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ABSTRACT
The fundamental vibrational excitation energy and thedissociation energy of themain isotopologue
of lithium hydride (7LiH) are studied by the variational method using all-particle explicitly correlated
Gaussian (ECG) basis sets. In this approach, electrons and nuclei are treated on equal footing, i.e.
the Born–Oppenheimer approximation is not assumed. The leading relativistic (∼ α2) and the dom-
inating part of the quantum electrodynamics (∼ α3) corrections to the energy levels are accounted
for in the framework of the perturbation theory. The fundamental vibrational excitation energy and
the dissociation energies obtained in the calculations are well within the error bars of the available
experimental data.
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1. Introduction

The lithium hydride molecule has long been regarded as
a ‘workbench of theoretical chemistry’, on which vari-
ous electronic structure methods are tested and refined.
One interesting aspect of the LiHmolecule in the ground
electronic state is its electronic density distribution at
different values of the internuclear distance. An exam-
ination of the dipole moment curve calculated by Shi
et al. [1] reveals that at and around the equilibrium
internuclear distance, the LiH dipole moment is large
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(with a maximum at around R=3 a.u.), but decreases
to zero at larger distances. This indicates that at equi-
librium the LiH bond has predominantly an ionic char-
acter resulted from the electrostatic interaction of the
positively charged lithium ion and the hydrogen anion
(Li+ + H−). However, at larger distances, the LiH bond
becomes predominantly covalent (Li+H). This interest-
ing behaviour that has profound implication for the LiH
spectral properties, in particular for the transition oscilla-
tor strengths, results from an avoided curve crossing that
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occurs when the internuclear distance stretches beyond
the equilibrium distance of approximately 3.015 a.u. The
crossing involves the potential energy curve representing
the ionic LiH and the curve representing the covalently-
bonded LiH.

LiH, which is the smallest heteronuclearmolecule, has
only four electrons and it has been subject to meticu-
lous theoretical calculations from the very early stages
of quantum chemistry (see Table 13 in Ref. [2]). It
has become a popular benchmark system for testing
emerging quantum-mechanical methods for perform-
ing electronic-structure molecular calculations and for
investigating the capability of the existing methods to
produce more accurate results. In past decades, the LiH
molecule has been studied using various high-level quan-
tum mechanical methods such as configuration interac-
tion (CI) [3–6],multi-reference configuration interaction
(MR-CI) [3, 7–13], coupled-cluster (CC) [14–18] and
explicitly correlated Gaussian functions (ECG) [19–24].

A significant interest in the spectral properties of LiH
has been in part due to its relevance to astrophysics and
astrochemistry. In particular, the role LiH may play in
the cooling of primordial clouds [24–27] and its applica-
tion in monitoring the evolution of stars and interstellar
clouds [28] should be mentioned. Lastly, LiH is also a
goodmodel system for investigating the validity and lim-
itations of the Born–Oppenheimer (BO) approximation
in calculating its bound ro-vibrational states [13].

The focus of this work is the fundamental vibrational
transition energy of the 7LiH molecule. Unlike, the stan-
dard approach used in the calculations of the molecular
ro-vibrational spectra, that is based on assuming the BO
approximation, the present approach does not assume
this approximation. By treating the electrons and the
nuclei on an equal footing, high accuracy is achieved.
In the calculations, we use the variational method with
the Hamiltonian obtained by separating out the kinetic
energy of the centre-of-mass motion from the labora-
tory all-particle nonrelativistic Hamiltonian. The wave
functions of the considered states are expanded in terms
of single-centre ECG functions, which are eigenfunc-
tions of the operator representing the square of the total
angular momentum of the molecule with the zero total
angular momentum quantum number. The total angular
momentum includes the electronic angular momentum
and the nuclear angular momentum. Thus the states cal-
culated in this work can be called ‘pure vibrational states’,
as they represent the ground and lowest excited inter-
nal states in the rotation-less spectrum of the system.
However, as the BO approximation is not assumed in
the present calculations, the terms ‘rotational’ and ‘vibra-
tional’ that are well defined within the BO approach can

only be applied loosely to the results of the present cal-
culations. As the coupling of the electronic and nuclear
motions is explicitly present in our calculations, the non-
BO results are not, strictly speaking, completely equiva-
lent to the BO results. Naturally, in the limit of infinite
basis sets used to expand the BO and non-BO wave
functions of the system, the non-BO description is more
accurate than its BO equivalent.

