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An algorithm for the variational calculation of atomic D states employing n-electron explicitly corre-
lated Gaussians is developed and implemented. The algorithm includes formulas for the first deriva-
tives of the Hamiltonian and overlap matrix elements determined with respect to the Gaussian nonlin-
ear exponential parameters. The derivatives are used to form the energy gradient which is employed
in the variational energy minimization. The algorithm is tested in the calculations of the two lowest D
states of the lithium and beryllium atoms. For the lowest D state of Li the present result is lower than
the best previously reported result. © 2011 American Institute of Physics. [doi:10.1063/1.3523348]

I. INTRODUCTION

Very accurate quantum mechanical calculations of the
ground and excited states of small atoms have always
provided the testing ground for new computational meth-
ods for atomic calculations. The testing has been pos-
sible due to the availability of very accurate gas-phase
spectra of these systems. An important group of states
for which such high accuracy experimental data are avail-
able are D states. For example, the NIST atomic spec-
tra database1 among the 182 states of the lithium atom
lists ten 2 D states which correspond to the electron con-
figurations 1s2nd, where n = 3, 4, . . . , 12. For the beryl-
lium atom among the 219 levels listed there are 11 1 D
states and 10 3 D states. The lowest 1 D state corresponds to
the electron configuration 1s22p2 and the rest to the config-
urations 1s2nd2, n = 3, 4, . . . , 12. The 3 D states correspond
to the configurations 1s2nd2, n = 3, 4, . . . , 12.

A literature search reveals that only the lowest 2 D state
of lithium has been calculated with high accuracy. The best to
date variational energy for this state was reported by Yan and
Drake2 and it is equal to −7.335 523 541 10(43) a.u. (an ex-
trapolated result). There are no calculations with similar ac-
curacy for the D states of beryllium. Part of the reason for
the lack of calculations of these states is due to the basis set,
which for most works concerning atomic levels has involved
Hylleraas type functions. These functions, while very effec-
tive in the calculations of two- and three-electron atoms,2–7

have not yet been extended to four-electron atoms due to dif-
ficulties with calculating the Hamiltonian matrix elements.

Another type of basis function that has been very popular
in high-accuracy atomic calculations are correlated Gaussian
functions that explicitly depend on the interelectron distances.
The most accurate results for four- and five-electron atoms
have been obtained with those functions.8–11 The main ad-
vantage of using Gaussians in atomic calculations is due to
the simplicity of the Hamiltonian and overlap integrals with
those functions, which can be evaluated analytically for an ar-
bitrary number of electrons. However, these functions cannot

satisfy the Kato cusps conditions and are too fast decaying at
large distances. As the calculations have shown8–11 these de-
ficiencies can be effectively remedied by using longer expan-
sions and by performing extensive optimization of the Gaus-
sian nonlinear parameters using the variational approach.

In this work we have derived and implemented algo-
rithms for calculating the Hamiltonian matrix elements with
explicitly correlated Gaussian functions for describing D
states of small atomic systems. We also derived and im-
plemented algorithms for calculating first derivatives of the
matrix elements determined with respect to the Gaussian
exponents. These derivatives are used to calculate the energy
gradient, which is employed in the variational optimization of
the Gaussian parameters. The variational energy minimiza-
tion is greatly accelerated if the energy gradient is available.
To test the algorithms, we have performed calculations of
two lowest 2 D states of lithium and two lowest 1 D states of
beryllium.

In the approach we use in this work we explicitly account
for the finite mass of the nucleus in the variational nonrela-
tivistic calculations. This is done by means of using a Hamil-
tonian that explicitly depends on the masses of all particles
including the mass of the nucleus (see Sec. I A). In this way
the results change when a different isotope is considered. The
approach also allows us to obtain results corresponding to an
infinite mass of the nucleus. Such results generated here for
lithium in the present work allow for a direct comparison with
the calculations performed by Yan and Drake.2

A. The Hamiltonian

We consider an atom with N particles (i.e., N − 1 elec-
trons and a nucleus). We start with the laboratory-frame
nonrelativistic Hamiltonian and we separate out the center-
of-mass motion. This is done by introducing an internal
Cartesian coordinate system centered at the nucleus. The sep-
aration of the center-of-mass motion is rigorous and results in
the laboratory Hamiltonian becoming a sum of the operator
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representing the kinetic energy of the center-of-mass motion
and the following “internal” Hamiltonian:
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where n = N − 1, ri is the distance between the i th electron
and the nucleus, m0 is the nucleus mass and q0 is its charge,
qi are electron charges, and μi = m0mi/ (m0 + mi ) are elec-
tron reduced masses. The Hamiltonian (1) describes the
motion of n (pseudo)electrons, whose masses have been
changed to the reduced masses, in the central field of the
charge of the nucleus. This motion is coupled through the
Coulombic interactions,
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where ri j = |r j − ri |, and through the mass polarization term,
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II. THE BASIS SET

