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D  and  four  lowest D states  of  the Be isotope  of the  beryllium  atom.  All-electron  explicitly  correlated
Gaussian  (ECG)  functions  are  used  in the  calculations  and  their  nonlinear  parameters  are  optimized  with
the  aid  of  the  analytical  energy  gradient  determined  with  respect  to  these  parameters.  The  effect  of  the
finite  nuclear  mass  is  directly  included  in the  Hamiltonian  used  in the  calculations.  The  singlet–triplet
energy  gaps  between  the  corresponding 1D and 3D states,  are  reported.
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. Introduction

We  have recently investigated the lowest five Rydberg 1D states
f the 9Be isotope of the beryllium atom [1] with very accurate vari-
tional quantum mechanical calculations carried out with explicitly
orrelated Gaussian (ECG) functions [1]. 4200 ECGs were used for
ach state. It was shown that the difference between the energies
elative to the ground (1s2 2s2) 1S state obtained in the calculations
nd the experimental energies [2] converge to the energy differ-
nce between the ground state of the 9Be+ ion and the ground state
f the neutral 9Be atom of about 6.77 cm−1. As the calculations
ere performed at the nonrelativistic level of theory, the differ-

nce between the calculated values and the experimental results
ere due to the relativistic and quantum electrodynamics (QED)

ffects which were not included in the calculations. The Hamil-
onian used in the calculations reported in Ref. [1] was  obtained
y rigorously separating out the kinetic energy of the motion of
he center of mass from the laboratory-frame Hamiltonian. Thus
t was explicitly dependent of the mass of the nucleus. Therefore
he adiabatic and nonadiabatic effects were directly included in the

alculations. It can be expected that the effects are dominated by
he adiabatic contribution with the nonadiabatic effect being only

 very small correction to the total energy. Thus the total energy
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correction due to the finite nuclear mass can be likely very accu-
rately determined within the conventional framework using the
first-order perturbation theory and the infinite-nuclear-mass (BO)
wave function.

In the present work the approach used in the calculations of the
1D singlet states of 9Be [1] is applied to calculate the energies of the
lowest four triplet 3D states of this atom. The lowest five 1D beryl-
lium states correspond to the following electronic configurations:
(1s2 2p2) and (1s2 2s nd), n = 3, 4, 5, and 6, while the lowest four 3D
states correspond to the configurations (1s2 2s nd),  n = 3, 4, 5, and 6
[2]. Among the lowest triplet states there are no states dominated
by configurations with two p electrons like the (1s2 2p2) config-
uration. All lowest triplets are dominated by configurations with
three s electrons and one d electron. The calculated energies allow
for estimating the triple-singlet energy gaps for the corresponding
states.

This work is a part of the on-going effort in our laboratory
to develop, implement, and apply quantum mechanical methods
for very accurately predicting spectra of small atoms. The meth-
ods employ explicitly-correlated all-electron Gaussian functions.
Beryllium is the smallest system which is hard to describe accu-
rately using any other type of basis functions (i.e. non-Gaussian),
due to complications arising in the calculation of the Hamiltonian
matrix elements. Beryllium is also a system whose spectra have

been measured with very high accuracy; thus it provides a very
good model for the validation of the calculation methods. One of
the properties which can be used as a stringent test of the accuracy
of atomic calculations is the determination of the singlet–triplet

dx.doi.org/10.1016/j.cplett.2014.10.012
http://www.sciencedirect.com/science/journal/00092614
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nergy gaps between atomic excited states corresponding to the
ame electronic configurations. These gaps are determined in the
xperiment with very high precision. In this work we show that
uch high precision is now possible in the theoretical calculations
nvolving ECGs. The very accurate calculations, such as those pre-
ented in this work, are also useful as benchmarks for testing
alculations performed with other methods and, as such, they can
ontribute to further development of theoretical methods for cal-
ulating atomic spectra of increasingly larger and complex atomic
ystems.