2. Formalism

Very accurate molecular calculations have to account for
the effects associated with the finite mass of nuclei. This
can be done using the perturbation theory approach (by
far the most common way) or more directly by explicitly
including these effects in the (zero-order) Hamiltonian
that represents the nonrelativistic energy of the system.
In the present work, the latter approach is adopted. The
finite nuclear mass (FNM) effects are revealed when the
internal motions of the system are considered as a cou-
pled motion of the nuclei and the electrons around the
system’s centre of mass. Thus, to calculate the energies
and the corresponding wave functions of bound states
associated with this motion, an internal nonrelativistic
Hamiltonian has to be derived. In the approach used here,
the starting point in the derivation of such aHamiltonian
is the standard non-relativistic laboratory-frame Hamil-
tonian comprising operators representing the kinetic and
potential energies of the nuclei and the electrons. First,
the laboratory frame Hamiltonian is expressed in terms
of the Cartesian lab-frame coordinates. Next, a new set
ofCartesian coordinates is introduced. These coordinates
include the three coordinates, xcm, ycm, and zcm, that rep-
resent the position of the centre of mass of the system
in the laboratory frame, and 3N−3 = 3n internal coor-
dinates, where N is the total number of particles in the
system. There are a number of ways to choose the internal
coordinates. In the present approach, we use a generali-
sation of the textbook approach employed in solving the
Schrödinger equation for the hydrogen atom, where the
internal coordinates are the coordinates of the vectorwith
the origin at the proton and the end at the electron. In the
generalised approach used here, the internal coordinates
are the coordinates of vectors ri, i = 1, . . . , n originat-
ing at one of the nuclei (usually the heaviest one in the
system; the lithiumnucleus in the present work) and end-
ing at the individual electrons and at the other nuclei
(the H nucleus in the case of the LiH molecule). When
the lab-frame Hamiltonian is expressed in terms of the
new coordinates, it rigorously separates into an opera-
tor representing the kinetic energy of the motion of the
centre of mass and an operator dependent only on the
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internal coordinates that represents the internal state of
the system [29]. The internal Hamiltonian has the follow-
ing form:

Hint
nr = −1

2

⎛
⎝ n∑

i=1

1
μi

∇2
ri +

n∑
i=1

n∑
j�=i

1
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∇′
ri∇rj

⎞
⎠

+
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i=1

q0qi
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+
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i=1

n∑
j<i

qiqj
rij

, (1)

where m0 is the mass of the reference nucleus and q0 is
its charge, qi, i = 1, . . . , n, are the charges of the other
particles, μi = m0mi/(m0 + mi) is the reduced mass of
particle i (mi, i = 1, . . . , n, are the particlemasses), ri, i =
1, . . . , n is the distance from particle n+ 1 to the refer-
ence particle, i.e. particle 1, and rij is the distance between
particle j+ 1 and particle i+ 1. The prime symbol in
Equation (1) denotes the matrix/vector transposition.
One can notice that the internal Hamiltonian represents
the motion of n particles, whose charges are the original
particle charges, but the masses are the reduced masses
(because of that, we use the term ‘pseudoparticles’ in
reference to the particles described by the internalHamil-
tonian), in the central field of the charge of the reference
nucleus. Thus the internal Hamiltonian is invariant upon
all rotations about the centre of the internal coordinate
system and one can think of it as an ‘atom-like’ Hamil-
tonian. The eigenfunctions of this Hamiltonian can be
classified using the same symmetries as the wave func-
tions of an atom. These eigenfunctions and the corre-
sponding eigenvalues (energies) represent all modes of
the internal motions of the molecule including the elec-
tronic, vibrational and rotational motions. In particular,
the ground-state solution is spherically symmetric, i.e. it
is invariant under 3D rotations.