In this work we consider atomic D states correspond-
ing to electronic configurations where one or two electrons
of the n electron atom is occupying a non-s state. Examples of
such states include the above-mentioned 2 D 1s2nd1 states of
lithium and the 1 D and 3 D 1s22s1nd1 states of beryllium. To
describe an atomic state with a single d electron one, in princi-
ple, needs to use the following explicitly correlated Gaussian
function:

φk = (
x2

ik
+ y2

ik
− 2z2

ik

)
exp[−r′ (Ak ⊗ I3) r], (2)

where ik is an electron label whose value can vary from 1 to
n and is unique for each basis function. The prime indicates
the matrix/vector transpose; this notation is used throughout
this work. Ak in Eq. (2) is an n × n symmetric matrix, ⊗ is
the Kronecker product, I3 is a 3 × 3 identity matrix, and r is
a 3n vector that has the form
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We will denote (Ak ⊗ I3) in Eq. (2) as Ak . However, in the
wave functions of some of the D states there can be com-
ponents corresponding to two electrons being in p states
coupling to a D state. For example, the lowest 1 D state of

beryllium is dominated by the 1s22p2 configuration. Also, the
lowest 2 D state of lithium has a non-negligible contribution
from a similar configuration (1s12p2).2 Thus, the Gaussian
basis set that can best capture all the angular coupling effects
in D states is the following basis:

φk = (
xik x jk + y jk yik − 2zik z jk

)
exp[−r′(Ak ⊗ I3)r], (4)

where electron indices ik and jk are either equal or not equal
to each other.

We use a general quadratic form r′Wkr in place of
(xik x jk + yik y jk − 2zik z jk ) allowing for a more generalized ap-
proach in deriving the matrix elements. With that, our basis
functions are

φk = (r′Wkr) exp[−r′Akr], (5)

where Wk is a sparse 3n × 3n symmetric matrix that
for ik = jk comprises only three nonzero elements:
W3(ik−1)+1,3(ik−1)+1 = 1, W3(ik−1)+2,3(ik−1)+2 = 1, and
W3(ik−1)+3,3(ik−1)+3 = −2, and for ik �= jk it comprises
six elements: W3(ik−1)+1,3( jk−1)+1 = W3( jk−1)+1,3(ik−1)+1 = 1

2 ,
W3(ik−1)+2,3( jk−1)+2 = W3( jk−1)+2,3(ik−1)+2 = 1

2 , and
W3(ik−1)+3,3( jk−1)+3 = W3( jk−1)+3,3(ik−1)+3 = 1. It should
be noted that, in general, we could have used a nonsymmetric
matrix (for ik �= jk) Wk with only three nonzero elements
(yielding the same quadratic form) since there are only
three terms in Eq. (4). However, in practice it is much
more convenient to deal with symmetric Wk matrices as the
derivations of matrix elements becomes considerably simpler
in this case.

As the basis functions used in describing bound states
must be square integrable, restrictions must be imposed on the
Ak matrices. Each Ak matrix must be positive definite. Rather
than restricting the Ak matrix elements, which usually leads to
cumbersome constraints, we use the following Cholesky fac-
tored form of Ak : Ak = Lk L ′

k , where Lk is a lower triangular
matrix. With this representation, Ak is automatically positive
definite for any values of Lk ranging from ∞ to −∞. Thus,
the variational energy minimization with respect to the Lk pa-
rameters can be carried out without any restrictions. It should
be noted that the Lk L ′

k representation of Ak matrix does not
limit the flexibility of basis functions, because any symmet-
ric positive matrix can be represented in a Cholesky factored
form.

The linear expansion coefficients of the wave function in
terms of the basis functions and the elements of the Lk matri-
ces are optimization variables. Also, for each basis function
the ik and jk indices are optimized. This optimization is only
done once for each basis function when the function is first
added to the basis set.