The nonlinear parameters of the ECGs used in our calculations
re extensively variationally optimized using a procedure which
mploys the analytic energy gradient determined with respect to
hese parameters. The basis set for each state is generated inde-
endently in a process which involves adding ECGs in groups and
ptimizing their nonlinear parameters. A basis set including 8100
CGs is generated for each of the considered 3D states. As this is
n almost two times the number of functions used in the previous
alculations of the 1D states, additional calculations are performed
o increase the basis sets for the 1D states from 4200 functions to
100 functions. This allows for the calculations of the singlet–triplet
nergy gaps to be carried out with the same number of ECGs for both
D and 3D states.

The energies of the Rydberg D states of beryllium were mea-
ured with high accuracy and the results are available from the NIST
tomic spectra database [2]. The database lists eleven 1D and ten
D states of this system. The transition energies with respect to the
round 1S (1s2 2s2) state expressed in wavenumbers are given with
he accuracy of two significant figures after the decimal point. We
im to achieve a similar precision in the calculations performed in
his work. However, as mentioned, due to neglecting the relativis-
ic and QED effects, the relativistic energies obtained in the present
alculations are expected to be off from the experiment by a few
avenumbers. A good estimation of this difference can be obtained

y calculating the difference between the nonrelativistic energies
f the ground states of 9Be and 9Be+ [3,4] and the corresponding
ifference obtained from the experiment [2]. As mentioned, the
alue obtained this way  is 6.77 cm−1. This is the value of the differ-
nce between the experimental and the calculated nonrelativistic
nergies of the (1s2 2s nd)  (for both 1D singlet and 3D triplet) states
hould be converging to as the excitation level (i.e. the n value)
ncreases.

The variational approach employing the explicitly correlated
aussian is currently the only method capable of delivering ener-
ies of higher-angular-momentum states for atomic systems with
ore than three electrons with absolute accuracy of 10−7 to

0−8 hartree. To achieve this level of accuracy one needs to use
arge ECG basis sets with the number of functions counted in
housands and one needs to perform a thorough optimization of
he ECGs. In the ECG approaches we have developed, the ana-
ytic gradient of the energy determined in terms of the Gaussian
onlinear parameters has been used to variationally optimize
hese parameters. In the present work the aim is to calculate
he nonrelativistic energies of the five lowest 1D states and the
our lowest 3D states at an about 0.01 cm−1 accuracy level. This
ould be similar to the accuracy achieved for the D states of the

Li atom in our previous calculations [5]. This is the first time
he D states of beryllium are calculated with such high accu-
acy.

The gradient-aided optimization and the related algorithms
ere described in our previous works [6–8]. These algorithms have

een derived using a non-relativistic Hamiltonian that explicitly

epends on the mass of the nucleus. This Hamiltonian, called the

nternal Hamiltonian, Ĥint, is obtained by rigorously separating the
inetic energy of the center-of-mass motion from the laboratory-
rame Hamiltonian. The internal Hamiltonian has the following
etters 616–617 (2014) 254–258 255

form in atomic units:

Ĥint = −1
2

⎛
⎜⎝

n∑
i=1

1
�i

∇2
ri

+
n∑

i,j=1
i  /=  j

1
m0

∇′
ri
∇rj

⎞
⎟⎠ +

n∑
i=1

q0qi

ri
+

n∑
i>j=1

qiqj

rij
,

(1)

where n is the number of electrons, ri is the distance between the ith
electron and the nucleus, m0 is the nucleus mass (16424.2037me for
9Be, where me = 1 is the electron mass), q0 is its charge, qi are elec-
tron charges, and �i = m0mi/(m0 + mi) are electron reduced masses
(mi = me, i = 1, . . .,  n). Prime indicates the matrix/vector transpose.
The explicit dependence of Ĥint on the mass of the nucleus allows
for direct calculation of energy levels of a particular isotope. This
isotope in the present calculation is 9Be. It also allows for perform-
ing infinite-nuclear-mass calculations by setting the mass of the
nucleus in Eq. (1) to infinity. Such calculations are also done in
this work, as they can be directly compared with the conventional
Born-Oppenheimer calculations.