The following all-particle spherically-symmetric
explicitly correlated Gaussian functions are used in the
present calculations:

φk = rmk
1 exp[−r′(Ak ⊗ I3)r], (2)

where r1 is the distance between the nuclei (particle 1 is
the lithium nucleus while particle 2 is the proton), mk is
an even integer (in this work, mk is constrained within
the range 0–200 and it is regarded as an integer varia-
tional parameter), Ak is an n × n real symmetric matrix
of the exponential variational parameters, ⊗ denotes the
Kronecker product, and I3 is an 3 × 3 identity matrix.
Note that both Ak andmk are unique and independently
tunable for each basis function, which is indicated by
the presence of index k. Vector r in Equation (2) is a
3n-component vector formed by stacking the internal

Cartesian coordinates, ri:

r =

⎛
⎜⎜⎜⎝

r1
r2
...
rn

⎞
⎟⎟⎟⎠ . (3)

Let us denote Ak = Ak ⊗ I3. Ak and, by extension, Ak,
have to be positive definite in order for Gaussian basis
function (2) to be square integrable. To ensure posi-
tive definiteness of Ak we adopt the following Cholesky-
factored form for it:Ak = (LkL′

k) ⊗ I3, where Lk is an n ×
n lower-triangular matrix of real numbers. In this form,
Ak is automatically positive definite for any real-valued
Lk. The elements of matrix Lk are variational parameters
that are extensively optimised in the present calculations.
The optimisation employs the analytical energy gradient
determined with respect to the Lk matrix elements. The
enlargement and subsequent optimisation are done using
a one-function-at-a-time approach. The initial guess of a
new function is generated stochastically based on the val-
ues of the nonlinear parameters of the Gaussians already
included in the basis set. After being added to the basis
set, the new function is variationally optimised and, if
it is not linearly dependent with any other functions
already present in the basis set, it is included in the set. In
the optimisation of the function, the Lk matrix elements
and the mk power of r1 in the pre-exponential factor of
Gaussian (2) are subject to the variational optimisation.
Each mk power is optimised in the 0–250 range and is
restricted to be an even integer. This is the only place in
the calculation where the mk power is optimised. After
a certain number of Gaussians are added to the basis
set, the Lk parameters of all functions in the set gener-
ated so far in the calculation are reoptimised, again using
a one-function-at-a-time approach. However, as above
mentioned, in this reoptimisation, only the Lk matrix ele-
ments are varied, while the mk values kept unchanged.
All calculations are performed using our in-house paral-
lel computer code written in Fortran and employingMPI
(Message Passing Interface) for communication between
parallel processes. It should be noted that the generation
of the basis set for each considered state is by far the most
time-consuming step of the calculations. It required over
a year of continuous computing using about a hundred
cores on parallel computer systems equipped with Intel
Xeon E5-2695v3 and AMD EPYC 7642 central process-
ing units.

The need to include the rmk
1 factors in the Gaussian

basis functions can be explained by analysing the inter-
nal Hamiltonian. As pseudoparticle 1 in the internal
Hamiltonian (1) is the proton, there is strong Coulom-
bic repulsion between this proton and the charge of the
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lithium nucleus (the reference particle) located in the
centre of the internal coordinate system. The pair cor-
relation function of the two nuclei that depends on r1
(the separation between them) must be virtually zero at
r1 = 0. At the same time, for a diatomic molecule in its
ground state, this pair correlation function sharply peaks
at r1 ≈ Re, i.e. at a sphere with the radius approximately
equal to the equilibrium bond length of the molecule.
For vibrationally excited states, the corresponding pair
correlation function has multiple radial peaks, but they
are all located away from the origin r1 = 0. As an origin-
centred Gaussian function has a maximum at the centre
of the coordinate system, it needs to be modified to move
its maximum away from the centre of the sphere. This
can be accomplished by multiplying the Gaussians by the
rmk
1 factors. Such factors, in addition to shifting the Gaus-
sian maxima away from the origin can also effectively
describe the radial oscillations of the wave functions cor-
responding to (radial) vibrational excitations. If the basis
functions used in the calculation are spherically symmet-
ric, as is the case for functions (2), then the only excited
states they can describe are purely ‘vibrational’ states, i.e.
states with the zero total angular momentum.

The present calculations concern the ground and first
excited singlet states of the LiHmolecule. In constructing
the wave functions for these states, the proper permu-
tational symmetry of the electrons has to be taken into
account. This can be achieved using the spin-free for-
malism [30–32]. The key element of this formalism is
the construction of an appropriate permutational sym-
metry projector, Y. The action of this projector on the
spatial part of basis functions yields a combination of
terms that otherwise be generated by using the full (spa-
tial plus spin) basis functions and integrating over the
electronic spin coordinates. Projector Y implements the
desired permutational symmetry properties of the vari-
ational wave function. For a system consisting of four
electrons (labelled as particles 3, 4, 5 and 6) in a singlet
state one possible choice of operator Y is

Y = (1 + P34)(1 + P56)(1 − P35)(1 − P46), (4)

where permutations Pij exchange the indices of electrons
i and j.