III. THE HAMILTONIAN INTEGRALS AND THE
GRADIENT

In order to fully exploit the sparsity of the Wk matrices
and make the calculation more efficient, three cases have been
distinguished in the calculation of the Hamiltonian and over-
lap integrals. The first case concerns the integrals between the
basis functions with ik �= jk , the second case the integrals for
functions with ik = jk , and the third case the mixed integrals.
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Similar separation is applied in the calculation of the energy
gradient. As the integrals and the gradient are similar to those
published before for atomic states with two p electrons,12, 13

we only present the final formulas in the Appendix.
As the total atomic wave function must be antisymmet-

ric with respect to the permutation of the electron labels an
appropriate symmetry projection needs to be applied to each
basis function. In this work we use the spin-free formal-
ism. The Young projection operator, Ŷ , which imposes proper
symmetry, has to be applied only to the spatial part of the
wave function and thus to each basis function, Ŷφk . Ŷ is a lin-
ear combination of permutational operators, P̂γ , and, as the
Hamiltonian is invariant with respect to all permutations of
the electrons, in the calculation of the overlap and Hamil-
tonian matrix elements it is easy to arrange that the per-
mutational operators are applied to the ket only. In brief,
the ket functions in those matrix elements are operated on
with the permutation operator P̂ = Ŷ †Ŷ (the dagger stands
for conjugate), where the Ŷ operator can be derived using
the appropriate Young tableaux for the state under consid-
eration. For lithium in a 2 D and beryllium in a 1 D state
the Young operators can be chosen as Ŷ = (1̂ + P̂34)(1̂ − P̂23)
and Ŷ = (1̂ − P̂45)(1̂ − P̂23)(1̂ + P̂24)(1̂ + P̂35), respectively,
where the nucleus is labeled as 1, and the electrons are labeled
as 2, 3, 4, 5, 1̂ is the identity operator, and P̂i j is the permuta-
tion of the the i th and j th electron.

A. Total energy and energy gradient

The optimization of the linear expansion coefficients, the
Lk Gaussian parameters, and the ik and jk indices, is per-
formed in this work through the minimization of the standard
Rayleigh–Ritz variational energy functional. In the minimiza-
tion the energy gradient is employed. The calculation for each
state is performed independently from other states and the pa-
rameters of the basis functions are optimized specifically for
that particular state. In the process of generating the basis set,
we start with a small randomly selected set of functions and
this set is then grown by incremental additions of small groups
of functions. The added functions are generated randomly
based on the actual distribution of nonlinear parameters of
the functions already present in the basis set. At this step a
significant number of random candidates are generated and
only those that give the best improvement of the total energy
are selected. When a new group of functions is added to the
set their nonlinear parameters are optimized with the gradient-
based method. After this is finished the nonlinear parameters
of the entire basis set (one function at a time) are reoptimized.

IV. NUMERICAL TESTS

The first test of the approach developed in this work
concerns the lowest 2 D state of lithium. As mentioned this
state was calculated before by Yan and Drake.2 As their cal-
culation was performed with an infinite mass of the lithium
nucleus, we also first carried a calculation setting the mass
of the nucleus (m0) to infinity. The convergence of the to-
tal energy with the number of Gaussian functions in the ba-

TABLE I. The convergence of the total variational energy of the lowest 2 D
state of lithium with the number of Gaussians obtained in the present infinite-
nuclear mass variational calculations. The energies are in hartrees.

Basis set size Energy

1900 −7.335 523 530 70
2300 −7.335 523 538 22
2700 −7.335 523 540 89
3100 −7.335 523 541 96
3500 −7.335 523 542 51
3900 −7.335 523 542 82
1673a −7.335 523 540 35
∞a,b −7.335 523 541 10(43)

aFrom Ref. 2.
bThe energy obtained by extrapolating to infinity in terms of the parameter � used in
the integral formulas by Yan and Drake (Ref. 2).

sis set is shown in Table I. As one notices, the energy is
converged to about ten significant figures. The energy value
obtained in the present calculations with 3900 Gaussians of
–7.335 523 542 82(60) a.u. is lower than the previous best
variational upper bound of Yan and Drake2 by about 2 × 10−9

hartree. The Yan and Drake energy is obtained in our calcula-
tions with about 2600 Gaussians in the basis set. The lithium
test clearly shows that Gaussians can effectively describe the
D states of small atomic systems. Also, the agreement be-
tween Yan and Drake’s and our results give us confidence that
the algorithm and its implementation works correctly.

