

10 1S→ 10 1P 1.519(5) [+4] 1.519(5) [+4] 3.632(12) [0] 3.630(12) [0]
10 1S→ 11 1P 1.(2) [−1] 1.(2) [−1] 1.(2) [−4] 1.(2) [−4]

10 1P → 11 1S 5.50(7) [+3] 5.49(7) [+3] 8.62(11) [−1] 8.61(11) [−1]

11 1S→ 11 1P 2.28(4) [+4] 2.28(4) [+4] 3.98(7) [0] 3.98(7) [0]
aB-spline CI with semi-empirical core potential (BCICP) method.102

bMCHF method.11

cB-spline CI (BCIBP) method.103

FIG. 1. The logarithmic map of calculated oscillator strengths for S → P and
P → S transitions between states considered in this work.

TABLE 6. Comparison of the oscillator strength values for the 2 1S → 2 1P transition
in Be obtained with various experimental and theoretical approaches: Beam-foil (BF),
Time-resolved laser-induced-fluorescence (TR-LIF), Time-dependent gauge invari-
ant (TDGI), multiconfiguration Hartree–Fock (MCHF), B-spline CI with semi-empirical
core potential (BCICP), B-spline CI (BCIBP), and CI+ core polarization (CICP)

Experimental

BF104 1.34(4)
BF105 1.40(4)
TR-LIF106 1.34(3)

Theoretical

TDGI107,108 1.398
BCICP102 1.375
MCHF11 1.38
BCIBP103 1.380
CICP109 1.374 3
this work (∞Be) 1.374 689 2(3)
this work (9Be) 1.374 400 8(3)
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FIG. 2. The density of the nucleus for some of the 1S (left-column) and 1P states (right-column) in the center-of-mass coordinate frame for the beryllium atom.
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FIG. 3. The density of the electrons for some of the 1S (left-column) and 1P states (right-column) in the center-of-mass coordinate frame for the beryllium atom.
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comparison. As can be seen, the FNM effects provide a signifi-
cant contribution to the transition energies particularly for lower
states. The transition energies calculated for 9Be are in very good
agreement with the experimental data available in the NIST Atomic
Spectra Database (ver. 5.8).101 For the majority of states, the calcu-
lated transition-energy values are within the experimental error bars.
However, there are states for which the discrepancies are slightly
larger. These include, for example, the 9 1P state. The origin of the
discrepancies may be related to the way the experimental values
were obtained. It is stated in the NIST ASD that the experimental
energy levels for n1P(n = 7–11) states listed there were determined
by an extrapolation of the values obtained for the Rydberg states
with lower n’s using a quantum-defect expansion formula. How-
ever, it seems that this formula can only provide sound estimates of
the energy levels for states with larger n. Upon a closer look at the
transition energies involving state 9 1P, one finds that all exper-
imental and the calculated results differ by about 10 cm−1. Such
a consistent difference suggests that there may be a typographical
error in the NIST ASD for the 9 1P energy level.

In Table 5, we show the calculated values of the transition
dipole moments and the oscillator strengths for 9Be and ∞Be for
the S→ P and P → S transitions involving all states considered in
this work. The oscillator strengths are compared with available
literature results. The oscillator strengths for all transitions consid-
ered in this work are shown in Fig. 1 in the form of a map that depicts
their relative magnitude on a logarithmic scale.

In general, agreement between the oscillator strengths calcu-
lated in the present work and the available literature values is fairly
good. The present calculations include a considerably wider range of
the oscillator strength values than it was calculated in prior works.
Both the tabulated values of the oscillator strengths and their depic-
tion in Fig. 1 show that the largest values of the strengths correspond,
as expected, to transitions between states with the same principal
quantum number, i.e., n1S→ n1P transitions. However, the oscil-
lator strength values are also quite sizable for the n1P → (n + 1)1S
transitions. This indicates a possibility to use “cascade” excitations
involving a sequence of the following transitions: 2 1S→ 2 1P, 2 1

P → 3 1S, 3 1S→ 3 1P, 3 1P → 4 1S, etc., to prepare the atom in a
particular Rydberg state.

In Table 6, we provide a more detailed comparison of our oscil-
lator strength values for the lowest 2 1S→ 2 1P transition with exper-
imental and theoretical results from the literature. All theoretical
values agree within the experimental uncertainties. It is interest-
ing to note that there is a slight difference between the values of
the oscillator strength calculated for 9Be and ∞Be of 0.0003. How-
ever, this isotopic shift is too small to be experimentally verifiable at
present.

The finite-nuclear-mass effects can also be observed in the
3D plots of the radial electronic and nuclear densities determined
with respect to the center of mass of the atom. The plots of these
densities for some selected 1S and 1P states are shown in Figs. 2
and 3.

As one can see, with the increasing excitation level, the number
of the radial nodes in the densities, as expected, increases. In addi-
tion, in the densities of the 1P states, there is a nodal plane along the
z plane. The most interesting is the comparison between the elec-
tronic and nuclear densities for a particular state. As one can see, the
oscillatory patterns for the two densities for every state are almost

identical. However, the scale of the coordinate axes in the plots of the
electronic densities is about four orders of magnitude larger than in
the nuclear densities. As mentioned, this is understandable because
the average radius of the motion of the nucleus around the cen-
ter of mass of the atom is much smaller than the average radius of
the motion of the electrons (the radius scales as the mass inverse).
This also explains why the nodal patterns of the two densities for a
particular state are very similar. This happens because, for each max-
imum of the nuclear density, a maximum of the electronic density
has to appear to balance out the centrifuge effects associated with
the motions of the particles. Due to this balance, the center of mass
of the atom does not move.

4. Summary
In this work, an algorithm for calculating the oscillator strength

for an atomic inter-state spectral transition is implemented and
used to calculate the S→ P and P → S transitions in the beryllium
atom. In the calculations, the nonrelativistic variational wave func-
tions expanded in terms of all-electron explicitly correlated Gaussian
functions are used. In the calculation of the corresponding transi-
tion energies, the nonrelativistic energies are augmented with the
leading relativistic and QED corrections and high-accuracy results
are obtained. The nonrelativistic energies are the best to date. The
oscillator strengths for the transitions show an interesting pattern.
As the strength values are the most sizable for the n1S→ n1P and
n1P → (n + 1)1S transitions, one can envision preparing a beryllium
atoms in a particular excited Rydberg 1S or 1P state by a cascade of
the following excitations: 2 1S→ 2 1P, 2 1P → 3 1S, 3 1S→ 3 1P, etc.
In moving back to the ground 2S state from a particular excited Ryd-
berg 1S or 1P state, the above excitation cascade can be followed in
reverse.

The present results may also be employed in the modeling of
light emission and absorption events involving beryllium atoms in
the interstellar media. Such models usually require accurate values of
the transition energies and the oscillator strengths, which the present
work provides.
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