Calculations performed at the nonrelativistic level of
the theory, even if they are very accurate, are insuffi-
cient to determine the total energies and the interstate
transition energies with an accuracy comparable with the
present-day spectroscopic results. To achieve the spectro-
scopic accuracy, at least the leading relativistic and QED
energy corrections need to be included in the calcula-
tions. An approach to account for these corrections that is
practical and most frequently used in calculating bound
states of light atoms andmolecules is based on expanding

the total energy of the system in terms of powers of the
fine-structure constant, α [33, 34]:

Etot = Enr + α2E(2)
rel + α3E(3)

QED + · · · , (5)

where Enr is the nonrelativistic energy of the state being
considered, the second term, (α2E(2)

rel ), represents the
leading relativistic correction, the third term (α3E(3)

QED)
represents the leading QED correction and so on. Each
of these terms is evaluated as an expectation value of a
certain effective Hamiltonian. In Equation (5), quantity
E(2)
rel is the expectation value of the Breit–Pauli Hamil-

tonian corresponding to the singlet state, Hrel [35, 36].
To be used in the present work, Hrel is first trans-
formed from the laboratory coordinates, Ri, to the inter-
nal coordinates, ri. Hrel includes the following terms: the
mass–velocity term (HMV), the Darwin term (HD), the
orbit–orbit interaction term (HOO) and the spin–spin
Fermi interaction term (HSS):

Hrel = HMV + HD + HOO + HSS. (6)

The explicit expressions for the corresponding effective
operators in the internal coordinates are (again assum-
ing particles 1 and 2 are nuclei and particles 3-6 are
electrons) [29]:

HMV = −1
8

⎡
⎣ 1
m3

0

( n∑
i=1

∇ri

)4

+
n∑

i=1

1
m3

i
∇4
ri

⎤
⎦ , (7)

HD = −π

2
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and

HSS = −8π
3

5∑
i,j=2
j>i

qiqj
mimj

(
s′isj
)
δ
(
rij
)
. (10)

In the last expression, si denotes the spin operator of the
ith pseudoparticle. For the LiH states considered in this
work, s′isj = −3/4. The relativistic corrections for a par-
ticular state are calculated as the expectation values of the
above operators using its nonrelativistic non-BO wave
function.

The leading QED correction, E(3)
QED in Equation (5),

represents the two-photon exchange, vacuum polarisa-
tion and electron self-energy effects. The largest con-
tribution to E(3)

QED arises from the term which includes
the Bethe logarithm, ln k0 (see Refs. [37, 38] for more
information). The main difficulty in computing the QED
correction lies in accurate determination of that term. To
our knowledge, there has not been any calculation of ln k0
for LiH.However, it is well known that the dominant con-
tribution to ln k0 in atoms comes from the inner shell
electrons. Based on this, we make an approximation and
use the following ln k0 values reported for the Li and H
atoms, i.e. 5.178 080 [39] and 2.984 129 [40], respectively,
to determine ln k0 for LiH. Thus the QED correction for
LiH molecule is estimated as

H(3)
QED ≈ 4 q0

3

(
19
30

− 2 lnα − ln k0(Li)
)

×
〈 5∑
i=2

δ (rLi−i)

〉

+ 4 qH
3

(
19
30

− 2 lnα − ln k0(H)

)

×
〈 5∑
i=2

δ (rH−i)

〉
. (11)

3. Results

Table 1 presents the calculations of the total non-
Born–Oppenheimer nonrelativistic (nr) energies, the
leading relativistic (rel) corrections, and some key expec-
tation values for the LiH ground and first excited states, as
well as the corresponding values for the Li and H atoms.
The results shown in the table are obtained with the basis
sets of sizes that increase from 11,000 to 17,000 and from
8000 to 11,000 for the LiH and Li species, respectively.
The energies and the expectation values are extrapolated
to an infinite basis set size (for more information, see
Ref. [41]). The extrapolated values are shown in the table
along with the corresponding estimated uncertainties. As
one can see, all LiH expectation values are well converged
but, as expected, the convergence rate is relatively faster
for the ground state than for the first excite state. The
basis sets used to calculate the results shown inTable 1 are
calculated using basis sets obtained in a basis-set grow-
ing process. In this process, we start from a small set of
Gaussians with nonlinear parameters chosen by a com-
bination of a random and physically-motivated choices.
Then several steps are performed, where in each step
the basis set is enlarged by addition of a subset of new
Gaussians and variationally optimising them with the a
procedure that employs the analytical energy gradient.
The enlargement and subsequent optimisation are done
using a one-function-at-a-time approach. After a newly
added function is variationally optimised it is checked for
linearly dependency with the functions already included
in the set. If not linear dependency is found, the function
is included in the basis set. As mentioned, the Lk matrix