The next test concerns the energy differences between
the energies of the two lowest 2 D states of 7Li correspond-
ing to the electron configurations 1s23d1 and 1s24d1 and the
7Li 1s22s1 ground state energy. These energy differences can
be compared with the experimental values taken from the
NIST atomic spectra database.1 Here we used a finite nuclear
mass approach, which is possible in our scheme. The con-
vergence of the total nonrelativistic energies with the number
of basis functions obtained in those calculations are shown in
Table II. We also show in Table II the energy of the 7Li ground
state obtained in our previous work14 and the energy of 7Li+

calculated in this work. The latter value is used to determine
the 7Li nonrelativistic ionization potential (IP). The reason
we need the 7Li IP is to compare it with the relative ener-
gies of the 2 D states determined with respect to the energy
of the ground state. Such a comparison must show that in the
limit of exciting the d electron in 7Li to increasingly higher
2 D states, the relative energy should converge to the 7Li IP
as the electron becomes removed from the atom. Naturally,
as only two 2 D states are calculated in this work and not a
wider range of the Rydberg 1s2nd1 states is considered, the
consistency of the results and not the convergence will be
tested.

It should also be mentioned that, as the present results do
not include relativistic corrections, the agreement with the ex-
perimental values is not expected to be perfect. This is why we
need the IP value. If the algorithm implemented in this work
is correct, the difference between the experimental and calcu-
lated nonrelativistic IPs should be similar to the differences
between the calculated relative energies of the two 2 D states
of 7Li and their corresponding experimental counterparts. The
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TABLE II. The convergence of the total variational finite mass energies of the two lowest 2 D states of 7Li with the number of Gaussians. The total energies
are in hartrees and the ionization potentials (IP) in cm−1.

No. of basis functions 7Li 1s23d1 7Li 1s24d1 7Li+ 1s2 7Li 1s22s1

2600 −7.334 927 304 45 −7.310 595 236 10
2800 −7.334 927 304 88 −7.310 595 237 62
3000 −7.334 927 305 14 −7.310 595 238 65
3200 −7.334 927 305 41 −7.310 595 239 66
3400 −7.334 927 305 59 −7.310 595 240 28
3600 −7.334 927 305 75 −7.310 595 240 76
10000a −7.477 451 930 7
300b −7.279 321 516 83
400 −7.279 321 519 40
500 −7.279 321 519 72

Energy differencec 31280.54 36620.81 43484.60
Experimentd 31283.08 36623.38 43487.15
�e −2.54 −2.57 −2.55

aFrom Ref. 14.
bCalculations for 7Li+ have been performed in this work.
cCalculated relative to the ground 1s2 2s1 state of 7Li. For the 7Li 2D states the energies obtained with 3600 Gaussians were used. For 7Li+ the energy obtained with 500 Gaussians
was used.
dFrom Ref. 1.
eDetermined as the calculated energy difference minus the experimental energy difference.

results presented in Table II show that they are indeed very
similar. The IP of 7Li calculated at the nonrelativistic level
of 43 484.60 cm−1 is lower than the experimental value by
2.55 cm−1. This is very close to the differences between the
experimental and calculated relative energies of the two 2 D
states, which are 2.54 and 2.57 cm−1, respectively. Clearly,
the relativistic contribution to the relative energies of the 2 D
states of 7Li from the Rydberg d electron is very small. It
should be said that the present finite-mass calculations of the
two 2 D states of 7Li are the first ever performed. Also, these
are the first calculations that described the 1s24d1 2 D 7Li state
with a similar accuracy as the lower 1s23d1 2 D state.

The last test concerns the two lowest 1 D states of the
beryllium atom (9Be). This test is performed to show the ca-
pability of the method developed in this work to describe

D states of atoms with more than three electrons—the task
which is still out of reach for other types of explicitly cor-
related basis functions. The results of the beryllium cal-
culations are shown in Table III. Here we also show the
convergence of the total nonrelativistic energies for the 9Be
1s22p2 and 1s22s13d1 1 D states with the number of basis
functions and the relative energies with respect to the ground
1s22s2 1S state. As in Table II, the results also include the IP
value, as well as the experimental values taken from the NIST
atomic spectra database.1

First, as one notices, the total variational energies for
beryllium 1 D states are not as well converged with the
number of basis functions as the energies for the two 2 D
states of lithium. The lowest energy values corresponding to
configurations 1s22p2 and 1s22s13d1, which we obtained in

TABLE III. The convergence of the total variational finite mass energies of the two lowest 1 D states of 9Be with the number of Gaussians. The total energies
are in hartrees and the energy differences with respect to the ground state in cm−1.