2. Basis set and its optimization

The 1D Rydberg states of Be include a state dominated by
(1s2 2p2) configuration, which is the lowest state of this symme-
try, and states dominated by (1s2 2s nd) configurations, which have
higher energies. However, in all 1D states, as well as in 3D states,
the two  types of configurations mix  to some degree. This mixing
reflects the different ways the angular momenta of single electrons
are added to form the 1D and 3D states. The configuration mix-
ing has to be properly represented by the basis set used in the
calculation. As there are five possible ML values for L = 2 and the
nonrelativistic energy is degenerate for all five, only states with a
particular ML need to be calculated. In the present work these are
the ML = 0 states. Thus, the following all-electron ECGs are used [6]:

�k =
(

xik
xjk

+ yjk
yik

− 2zik
zjk

)
exp

[
−r′ (Ak ⊗ I3) r

]
, (2)

where electron labels ik and jk are either equal (the (1s2 2s nd)  con-
figurations) or not equal (the (1s22p2) configurations) to each other
and can range from 1 to n. Ak in Eq. (2) is an n × n symmetric matrix,
⊗ is the Kronecker product, I3 is a 3 × 3 identity matrix, and r is a 3n
vector of the electron coordinates. ECGs (2) have to be square inte-
grable which implies that the Ak matrix has to be positive definite.
This can be accomplished by expressing the Ak matrix in the fol-
lowing Cholesky factored form of Ak: Ak = LkL′

k
, where Lk is a lower

triangular matrix with matrix elements ranging from ∞ to −∞.  Ak
in such a form is automatically positive definite and the Gaussian
is square integrable. In the variational optimization in this work
the matrix elements of Lk (not Ak) are the ones that are optimized.
As their optimization can be performed without any constraints
regarding their values, they are convenient parameters to use.

The so-called spin-free formalism [9,10] is used in this work
to implement the correct permutational symmetry of the wave
function. In this formalism, an appropriate symmetry projector
is applied to the spatial parts of the wave function to impose
the desired symmetry properties. The symmetry projector can
be constructed using the standard procedure involving Young
operators as described, for example, in Ref. [11]. For 1D and 3D
states of beryllium, the Young operators can be chosen as: Ŷ=(1 −
P̂13)(1 − P̂24)(1 + P̂12)(1 + P̂34) and Ŷ=(1 + P̂12)(1 − P̂14 − P̂34)(1 −
P̂13), respectively, where P̂ij denotes the permutation of the spatial

coordinates of the ith and jth electrons. As the internal Hamiltonian
(1) commutes with all electron permutations, in the calculation of
the overlap and Hamiltonian matrix elements, Ŷ may  be applied to
the ket basis functions only (as Ŷ †Ŷ).
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Table 1
The convergence of the total variational nonrelativistic finite-nuclear-mass energies (in hartrees) of the (1s2 2s2), (1s2 2s nd), n = 3, 4, 5, 6, 1D states and the (1s2 2s nd), n = 3,
4,  5, 6, 3D states of 9Be with the number of the Gaussian basis functions. 1D and 3D ∞Be energies, obtained with 8100 ECGs, are also shown.

Basis 1s2 2p2 1s2 2s 3d 1s2 2s 4d 1s2 2s 5d 1s2 2s 6d

1D 9Be 5400 −14.40735126817 −14.37292484606 −14.35308185745 −14.34295724585 −14.33726584864
5700 −14.40735128819 −14.37292486218 −14.35308187927 −14.34295727535 −14.33726589351
6000 −14.40735130269 −14.37292487873 −14.35308189329 −14.34295730524 −14.33726592990
6300 −14.40735131419 −14.37292489022 −14.35308190235 −14.34295732543 −14.33726596692
6600 −14.40735132360 −14.37292489927 −14.35308191065 −14.34295734030 −14.33726599355
6900 −14.40735133127 −14.37292490632 −14.35308191845 −14.34295735300 −14.33726601478
7200 −14.40735133732 −14.37292491226 −14.35308192498 −14.34295736312 −14.33726603148
7500 −14.40735134240 −14.37292491611 −14.35308193059 −14.34295737182 −14.33726604509
7800 −14.40735134646 −14.37292492176 −14.35308193576 −14.34295737953 −14.33726605668
8100 −14.40735134996 −14.37292492512 −14.35308193996 −14.34295738616 −14.33726606667