Table 1. Variational non-Born–Oppenheimer nonrelativistic energies (Enr) of the ground (v = 0) and first excited (v = 1) vibrational
states of the LiH molecule. Results obtained with basis sets with different sizes are shown.

Basis Enr 〈HMV〉 〈HOO〉 〈δ(re)〉 〈δ(rH−e)〉 〈δ(re−e)〉
7LiH 11000 −8.06643882 −79.0464 −0.4730659 3.45138 0.095029 0.0916646
v = 0 13000 −8.06643893 −79.0538 −0.4730653 3.45175 0.095057 0.0916489

15000 −8.06643902 −79.0622 −0.4730649 3.45213 0.095078 0.0916462
17000 −8.06643913 −79.0624 −0.4730643 3.45214 0.095082 0.0916458

∞ −8.06643918(6) −79.0626(2) −0.4730640(3) 3.45215(1) 0.095085(3) 0.0916456(3)
7LiH 11000 −8.06024277 −79.0273 −0.4724646 3.45082 0.094250 0.0915880
v = 1 13000 −8.06024309 −79.0284 −0.4724645 3.45088 0.094253 0.0915799

15000 −8.06024336 −79.0291 −0.4724673 3.45093 0.094263 0.0915629
17000 −8.06024367 −79.0325 −0.4724711 3.45112 0.094270 0.0915600

∞ −8.06024395(28) −79.0346(22) −0.4724733(23) 3.45123(10) 0.094274(4) 0.0915585(15)
7Li 8000 −7.477451930722 −78.531157 −0.44549103389 4.61310856419 0.181401118390

9000 −7.477451930726 −78.531153 −0.44549103386 4.61310856427 0.181401118405
11000 −7.477451930729 −78.531153 −0.44549103389 4.61310856432 0.181401118411

∞ −7.477451930732(3) −78.531150(3) −0.44549103378(11) 4.61310856437(6) 0.181401118417(6)
H ∞ −0.499727839712 −0.62364031 −0.00054373 0.31830989

Note: Some additional optimisation steps are involved in generation the largest set of 17,000 ECGs. The values in the parentheses are uncertainties due to the finite
size of the basis set used. All energies and expectation values are expressed in atomic units.
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elements and themk power in the r1 preexponential fac-
tor are subject to the optimisation. Also, as mentioned,
the mk powers are optimised in the 0–200 range and are
restricted to be even integers. After a certain number
of Gaussians are added, the nonlinear parameters of all
function in the basis set generated so far are reoptimised,
again using a one-function-at-a-time approach. In this
reoptimisation, however, only the Lk matrix elements are
varied, while themk values are kept unchanged.

The 0 → 1 transition energy calculated using non-
relativistic energies (Enr), non-relativistic energies and
the relativistic correction (Enr+rel), and non-relativistic
energies and the relativistic and QED corrections
(Enr+rel+QED) are shown in Table 2. In addition to the
values calculated in the present work, some most accu-
rate values obtained in previous experimental and the-
oretical studies are also shown in the table. All of the
previous calculations [5, 12, 13, 24, 42] have been per-
formed assuming the Born–Oppenheimer approxima-
tion; although, adiabatic correction has been included in
the calculations performed by Holka et al. [13] and Tung
et al. [24] which makes their values more accurate than
those obtained in other studies. It is worth mentioning
that only the transition energy previously calculated by
Tung et al. [24] is within the experimental uncertainty.
As it is shown in Table 2, the value of 1 359.739(64) cm−1

obtained in the presentwork for the 0 → 1 transition is in
excellent agreement with the experimentally determined
values [2, 43, 44]. A comparison of the transition-energy
values obtained in the ECG calculationswith andwithout
assuming the BO approximation reveals the importance
of accounting for the coupling between the motion of the
electrons and nuclei. As shown by Holka et al. [13] and
confirm by the present calculations, the non-adiabatic
correction is already important for the ground state of the
LiH molecule.