No. of basis functions 9Be 1s22p2 9Be 1s22s13d1 9Be+ 1s22s1 9Be 1s22s2

1200 −14.407 341 480 5 −14.372 916 534 2
1300 −14.407 343 628 4 −14.372 918 282 8
1400 −14.407 345 233 1 −14.372 919 011 1
1500 −14.407 346 376 9 −14.372 920 572 8
1600 −14.407 347 946 1 −14.372 921 316 6
1700 −14.407 347 875 3 −14.372 921 585 6
1800 −14.407 348 488 2 −14.372 922 259 3
10000a −14.666 435 504
8000b −14.323 863 494 4

Energy differencec 56863.03 64418.71 75185.87
Experimentd 56882.43 64428.31 75192.64
�e −19.40 −9.60 −6.77

aFrom Ref. 15.
bFrom Ref. 16.
cCalculated relative to the ground 1s22s2 state of 9Be. For the 1 D Be states the energies obtained with 1800 Gaussians were used.
dFrom Ref. 1.
eDetermined as the calculated energy difference minus the experimental energy difference.
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our calculations are –14.407 348 488 2 and –14.372 922 259 3
a.u., respectively. We estimate that the remaining uncertainty
for these values is of the order of 10−6 a.u. It would take sev-
eral thousand Gaussians to converge them to the level of accu-
racy reached for lithium and such calculations will be carried
out in the future. However, even with the present results, the
agreement with the experiment for the relative energies is very
good. Also the difference between the calculated relative en-
ergies and the experimental energies seems to converge to the
IP calculated based on very accurate total energies of 9Be and
9Be+ taken from our previous works.15, 16 The results show
that, unlike for lithium, the relativistic correction to IP of 9Be
is almost three times smaller than for the relative energy of
the lowest 1 D state of this atom.

V. SUMMARY

The following has been accomplished in this work.

1. An algorithm for nonrelativistic variational calculations
of atomic D states has been developed and implemented.

2. The approach has been used to obtain new improved up-
per bound to the variational infinite-mass energy of the
lowest 2 D state of lithium.

3. High-accuracy lithium calculations have also been per-
formed for the two lowest 2 D states of the 7Li isotope
using the finite-mass regime enabled by the approach.
The results show very good agreement with the experi-
ment.

4. It has been demonstrated that the approach can be used
to carry out calculations of D states of an atomic system
with more than three electrons.

The work presented here will be extended in the future to
study wider range of Rydberg D states of the leading isotopes
of lithium and beryllium. The approach will also be used in
calculations of D states of atoms and atomic ions with more
than four electrons.

APPENDIX A: MATRIX ELEMENTS AND THE
GRADIENT

Below, we show the expressions for the Hamilto-
nian and overalp matrix elements and the corresponding

derivatives with respect to the Lk matrix elements. We do
not show how those quantities have been derived because the
procedure was very similar to that presented in our previous
works.12, 13

Let us first define a quantity common to the overlap, ki-
netic, and potential energy matrix elements:

η = tr
[
A−1

kl WkA−1
kl Wl

]
, (A1)

and a quantity common only to the kinetic energy matrix ele-
ment:

τ = tr
[
A−1

kl Ak M Al
]
. (A2)

In Eq. (A2) M is the mass matrix whose diagonal elements are
set to 1/(2m1), 1/(2m2), . . . , 1/(2mn), while the off-diagonal
elements are set to 1/(2m0). Again, m0 is the mass of the
nucleus and m1, . . . , mn are the electron masses. Next we
define

λ = tr
[
A−1

kl J
]
, (A3)

common only to the potential energy matrix element, where
matrix J has the following simple structure:

J =
{

Eii , i = j for ri

Eii + E j j − Ei j − E ji , i �= j for ri j

, (A4)

and Ei j is a matrix with 1 in the i, j th position and 0’s else-
where.