∞Be 8100 −14.40823725876 −14.37382457934 −14.35398288149 −14.34385808410 −14.33816650933

3D 9Be 5400 −14.38373107153 −14.35690196726 −14.34477209179 −14.33827538070
5700 −14.38373109063 −14.35690199376 −14.34477214670 −14.33827545744
6000 −14.38373110458 −14.35690202051 −14.34477218481 −14.33827551811
6300 −14.38373111539 −14.35690204015 −14.34477221320 −14.33827556492
6600 −14.38373112396 −14.35690205452 −14.34477223556 −14.33827560397
6900 −14.38373113125 −14.35690206591 −14.34477225429 −14.33827563641
7200 −14.38373113705 −14.35690207531 −14.34477226805 −14.33827565848
7500 −14.38373114210 −14.35690208295 −14.34477228068 −14.33827568079
7800 −14.38373114662 −14.35690208955 −14.34477229138 −14.33827570468
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8100 −14.38373115044 

∞Be 8100 −14.38463459713 

The ECG basis set for each considered state is obtained in a sep-
rate calculation. The basis set is built starting from a small set
f ECGs constructed by using a standard orbital basis set (in this
ase all Ak are diagonal matrices). A procedure to grow the basis
et we found effective is to add one ECG at a time to the basis and
ptimizing its nonlinear parameters (i.e. the matrix elements of
ts Lk matrix) with the gradient-aided procedure. After addition of
ach new hundred ECGs all basis functions are reoptimized again
sing the one-function-at-a-time approach. After cycling over all
asis functions 2–5 times in this reoptimization the calculation
oves on to adding next hundred functions. The initial forms of

he newly added functions are generated by randomly perturbing
he parameters of the functions already included in the basis set and
hoosing the function which after the perturbation contributes the
ost to the total energy. After a function is generated it is checked

or linear dependency with all other functions in the basis set. Lin-
ar dependencies between basis functions are undesirable because
hey may  cause inaccuracies in the computed energies or even a
omplete failure of the calculation. If a linear dependency is found,
he function is rejected and a new function is generated. Also, after
ptimization (reoptimization) each function is checked for linear
ependency and, if any is detected, the function is reset to it origi-
al form before the optimization. In this way the linear-dependency
roblem is controlled. A more detailed description of the procedure
an be found in our previous works [5,6,8]. The basis sets are only
ptimized for the states of the 9Be isotope. For Be with an infinite
uclear mass (∞Be) only the linear expansion coefficients of the
ave functions in terms of the ECGs are reoptimized. This is done

y solving the secular equation while the basis functions are taken
rom the calculations of the corresponding states of 9Be. Such an
pproach is justified by the observation made in our previous cal-
ulations that the change of the wave function due to setting m0 to
nfinity is small and very little can be gained by reoptimizing the
onlinear parameters.

. Results
The generation of the ECG basis sets for the considered states is
y far the most time consuming step of the calculations. As men-
ioned before the basis set for each state is grown to the size of
100 ECGs. This assures that the relative energies between states
−14.35690209496 −14.34477229961 −14.33827572560
−14.35780391205 −14.34567332942 −14.33917633118u

are determined with the accuracy of about 0.01–0.04 cm−1 or bet-
ter. In Table 1 the convergence of the total energies of the five 1D
states and four 3D states considered in the calculations is shown for
the basis set increasing from 5400 to 8100 ECGs. As one notices the
convergence is not quite uniform. As expected, it is better for the
lower states than for the higher ones. In Table 1 we also show the
infinite-nuclear-mass results calculated in the basis sets of 8100
ECGs for both 1D and 3D states. These latter values can be com-
pared with the energies obtained in conventional BO calculations.
Also the differences between the 9Be and ∞Be energies give a very
accurate estimation of the nuclear-mass effect in the total energies
of the D states.