In Table 3, the calculated dissociation energies (D)
from the ground and first excited states are shown
along with the available experimental and theoreti-
cal values. As one can see, the obtained dissocia-
tion value from the ground state, using the non-
relativistic energies (Dnr =19 590.176(12)) is not as accu-
rate as the ones obtained with including the relativistic,
(Dnr+rel = 19 589.751(12)) and QED (Dnr+rel+QED =
19 589.762(12)) corrections. It is worth mentioning that
the computed QED correction in the present work is a
very raw estimation. The correction could be improved
using more accurate expression for the QED correc-
tion. As mentioned before, all previous calculations
were performed with assuming the BO approximation
[13, 24]. Even though the adiabatic correction was
included in those previous calculations, the results are
not as accurate as obtained in the present work. The

Table 2. Comparison of the calculated and experimental 0 → 1
transition energies (�E) of 7LiH in cm−1.

Basis �Enr �Enr+rel �Enr+rel+QED

11000 1359.877 1359.907 1359.901
13000 1359.829 1359.867 1359.858
15000 1359.790 1359.841 1359.829
17000 1359.745 1359.800 1359.789

∞ 1359.696(62) 1359.748(64) 1359.739(64)
FCI [5]a 1359.66
(MR-CISD+Q) [12]b 1358.64(549)
FC LSE [42]c 1356.87
(MR-CISD+Qp) [13]d 1361.03
(MR-CISD+Qp)+ adiabatic+ rel [13]e 1360.30
BO-ECG [24]f 1360.24
BO-ECG+ad [24]g 1359.77
Experimental [43]h 1359.71(20)
Experimental [2] 1359.71
Experimental [44] 1359.7085(20)

Note: aFull Configuration-Interaction/(42 s18 p10 d).
bThe internally contracted configuration interaction in the single and double
space (MRCISD) levelswith four electrons distributed among the five orbitals
(MRCISD+Q) arising from the 1 s, 2 s and 2 p atomic orbitals in themulticon-
figurational self-consistent-field (MCSCF) part of the calculations has been
used.

cFree complement (FC) local Schrödinger equation (LSE) method.
dMultireference configuration interaction with singles and doubles with
Pople-variant correction (MR-CISD+Qp)/cc-pwCVXZ (X = Q, 5, 6).

eThe ‘adiabatic’ represents the sum of the diagonal and mass-dependent
diagonal Born–Oppenheimer, BObreakdowncorrections; ‘rel’ represents rel-
ativistic Mass–Velocity and Darwin contributions.

fBorn–Oppenheimer calculations with 2400 ECG basis functions.
gIn the BO-ECG calculations, the adiabatic correction was included.
hThe largest uncertainty which was estimated by authors.

Table 3. Comparison of the calculated and experimental dissoci-
ation energies (D) of 7LiH in cm−1.

State Basis Dnr Dnr+rel Dnr+rel+QED

v = 0 11000 19590.097 19589.651 19589.668
13000 19590.120 19589.681 19589.695
15000 19590.142 19589.716 19589.727
17000 19590.164 19589.739 19589.750

∞ 19590.176(12) 19589.751(12) 19589.762(12)
(MR-CISD+Qp) [13]a 19606.7
(MR-CISD+Qp)+ adiabatic+ rel [13]b 19593.8
BO-ECG+AD [24]c 19590.1
Experimental [2] 19589.8(3)

v = 1 11000 18230.221 18229.744 18229.767
13000 18230.292 18229.814 18229.837
15000 18230.351 18229.876 18229.898
17000 18230.419 18229.939 18229.960

∞ 18230.480(61) 18230.002(63) 18230.023(63)

Notes: aMultireference configuration interactionwith singles and doubles and
with Pople-variant corrections (MR-CISD+Qp)/cc-pwCVXZ (X = Q, 5, 6).

bThe ‘adiabatic’ represents the sum of the diagonal and mass-dependent
diagonal Born–Oppenheimer, BObreakdowncorrections; ‘rel’ represents rel-
ativistic Mass–Velocity and Darwin contributions.

c In the BO-ECG calculations, the adiabatic correction was included.
dThe inverted perturbation approach with adiabatic correction.