In addition to these quatities we also define opera-
tions used to determine the gradient formulas. First, the
“vech” operation transforms an n × n matrix into an n(n +
1)/2-component vector and, second, the transformation ma-
trix, T , formed by the first derivatives of the elements
of vech of a 3n × 3n matrix Lk (Ll) with respect to
the elements of vech of n × n matrix Lk (Ll). T is
defined as

T = d vech Lk (vech Lk)

d (vech Lk)′
≡ d vech Ll (vech Ll)

d (vech Ll )
′ . (A5)

The overlap integral for φk and φl basis functions is

〈φk |φl〉 = 1
2π3n/2|Akl |−3/2η, (A6)

and its derivatives with respect to vech Lk and vech Ll are

∂〈φk |φl〉
∂ vech Lk

= −1

2
π3n/2|A−1

kl |3/2

{
3

2
vech

((
A−1

kl + A−1′
kl

)
Lk

)
η

+ vech
((

A−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl WlA−1
kl

)′)
Lk

)
T

+ vech
((

A−1
kl WlA−1

kl WkA−1
kl + (

A−1
kl WlA−1

kl WkA−1
kl

)′)
Lk

)
T

}
, (A7)

∂〈φk |φl〉
∂ vech Ll

= −1

2
π3n/2|A−1

kl |3/2

{
3

2
vech

((
A−1

kl + A−1′
kl

)
Ll

)
η

+ vech
((

A−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl WlA−1
kl

)′)
Ll

)
T

+ vech
((

A−1
kl WlA−1

kl WkA−1
kl + (

A−1
kl WlA−1

kl WkA−1
kl

)′)
Ll

)
T

}
. (A8)
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The kinetic energy matrix element is

Tkl = 〈φk | − ∇′
rM∇′

r|φl〉 = π3n/2|Akl |−3/2
{
3ητ + 2

(
tr

[
A−1

kl WkA−1
kl WlA−1

kl AkMAl
] + tr

[
A−1

kl WkMWl
]

− tr
[
A−1

kl WkA−1
kl AkMWl

] − tr
[
A−1

kl WlA−1
kl WkMAl

]
+ tr

[
A−1

kl WlA−1
kl WkA−1

kl AkMAl
])}

, (A9)

and its derivative with respect to vech Lk and vech Ll are

∂Tkl

∂ vech Lk
= ∂〈φk | − ∇′

rM∇′
r|φl〉

∂ vech(Lk)

= −π3n/2|Akl |−3/2

{
3

2
vech

((
A−1

kl + A−1′
kl

)
Lk

) (
3ητ + 2

(
tr

[
A−1

kl WkA−1
kl WlA−1

kl AkMAl
] + tr

[
A−1

kl WkMWl
]

+ tr
[
A−1

kl WkA−1
kl AkMWl

] + tr
[
A−1

kl WlA−1
kl WkMAl

]
+ tr

[
A−1

kl WlA−1
kl WkA−1

kl AkMAl
]))

+3τ
(

vech
((

A−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl WlA−1
kl

)′)
Lk

)
+ vech

((
A−1

kl WlA−1
kl WkA−1

kl + (
A−1

kl WlA−1
kl WkA−1

kl

)′)
Lk

))
T

+3η
(

vech
((

A−1
kl Ak M Al A−1

kl + (
A−1

kl Ak M Al A−1
kl

)′)
Lk

)
− vech

((
M Al A−1

kl + (
M Al A−1

kl

)′)
Lk

))
+ 2

(
vech

((
A−1

kl WkA−1
kl WlA−1

kl AkMAlA−1
kl + (

A−1
kl WkA−1

kl WlA−1
kl AkMAlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WlA−1
kl AkMAlA−1

kl WkA−1
kl + (

A−1
kl WlA−1

kl AkMAlA−1
kl WkA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl AkMAlA−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl AkMAlA−1

kl WkA−1
kl WlA−1

kl

)′)
Lk

)
− vech

((
MAlA−1

kl WkA−1
kl WlA−1

kl + (
MAlA−1

kl WkA−1
kl WlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WlA−1
kl WkA−1

kl AkMAlA−1
kl + (

A−1
kl WlA−1

kl WkA−1
kl AkMAlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WkA−1
kl AkMAlA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl AkMAlA−1
kl WlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl AkMAlA−1
kl WlA−1

kl WkA−1
kl + (

A−1
kl AkMAlA−1

kl WlA−1
kl WkA−1

kl

)′)
Lk

)
− vech

((
MAlA−1

kl WlA−1
kl WkA−1

kl + (
MAlA−1

kl WlA−1
kl WkA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WkA−1
kl AkMWlA−1

kl + (
A−1

kl WkA−1
kl AkMWlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl AkMWlA−1
kl WkA−1

kl + (
A−1

kl AkMWlA−1
kl WkA−1

kl

)′)
Lk

)
− vech

((
MWlA−1

kl WkA−1
kl + (

MWlA−1
kl WkA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WlA−1
kl WkMAlA−1

kl + (
A−1

kl WlA−1
kl WkMAlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WkMAlA−1
kl WlA−1

kl + (
A−1

kl WkMAlA−1
kl WlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WkMWlA−1
kl + (

