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ABSTRACT: Accurate variational Born–Oppenheimer calculations of the two lowest
excited � triplet states of the helium dimer at their respective equilibrium geometries are
reported. The wave functions of the states are expanded in terms of explicitly correlated
Gaussian functions with shifted centers. The obtained energies are the best variational
estimates ever calculated for these states. One-electron densities are also presented and
discussed. The results are compared with the experimental values and previous
calculations. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem 108: 2291–2298, 2008
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1. Introduction

S ince 1929, with the early work of Hylleraas [1]
on the helium atom, the approach to calculat-

ing the bound states of atomic and molecular sys-
tems based on directly including the dependency
on the interelectronic distances in the wave func-
tion has led to important benchmark results. One of

the most popular types of basis functions in such
calculations in the past 20 years have been the
so-called explicitly correlated Gaussian functions
(ECGs). ECGs have been employed in various types
of studies ranging from very accurate calculations
of atomic energy levels to calculations of potential
energy surfaces of small diatomic and triatomic
molecules and clusters. For the original works con-
cerning ECGs we refer the reader to the papers by
Boys [2] and Singer [3], while the most recent works
describing very accurate Born–Oppenheimer mo-
lecular calculations with ECGs can be found in
[4–7] and references therein. There have been also
some high-accuracy molecular calculations with
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ECGs where the BO approximation was not as-
sumed [8–10]. In general, the convergence of calcu-
lations carried out using ECGs is reasonably fast for
the total energy, but somewhat slower for other
properties [11]. This particularly applies to proper-
ties whose operators are sensitive to how well the
cusp conditions are represented in the wave func-
tion. These conditions are usually more difficult to
describe using the Gaussian-type functions than the
Slater-type functions. However, it is not yet possi-
ble to employ the Slater functions to perform high-
accuracy molecular calculations due to the com-
plexity of the Hamiltonian matrix elements with
those functions, which have not yet been derived
for the general case [12]. The use of the correlated
Gaussians on the other hand leads to much simpler
expressions for the matrix elements even for func-
tions where several electrons are explicitly corre-
lated at the same time. The ability of the ECGs to
describe the cusp conditions can be improved by
the inclusion of pre-multipliers dependent upon the
first power of the interparticle distances, but this
complicates the algorithms for the multiple-elec-
tron matrix elements and their implementation
[13, 14].

In this work we expand the electronic wave func-
tion in terms of ECGs with shifted centers to carry
out single-point energy calculations of the two low-
est � triplet states of the helium dimer. In the cal-
culations the wave function is obtained variation-
ally through the minimization of the energy with
respect to the linear and nonlinear (the exponents
and the shifts of the Gaussians) parameters. The
wave function in our calculations has the following
form:

� � �
k�1

M

ck�k, (1)

where M is the size of the basis set, ck are the linear
coefficients, and the �k are ECGs:

�k � exp���r � sk�	�Ak � I3��r � sk�
. (2)

In (2), I3 is the 3 � 3 identity matrix, 196 stands
for the Cartesian Kroneker product operation, and r
and sk are 3N dimensional vectors, where N is the
number of electrons. r is the vector of the Cartesian
coordinates of the positions of the electrons, sk is the
vector of the shifts of the Gaussian centers, and Ak

is a N � N symmetric matrix of the Gaussian expo-

nents. The elements of the Ak matrix and the sk

vector are the nonlinear parameters that are varia-
tionally optimized in the calculation. The Hamilto-
nian matrix elements with functions (2), and their
derivatives with respect to the nonlinear parame-
ters, were derived in the previous work of our
group [15]. We use them to determine the total
energy and the energy gradient in the present cal-
culations. The use of the analytical gradient in the
variational energy minimization [16] is the main
difference between the approach used in this work
and the methods used by others [4]. There is also a
difference in the way we handle the optimization of
the elements of the Ak matrix. In our approach we
use the following Cholesky factorization [17] of this
matrix in terms of a lower triangular matrix Lk:
Ak�L�kL. With such a factorization and with the use
of the elements of the Lk matrix as variational pa-
rameters, the optimization of the energy functional
can be performed without any restrictions on the
range of the variables. Such restrictions would need
to be imposed, if the variational parameters were
the elements of the Ak matrix, which needs to be
positive definite in order for the Gaussian to be a
square-integrable function. We note that the posi-
tively definite character of the Ak matrix does not
preclude some of its elements from being negative.