non-Born–Oppenheimer nonrelativistic wave functions
obtained for 7LiH with the largest basis sets generated
for the two lowest states in this work are used to calcu-
late some expectation values of the interparticle distances
and their squares. The expectation values of the inter-
particle Dirac delta functions are also calculated. The
results are shown in Table 4. In addition to the calculated
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Table 4. Results of the non-BO ECG calculations for 7LiH performed in this work. The average
values of the interparticle distances (〈rij〉), the most probable distance between Li and H nuclei
(rmp
Li−H), obtained with the largest basis sets generated in this work for

7LiH. The results are com-
pared with the calculated equilibrium bond lengths (re), and the vibrationally averaged bond
lengths for the v = 0 and v = 1 states (the 〈r0〉 and 〈r1〉 values, respectively), obtained in the
BO ECG [24], MRCISD+Q [12], and exFCI [46] calculations. All values are in atomic units.

v = 0 v = 1

〈rLi−H〉 3.06103822(10) 3.15499498(115)
〈rLi−H〉 BO-ECG [24] a 3.06029188 3.15422580
〈rLi−H〉 BO-CCSD(T) b 3.01121476 3.10857192
〈rLi−e〉 1.97193362(9) 2.00700575(43)
〈rH−e〉 2.56510499(19) 2.62428379(42)
〈re−e〉 2.95594018(21) 3.00879600(42)
〈r2Li−H〉 9.4197061(10) 10.1046534(74)
〈r2Li−e〉 6.5857455(13) 6.8665877(20)
〈r2H−e〉 7.7452199(19) 8.1711883(15)
〈r2e−e〉 10.9660755(26) 11.3948241(15)
re BO-ECG [24]a 3.0141(6)
re BO-CCSD(T) b 3.039
re MCSCF-CI-4 [9]c 3.025
re FC LSE [42]d 3.013
re MR-CISD+Qp [13]e 3.01390
re (MR-CISD+Qp)+adiabatic+ rel [13]f 3.01375
re exFCI [46]g 3.028
re Experiment [47] 3.016
re Experiment [2] 3.015217
re Experiment [48] 3.01394640(32)
re Experiment [44] 3.01523597(9)

Notes: aBorn–Oppenheimer calculations with 2400 ECG basis functions [24].
bCoupled-cluster singles and doubles and noniterative triple excitations. The aug-cc-pV5Z [49] basis set has been
used. The calculations were carried out using the Gaussian 16 software package [50].

cThe configuration-interaction with single and double replacements fromMCSCF reference state.
dFree complement (FC) local Schrödinger equation (LSE) method.
eMultireference configuration interaction with singles and doubles method with Pople-variant correction (MR-
CISD+Qp)/cc-pwCVXZ (X = Q, 5, 6).

f The ‘adiabatic’ represents sum of the diagonal and mass-dependent diagonal Born–Oppenheimer, BO break-
down corrections; ‘rel’ represents relativistic Mass–Velocity and Darwin contributions.

gThe all-electron extrapolated FCI were used.

values in the present work, some other quantities which
were obtained in the BO calculations, such as re, r0 and
r1, are shown in the table. Due to explicitly including
the coupling between the motion of electrons and the
nuclei in the present non-BO calculations, the agree-
ment between the values obtained in the present work
and those obtained in the previous BO calculations is
not particularly good. This is consistent with the conclu-
sions expressed in some previous BOworks that adiabatic
and non-adiabatic effects are not negligible in calculating
properties of diatomic molecules [13,45].

4. Summary

In this work, we present the most accurate non-
Born–Oppenheimer calculations performed thus far for
the LiH molecule in the ground and first vibrationally
excited states. All-particle explicitly correlated Gaussian
basis functions are used in the calculations. The calcu-
lations involve extensive optimisation of the nonlinear
parameters of the Gaussians performed separately for
each state. The basis set for each state is grown to include

up to 17,000 functions. The nonrelativistic non-BO wave
functions are used to calculate the leading relativistic
and QED corrections. The corrections are added to the
non-BO nonrelativistic energies and results are used to
calculate the 7LiH dissociation energies for the two states,
as well as the 0 → 1 transition energy. The obtained
results are well within the uncertainties of the available
experimental data and can serve as a useful benchmark
for future theoretical studies and spectroscopic measure-
ments of LiH.

The linear and non-linear parameters of all non-BO
wave functions for the two considered states of the LiH
molecule generated in this work will be provided to the
interested reader upon request.
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