An interesting feature, which shows in the results, is the absence
of the 1s22p2 state among the 3D states and it presence among
the 1D states. The experiment [2] confirms this prediction. It likely
results from the singlet (1s2 2p2) (or more general (1s2 np mp)) con-
figurations having lower energies than the corresponding triplet
configurations. This difference in energies is also the reason why
more ECGs with different ik and jk (see Eq. (2)) appear in the basis
sets of the 1D states than of the 3D states. For example, in the 7 500
ECG basis set of the 1D (1s2 2s 6d) state there are 1741 ECGs with dif-
ferent ik and jk, while in the 7 500 ECG basis set of the 3D (1s2 2s 6d)
state there are only 595 such ECGs. This also shows that the 1D
states of Be have a more significant (1s2 np mp) character than the
3D states.

The convergence of the relative energies for the considered
states with respect to the 1S (1s2 2s2) state is shown in Table 2. These
relative energies are compared with the experimental energies [2].
As one can see, the difference between the experimental energies
and the calculated ones converges to the difference between 9Be
and 9Be+ for both 1D and 3D states. This is an expected behavior
because this difference is due to not accounting for the relativis-
tic and QED effects in the present calculations. The magnitudes of
these effects become progressively closer for higher lying 1s22snd
states because the excited nd electron contributes increasingly less
to the effects as its excitation level increases. Eventually the rel-
ativistic contribution to the total energy of the (1s2 2s nd)  states

becomes very similar to this contribution for the ground state of
9Be+ (equal to 6.77 cm−1). For example, for the (1s2 2s 6d) 1D and 3D
states the values are 6.93 and 6.75 cm−1, respectively. This explains
the convergence pattern of �(exp. – calc.) shown in Table 2.
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Table  2
The convergence of the nonrelativistic energies of the (1s22s2, 1s22snd), n = 3, 4, 5, 61 D states and the (1s22snd), n = 3, 4, 5, 63 D states of 9Be with the number of the Gaussian
basis  functions. The energies are determined with respect to the ground (1s22s2)1

S state [3]. The energy corresponding to the (1s22s ∞ d) state is equal to the ground state
energy of the 9Be+ ion [4]. �(exp. – calc.) is the difference between the experimental and the calculated (with 8100 ECGs) relative energies. All values are given in cm−1. The
values  in parentheses are estimated uncertainties due to the finite size of the basis.

Basis 1s2 2s2 1s2 2s 3d 1s2 2s 4d 1s2 2s 5d 1s2 2s 6d 1s2 2s ∞ d

1D 9Be 5400 56 862.4172 64 418.1435 68 773.1761 70 995.2715 72 244.3888
5700 56 862.4128 64 418.1400 68 773.1714 70 995.2651 72 244.3790
6000 56 862.4097 64 418.1364 68 773.1683 70 995.2585 72 244.3710
6300 56 862.4071 64 418.1338 68 773.1663 70 995.2541 72 244.3629
6600 56 862.4051 64 418.1319 68 773.1645 70 995.2508 72 244.3570
6900 56 862.4034 64 418.1303 68 773.1628 70 995.2480 72 244.3524
7200 56 862.4021 64 418.1290 68 773.1613 70 995.2458 72 244.3487
7500 56 862.4009 64 418.1282 68 773.1601 70 995.2439 72 244.3457
7800 56 862.4000 64 418.1269 68 773.1590 70 995.2422 72 244.3432
8100 56 862.3993 (100) 64 418.1262 (200) 68 773.1580 (200) 70 995.2407 (200) 72 244.3410 (300)
8000 75 185.8656