In this work we have developed a new compu-
tational code for molecular calculations with ECGs.
We first tested the new code by performing calcu-
lations on the ground state (1S0) and the first excited
state (3S1) of the helium atom. Next we performed
calculations on the c3¥G

� and a3¥u
� states of the he-

lium dimer at their respective equilibrium dis-
tances. The test atomic calculations were done to
compare our results with the existing high-accuracy
calculations. The calculations on the triplet states of
the helium dimer were performed because of their
relevance to properties of liquid helium [18], and
these states have not been described before with the
accuracy achieved in this work.

2. Method Used in the Calculations

In the calculations we used the variational
method to determine the energies and the wave
functions of the studied systems. The minimization
of the Rayleigh quotient:

E �
���H��


����

(3)
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was employed and both linear and nonlinear pa-
rameters of the wave function were optimized. The
linear parameters were determined by solving the
secular equation: �H � �S)c � 0 and the nonlinear
parameters were optimized using the optimization
routine TN [19] developed by Nash. This routine
was specifically developed to perform an uncon-
strained minimization of a multivariable function.
The routine uses the analytical gradient of the min-
imized function calculated with respect to the non-
linear parameters. In the present calculations, the
analytical gradient of the Rayleigh ratio was deter-
mined using the procedures developed previously
by our group [16]. Although, in principle, the use of
the TN routine seems straightforward, in practice it
becomes less effective when the ECG basis size
becomes larger than �300 functions. When using
over 300 functions, the number of nonlinear param-
eters approaches 7,000, and because of the coupling
between the basis functions and the high degree of
the nonlinearity of the problem, it becomes difficult
to further lower the energy in the minimization
process. Furthermore, when the number of basis
functions becomes large, linear dependencies be-
tween the basis functions arise more frequently of-
ten leading to an increase of the numerical inaccu-
racy. To overcome these problems we have
modified the optimization approach by (a) imple-
menting a routine to partition the basis into smaller
subsets of functions and to optimize only a single
subset at a time; (b) implementing a routine for
incremental enlarging of the basis set by a small
number of functions and for optimizing the whole
set each time a new subset of functions is added to
the basis set; (c) implementing a routine to check
linear dependencies in the basis set and to remove
them either by eliminating the functions that cause
them or by shifting their nonlinear parameters to
move the functions apart. The approach was tested
in the calculations for the ground 1S0 and the first
excited 3S1 state of the helium atom, and after some
tuning, the procedure was coded for the general
use. The helium calculations were also needed to
evaluate the dissociation limits of the helium dimer.

Another important development in this work
has been the implementation of the spatial and
permutational symmetry in the calculation. This
was done by using projectors onto the chosen irre-
ducible representation of the group SN V P, where
here V is the tensor product, SN is the finite permu-
tational symmetry group of N elements, and P is the
point symmetry group of the molecular system un-
der consideration. The symmetry procedure imple-

mented in our program requires a Young frame [20,
21] as the input, and as the output it gives the
elements of the Young projector Ŷ to be applied to
the Ak matrices of the basis functions.

The implementation of the point group symme-
try required the use of the projector P̂ defined as
follows. We first define the projectors Ŷ � 1/N!
¥i�1

N! �i
YÔi and P̂ � 1/G�

j�1
G �j

PÔ	j, where N is the num-
ber of electrons and g is the order (the number of
elements) of the point group, �i

Y and �j
P are the

elements of the matrices of the irreducible repre-
sentation necessary to build the projectors, and Ôi

and Ô	j are the elements of the permutational and
point group symmetries, respectively. With that we
can write the general form of the projector ŶP̂ as

ŶP̂ �
1

N!G �
i�1

N! �
j�1

g

�i
Y�j

P�Ôi � Ô	j�. (4)

For homonuclear diatomic molecules, the sym-
metry point group (D�h ) is not finite. In this case it
was necessary to restrict the shifts sk in the Gauss-
ians to lie on the line that interconnects the nuclei
and then to apply the projector corresponding to
the Ci point group, which is P̂� � 1/2 �Ê � Î�,
where Ê is the identity operation and Î is the inver-
sion. The projector P̂� is used to generate gerade
wave functions, while P̂� is used to generate un-
gerade wave functions.