A−1
kl WkMWlA−1

kl

)′)
Lk

))
T

}
, (A10)
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∂Tkl

∂ vech Ll
= ∂〈φk | − ∇′

rM∇′
r|φl〉

∂ vech Ll

= −π3n/2|Akl |−3/2

{
3

2
vech

((
A−1

kl + A−1′
kl

)
Ll

) (
ητ + 2

(
tr

[
A−1

kl WkA−1
kl WlA−1

kl AkMAl
] + tr

[
A−1

kl WkMWl
]

+ tr
[
A−1

kl WkA−1
kl AkMWl

] + tr
[
A−1

kl WlA−1
kl WkMAl

] + tr
[
A−1

kl WlA−1
kl WkA−1

kl AkMAl
]))

+3τ
(

vech
((

A−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl WlA−1
kl

)′)
Ll

)
+ vech

((
A−1

kl WlA−1
kl WkA−1

kl + (
A−1

kl WlA−1
kl WkA−1

kl

)′)
Lk

))
T

+3η
(

vech
((

A−1
kl Ak M Al A−1

kl + (
A−1

kl Ak M Al A−1
kl

)′)
Ll

)
− vech

((
A−1

kl Ak M + (
A−1

kl Ak M
)′)

Ll
))

+2
(

vech
((

A−1
kl WkA−1

kl WlA−1
kl AkMAlA−1

kl + (
A−1

kl WkA−1
kl WlA−1

kl AkMAlA−1
kl

)′)
Ll

)
+ vech

((
A−1

kl WlA−1
kl AkMAlA−1

kl WkA−1
kl + (

A−1
kl WlA−1

kl AkMAlA−1
kl WkA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl AkMAlA−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl AkMAlA−1

kl WkA−1
kl WlA−1

kl

)′)
Ll

)
− vech

((
A−1

kl WkA−1
kl WlA−1

kl AkM + (
A−1

kl WkA−1
kl WlA−1

kl AkM
)′)

Ll
)

+ vech
((

A−1
kl WlA−1

kl WkA−1
kl AkMAlA−1

kl + (
A−1

kl WlA−1
kl WkA−1

kl AkMAlA−1
kl

)′)
Ll

)
+ vech

((
A−1

kl WkA−1
kl AkMAlA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl AkMAlA−1
kl WlA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl AkMAlA−1
kl WlA−1

kl WkA−1
kl + (

A−1
kl AkMAlA−1

kl WlA−1
kl WkA−1

kl

)′)
Ll

)
− vech

((
A−1

kl WlA−1
kl WkA−1

kl AkM + (
A−1

kl WlA−1
kl WkA−1

kl AkM
)′)

Ll
)

+ vech
((

A−1
kl WkA−1

kl AkMWlA−1
kl + (

A−1
kl WkA−1

kl AkMWlA−1
kl

)′)
Ll

)
+ vech

((
A−1

kl AkMWlA−1
kl WkA−1

kl + (
A−1

kl AkMWlA−1
kl WkA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl WlA−1
kl WkMAlA−1

kl + (
A−1

kl WlA−1
kl WkMAlA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl WkMAlA−1
kl WlA−1

kl + (
A−1

kl WkMAlA−1
kl WlA−1

kl

)′)
Ll

)
− vech

((
A−1

kl WlA−1
kl WkM + (

A−1
kl WlA−1

kl WkM
)′)

Ll
)

+ vech
((

A−1
kl WkMWlA−1

kl + (
A−1

kl WkMWlA−1
kl

)′)
Ll

))
T

}
. (A11)

And finally, the potential energy matrix element is

Vkl = 〈φk | 1

ri j
|φl〉 = 2π (3n−1)/2|Akl |−3/2λ−1/2

{
1

2
η−

1

6
λ−1

(
tr

[
A−1

kl WkA−1
kl WlA−1

kl J
] + tr

[
A−1

kl WlA−1
kl WkA−1

kl J
])