Experiment 56 882.43 64 428.31 68 780.86 71 002.34 72 252.27 75 192.64
�(exp.  – calc.) 20.03 10.18 7.70 7.10 6.93 6.77

3D 9Be 5400 62 046.4512 67 934.7590 70 596.9589 72 022.8222
5700 62 046.4470 67 934.7531 70 596.9468 72 022.8053
6  000 62 046.4439 67 934.7473 70 596.9385 72 022.7920
6300  62 046.4416 67 934.7430 70 596.9323 72 022.7817
6600  62 046.4397 67 934.7398 70 596.9273 72 022.7732
6900  62 046.4381 67 934.7373 70 596.9232 72 022.7660
7200  62 046.4368 67 934.7352 70 596.9202 72 022.7612
7500  62 046.4357 67 934.7336 70 596.9175 72 022.7563
7800  62 046.4347 67 934.7321 70 596.9151 72 022.7511
8100  62 046.4339 (200) 67 934.7309 (200) 70 596.9133 (300) 72 022.7465 (400)
8000 75 185.8656

Experiment 62 053.72 67 941.66 70 603.76 72 029.50 75 192.64
�(exp.  – calc.) 7.29 6.93 6.85 6.75 6.77

The ground state energy of 9Be, E(9Be)=−14.666435504 hartree, is taken from Ref. [3].
The ground state energy of 9Be+, E(9Be+)=−14.3238634944 hartree, is taken from Ref. [4].

Table 3
Calculated and experimental, singlet–triplet (s–t), 1D-3D, energy differences (in
cm−1) between states of 9Be corresponding to the electronic configurations the
(1s2 2s nd), n = 3, 4, 5, and 6. The total energies for both singlet and triplet states used
in  the s–t energy-difference calculation are obtained with 8100 ECGs. The values in
parenthesis are estimated uncertainties.

1s2 2s 3d 1s2 2s 4d 1s2 2s 5d 1s2 2s 6d

Calculated 2371.69 (1) 838.43 (1) 398.33 (2) 221.59 (2)

s
g
c
n
o
o
g
t
s
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h
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4

f
e

Experimental 2374.59 839.20 398.58 221.77
Exp. – calc. 2.90 0.77 0.25 0.18

Finally, the total energies of the lowest (1s2 2s nd) 1D and 3D
tates of 9Be allow for the calculation of the singlet–triplet energy
aps and for comparing these gaps with the experiment. In these
alculations the lowest (1s2 2p2) 1D state is not included, as it does
ot have a counterpart in the spectrum of the 3D states. The results
f the singlet–triplet gap calculations are presented in Table 3. As
ne can see, also in this case the experimental and calculated values
et closer as the level of excitation increases. Again, the absence of
he relativistic and QED effects in the calculated energies is respon-
ible for the exp. – calc. difference. However, as the core electronic
onfigurations (1s2 2s) in the 1D and 3D states become increasingly
ore similar when the Rydberg nd electron becomes excited to

igher levels and contributes less to the relativistic effects, the
ifference between the experimental and calculated energy gaps
ecreases. For the (1s2 2s 6d) it is only equal to 0.18 cm−1.

. Summary
This work presents the first high-accuracy calculations of the
our lowest 3D states of the 9Be atom. Up to 8100 all-electron
xplicitly correlated Gaussian functions are used for each state and
their exponential parameters are extensively optimized using a
procedure which utilizes the energy gradient determined with
respect to these parameters. It is shown that, as expected, the dif-
ference between the experimental and calculated relative energies
determined with respect to the ground 1S (1s2 2s2) state con-
verges with the increasing level of the electronic excitation to
the difference between the experimental and calculated ioniza-
tion potentials of 9Be. It is also shown that the singlet–triplet
gap between the experimental and calculated energies of the
corresponding 1D and 3D states becomes smaller with the increas-
ing level of excitation. In order to see full convergence of the
experimental and calculated energies at all excitation levels the
relativistic and QED effects need to accounted for in the calcula-
tions. The capabilities to do such calculations are hard to describe
accurately currently being explored.
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