3. Results and Discussion

As mentioned, the calculations of the helium
dimer have been performed for the c3¥G

� and a3¥u
�

excited states of this system at their respective equi-
librium internuclear distances of Re � 2.080 and
1.976 a.u. The total nonrelativistic energy has been
computed for several basis sets of different lengths,
M, ranging from M � 35 to 400. In the test calcula-
tions for the helium atom, the basis set size ranged
from M � 30 to 200. These numbers correspond to
the basis-set sizes before the symmetry projections
are applied. The inclusion of the projectors of the
point group symmetry and the permutational sym-
metry, to each basis function, effectively increases
the basis set size for the helium atom from 200 to
400, and for the helium dimer from 400 to 19,200.
Generally, the implementation of the punctual sym-
metry group in the calculation results in an increase
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in the number of basis functions by a factor that is
equal to the group order [22].

In Table I we show the total energies obtained in
the calculations and we compare them with the best
nonrelativistic energies available in the literature.
For the test helium calculations the energies are
reproduced up to the seventh decimal digit with
respect to the nonrelativistic limit [23]. This is an
indication that our approach works well for a two-
electron system, giving reason to expect that it will
also work well for a system with four electrons. In
the table, we also show the results for the helium
dimer. In this case the only literature results that we
have been able to find were obtained using the
orbital approximation and standard post-Hartree–
Fock methods (such as the coupled-cluster
method). These methods are not variational and the
comparison with our variational results is not fully
meaningful. Nevertheless, the difference of about
10�2 Hartree between our results and the best avail-
able calculations for the helium dimer (our results
being lower) clearly indicates the use of ECGs in
our approach leads to much better results. This is
consistent with previous assessments about the rel-
atively low accuracy level of the one-electron (or-
bital) approximation (see, for example, [5]).

In Tables II and III we show how the total ener-
gies converge with the basis set size. Generally, the
convergence is fast for all the states considered. It is
important to mention, however, that starting from
M � 200 functions the full optimization of the
dimer wave function with respect to all nonlinear
parameters was replaced with a “fragmented” op-
timization approach. In this approach the basis set
was divided in groups of 50 functions and each
group was optimized separately from the other
groups.

In the atomic helium calculations, the singlet
converged somewhat faster than the triplet. This
can be attributed to the difference in the electron

correlation effects for these two states, hence affect-
ing the ability of the ECGs to describe them. In
Figure 1(a), we show a plot of the one-electron
densities for the two states determined using the
ECG wave functions calculated in this work. The
singlet shows a higher density around the nucleus
while the density for the triplet states is more
spread out, as can be seen in Figure 1(b). These
peculiarities of the density are the result of the
existence of a Fermi hole between two electrons
with the same spin (the triplet state) and lack of a
Fermi hole for two electrons with the same spin (the
singlet state), which makes the electrons in the lat-
ter case approach each other, on average, closer
than in the former case.

In Figure 2, we show plots of one-electron den-
sities for the c3¥G

� and a3¥u
� states of He2. The plots

correspond to the densities calculated along the
internuclear axis. As expected, the density for the
higher energy c3¥G

� state is more spread out than for
the lower-energy a3¥u

� state. In addition, the un-
gerade state has a substantial density in the mid-

TABLE I ______________________________________
Total energies of the helium atom and the helium
dimer.

This work Best in the literature

He 1S0 �2.90372437 �2.90372438 [23]
He 3S1 �2.17522937 �2.17522938 [23]
He2 a3�u

� �5.15043942 �5.142 [26]
He2 c3�g

� �5.09943867 �5.088 [26]

Energy values are in a.u.

TABLE II ______________________________________
Convergence of the total energy of the 1S0 and 3S1

states of atomic Helium with respect to the basis
size.

M E1S0
E3S1

30 �2.9037038 �2.1752228
50 �2.9037220 �2.1752288
60 �2.9037238 �2.1752292
80 �2.9037242 �2.1752293

200 �2.9037244 �2.1752294

Energy values are in a.u.

TABLE III _____________________________________
Covergence of the total energy of the c3�g

� and
a3�u

� states of Helium dimer with respect to the
basis size.

M Ec3�g
� Ea3�u

�

35 �5.0791717 �5.1406466
65 �5.0893536 �5.1466806
95 �5.0951381 �5.1486696

150 �5.0978387 �5.1501089
200 �5.0992452 �5.1504074
400 �5.0994387 �5.1504394

Energy values are in a.u.
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point between the atoms, which is larger than the
midpoint density of the gerade state. This follows
the common idea of a chemical bond: the higher the
density in between the atoms, the stronger the
bond. This simple reasoning accounts for the higher
stability of the ungerade state. A derivation of the
one-electron density matrix elements with ECGs,
which has never been presented before, is shown in
the Appendix.