+ 1

20
λ−2

(
2 tr

[
A−1

kl WkA−1
kl JA−1

kl WlA−1
kl J

] + tr
[
A−1

kl WkA−1
kl J

]
tr

[
A−1

kl WlA−1
kl J

])}
, (A12)

and its derivatives with respect to vech Lk and vech Ll are

∂Vkl

∂ vech Lk
=

∂〈φk | 1
ri j

|φl〉
∂ vech Lk

= 2π (3n−1)/2|Akl |−3/2λ−1/2

{(
1

2
λ−1 vech

((
A−1

kl J A−1
kl + (

A−1
kl J A−1

kl

)′)
Lk

) − 3

2
vech

((
A−1

kl + A−1′
kl

)
Lk

))
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×
(

1

2
η − 1

6
λ−1

(
tr

[
A−1

kl WkA−1
kl WlA−1

kl J
] + tr

[
A−1

kl WlA−1
kl WkA−1

kl J
]))

+1

2

(
vech

((
A−1

kl WkA−1
kl WlA−1

kl + (
A−1

kl WkA−1
kl WlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WlA−1
kl WkA−1

kl + (
A−1

kl WlA−1
kl WkA−1

kl

)′)
Lk

))
T

+1

6
λ−1

(
vech

((
A−1

kl WkA−1
kl WlA−1

kl JA−1
kl + (

A−1
kl WkA−1

kl WlA−1
kl JA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WlA−1
kl JA−1

kl WkA−1
kl + (

A−1
kl WlA−1

kl JA−1
kl WkA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl JA−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl JA−1

kl WkA−1
kl WlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WlA−1
kl WkA−1

kl JA−1
kl + (

A−1
kl WlA−1

kl WkA−1
kl JA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl WkA−1
kl JA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl JA−1
kl WlA−1

kl

)′)
Lk

)
+ vech

((
A−1

kl JA−1
kl WlA−1

kl WkA−1
kl + (

A−1
kl JA−1

kl WlA−1
kl WkA−1

kl

)′)
Lk

))
T

−1

6
λ−2 vech

((
A−1

kl J A−1
kl + (

A−1
kl J A−1

kl

)′)
Lk

)
(

tr
[
A−1

kl WkA−1
kl WlA−1

kl J
] + tr

[
A−1

kl WlA−1
kl WkA−1

kl J
])}

, (A13)

∂Vkl

∂ vech Ll
=

∂〈φk | 1
ri j

|φl〉
∂ vech Ll

= 2π (3n−1)/2|Akl |−3/2λ−1/2

{(
1

2
λ−1 vech

((
A−1

kl J A−1
kl + (

A−1
kl J A−1

kl

)′)
Ll

) − 3

2
vech

((
A−1

kl + A−1′
kl

)
Ll

))

×
(

1

2
η − 1

6
λ−1

(
tr

[
A−1

kl WkA−1
kl WlA−1

kl J
] + tr

[
A−1

kl WlA−1
kl WkA−1

kl J
]))

+ 1

2

(
vech

((
A−1

kl WkA−1
kl WlA−1

kl + (
A−1

kl WkA−1
kl WlA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl WlA−1
kl WkA−1

kl + (
A−1

kl WlA−1
kl WkA−1

kl

)′)
Ll

))
T

+ 1

6
λ−1

(
vech

((
A−1

kl WkA−1
kl WlA−1

kl JA−1
kl + (

A−1
kl WkA−1

kl WlA−1
kl JA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl WlA−1
kl JA−1

kl WkA−1
kl + (

A−1
kl WlA−1

kl JA−1
kl WkA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl JA−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl JA−1

kl WkA−1
kl WlA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl JA−1
kl WkA−1

kl WlA−1
kl + (

A−1
kl JA−1

kl WkA−1
kl WlA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl WlA−1
kl WkA−1

kl JA−1
kl + (

A−1
kl WlA−1

kl WkA−1
kl JA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl WkA−1
kl JA−1

kl WlA−1
kl + (

A−1
kl WkA−1

kl JA−1
kl WlA−1

kl

)′)
Ll

)
+ vech

((
A−1

kl JA−1
kl WlA−1

kl WkA−1
kl + (

A−1
kl JA−1

kl WlA−1
kl WkA−1

kl

)′)
Ll

))
T

− 1

6
λ−2 vech

((
A−1

kl J A−1
kl + (

A−1
kl J A−1

kl

)′)
Ll

)
(

tr
[
A−1

kl WkA−1
kl WlA−1

kl J
] + tr

[
A−1

kl WlA−1
kl WkA−1

kl J
])}

. (A14)
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