Experiments on the lowest triplet states of the
helium dimer have been carried out by Focsa et al.
[24]. They identified and measured many spectral
lines corresponding to several states of this system.
They determined that ve of the c3¥G

� � a3¥u
� tran-

sition (that would be the energy separation between
the bottom of the potential energy surfaces of the

c3¥G
� and the a3¥u

� states as defined on page 151 of
Ref. [25]) to be 1.364278(9) eV. The coupled-cluster
calculations [26] predicted �e�c3¥G

� � a3¥u
�� � 1.47

eV, which is about 8% higher than the experimental
value.

The energy results obtained in the present calcu-
lations are plotted in Figure 3. In Figure 3(a), we
show how �e�c3¥G

� � a3¥u
�� converges with respect

to the number of basis functions. The plot (a) also
shows that �e�c3¥G

� � a3¥u
�� converges from the

above toward the experimental value. This indi-
cates that for equal basis set sizes, the ungerade state
(lower in energy) has energy closer to its exact
value than the gerade state. As mentioned earlier,
this is due to the fact that different numbers of
functions may be needed for different states to
achieve an equivalent convergence level for the
total energy. In addition, Figure 3(a) features a
trend line which has been generated via a least-
squares fitting using the exponential function:
f(M) � a � be�cM, where the parameter a corre-
sponds to the asymptotic limit of �e�c3¥G

� � a3¥u
��.

The fitted parameters were determined to be a �
1.386 � 0.011 eV, b � 0.581 � 0.065 eV, and c �
�0.020 � 0.003, where the error bars are one stan-
dard deviation (�). The experimental value falls
within two standard deviations of the asymptotic
limit that we obtained. According to Ref. 25 (pages
99 and 100), the binding energies, De, of the two
states of He2 dimer considered here are defined as

De�a3�u
�� � Ea3¥u

���E1S0
� E3S1


.

FIGURE 2. One-electron densities, along the internu-
clear axis, of the c3¥G

�, dashed line, and a3¥u
� excited

states of Helium dimer calculated with the 400-term
ECG wave function. The density (y-axis) and the posi-
tion (x-axis) are in atomic units.

FIGURE 1. (a) Radial one-electron densities of the
1S0, dashed line, and the 3S1 states of atomic Helium
calculated with the 200-term ECG wave function. (b)
Difference between the one-electron densities of the
3S1 and 1S0 states of atomic Helium calculated with the
200-term ECG wave function, zoom between r � 2 and
8 au. The density (y-axis) and the position (x-axis) are in
atomic units.
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De�c3�G
�� � Ec3¥G

� � �E1S0
	 E3S1


.

In Figures 3(b) and (c), we included plots showing
how the binding energy for each state converges with
the increasing size of the basis set. These plots also
feature the corresponding trend lines generated using
the f(M) exponential function. De�c3¥G

	� � 0.558 �
0.007 eV and De�a3¥u

	� � 1.946 � 0.003 eV are the

extrapolated binding energies. The reported uncer-
tainties are equal to the corresponding � values. The
previous calculations [26] estimated the two binding
energies to be De�c3¥G

	� � 0.40 eV, and De�a3¥u
	� � 1.88

eV. Earlier variational calculations by Poshusta [27]
and Beck [28] on the a3¥u

	 state yielded the binding
energy of about 0.9 eV. Because in this work we
exploit the variational theorem, our binding en-
ergies are lower bounds of the true values. The
fact that our binding energies are noticeably
lower than the values found in the literature
shows that this work is significantly more accu-
rate than the previous calculations.

4. Conclusions and Future Directions

In this work we report first the high-accuracy
calculations of the helium dimer in the two low-
est � triplet states. The calculated variational en-
ergies are the best results ever obtained for these
states. The calculations have been performed
with our new computer code where the explicit
treatment of the molecular symmetry was imple-
mented. The code was first tested in benchmark
calculations for the helium atom. The work also
includes a derivation of the matrix elements for
calculating one-electron densities with the ECG
functions. The algorithm was applied to describe
the difference between the electron distribution
in the two triplet states of the helium dimer. The
one-electron density matrix elements constitute
the starting point for the evaluation of other one-
electron molecular properties. These include the
electric field, the electric field gradient, and the
electron spin density. Our future work will in-
volve the calculation of these properties with our
computer code.

The result obtained for the energy separation
between the c3¥G

	 and a3¥u
	 states is about 1.5% off

the experiment. This indicates that more work
needs to be done in order to improve the approach
used for the variational optimization of the wave
function and for calculating the energy. The results
show that a larger number of basis functions (M �
400) is need to achieve spectroscopic accuracy.

Appendix: One-Electron Density

INITIAL DEFINITIONS

The total wave function is defined in terms of
ECGs,

FIGURE 3. Convergence of the difference of the total
energies (ve) of the c3¥G

� and a3¥u
� states of Helium dimer

(a); binding energies (De) of the gerade state (b), and
ungerade state (c), with respect to the basis-set size
(M). Energy values are in eV. The superimposed trend
line has been generated by a least square fitting using
the function f(M) � a � be�cM.
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� � �
k�1

M

ckGk, (A1)

where M is the size of the basis set. Each ECG gk (or
gt) can be written as follows:

Gk � exp���r � sk�	A� k�r � sk�
. (A2)

where, if ne is the number of electrons, r, sk, and sl

are 3ne-dimensional vectors; here any overlined
matrix, for instance A� k, is a 3ne � 3ne matrix that
would be the Kroneker product Ak V I3 [6], where
Ak is a ne � ne matrix and I3 is the identity in the
three-dimensional space. The multiplication of gk

and gl leads to

Gk � Gl � 
kl exp� � r	A� klr 	 2b	klr
, (A3)

where 
kl � exp� � s	kA� ksk � s	lA� lsl
, A� kl � A� k 	 A� l,
and b	kl � s	kA� k 	 s	lA� l.

RULE FOR INTEGRATION

Given two vectors x and z of dimension n, and a
square matrix n � n M, we can solve the following
integral:

�
��

��

exp��x	Mx 	 z	x
dx1dx2. . .dxn

� ��n

�M��
1/ 2

exp�z	M�1z
4 �. (A4)

ONE-ELECTRON DENSITY INTEGRAL

The one-electron density at the point in space � is
the expectation value of the one-electron operator

�ri � ��. Namely,

�
�ri � ��
 �
���
�ri � ����


����

, (A5)

and applying Eq. (A1), we get

�
�ri � ��
 �

�
k,l

ckcl�Gk�
�ri � ���Gl


�
k,l

ckcl�Gk�gl

. (A6)

The matrix elements of the delta function are

�Gk�
�ri � ���Gl
 � 
kl exp��akl�
2 	 2u	�


� �
��

��

exp��r	�i�D� klr�i� 	 2�bkl
�i�

� �qkl�	r�i�
 dr1. . .dri�1 dri�1. . .drne, (A7)

where 
 is the Dirac delta; ri is a 3-dimentional
vector, the position of the ith electron; r(i) is a (3ne �
3)-dimensional vector, the r vector without the ith
dimension; � is a three-dimensional vector, the
point in space where the density is evaluated; akl is
the ith diagonal element of Akl; u is a three-dimen-
sional vector composed by the (3i � 1), (3i � 2), and
(3i � 3)-rd element of the bkl vector; Dkl is a (ne �
1) � (ne � 1) matrix, the Akl matrix without the ith
dimension; qkl is a (ne � 1)-dimensional vector com-
posed by the ith column of Akl without the ith
element; bkl

�i� is a (3ne � 3)-dimensional vector com-
posed by bkl without the (3i � 1), (3i � 2), and (3i �
3) elements.

Applying Eq. (A4), we finally get

�Gk�
�ri � ���Gl
 � 
kl��ne�1

�Dkl�
�3/ 2

exp��	D� kl
�1�


exp��akl�
2 	 2u	�
, (A8)

where � � bkl
�i� � �qkl, where the product �qkl is a

3 � (ne � 1)-dimensional vector defined as
(�qkl)[(l�1)�k] � �k(kl)l.

Because we assume gk and gl to be normalized,
we need to modify Eq. (A8) accordingly:

�Gk�
�ri � ���Gl


��Gk�Gk
�Gl�Gl


� 
kl�2ne
�Ak�1/ 2�Al�1/ 2

��Dkl�
�3/ 2

exp��	D� kl
�1�
 exp� � akl�

2

	 2u	�
. (A9)

Now we can plug the matrix element just found
into Eq. (A6) and obtain the one-electron density in
the point �.
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