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Abstract

The present study investigated the uncertainty associated with Climatol's

adjustment algorithm applied to daily minimum and maximum air tempera-

ture. The uncertainty quantification was performed based on several numeri-

cal experiments and the benchmark data that were created in the framework

of the INDECIS project. Using a complex approach, the uncertainty was evalu-

ated at different levels of detail (day-to-day evaluation through formalism of

random functions and six statistical metrics) and time resolution (daily and

yearly). However, only the main source of potential residual errors was consid-

ered, namely station signals introduced into a raw data set to be homogenized/

adjusted. Other influencing factors, such as the averaged correlation between a

candidate and references, were removed from the analysis or kept almost

unchanged. According to our calculations, the Climatol's adjustment uncer-

tainty, evaluated on the daily scale, varies over time. The width of the residual

errors distribution in summer months is substantially less compared with win-

tertime. The slight seasonality is also observed in the means of the residual

errors. The uncertainty evaluation based on the statistical metrics usually

neglect such seasonal non-stationarity of the residual errors providing only

assessments averaged over time. On the other hand, the metrics provide

detailed information regarding both types of the residual errors, systematic

and scatter. The metrics values confirmed good capability of the Climatol soft-

ware to remove the systematic errors related to jumps in the means, while the

scatter errors are removed from the raw time series less efficiently. On the

yearly scale, the uncertainty evaluation was performed for the yearly tempera-

ture data and several climate extreme indices. Both types of errors are removed

well in the yearly time series of the air temperature and the extreme indices.

The metrics values showed a significant reduction of the Climatol's adjustment

uncertainty. A substantial decrease of the linear trend errors in the yearly time

series can also be observed.
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1 | INTRODUCTION

The detection of modern climate change and analysis of
climate variability and extreme events on the national,
regional, or even global scales are mainly performed
based on a statistical analysis of time series of measured
meteorological variables such as air temperature and pre-
cipitation (e.g., Alexander et al., 2006; Klein Tank
et al., 2009; Hartmann et al., 2013). However, in order to
extract accurate and reliable conclusions from the analy-
sis it is necessary first to homogenize raw data sets usu-
ally containing many spurious artefacts
(inhomogeneities) (Aguilar et al., 2003; Trewin, 2010). By
performing a homogenization, one aims to remove the
inhomogeneities (abrupt shifts/jumps, gradual trends,
outliers, etc.) and approximate the data to the real cli-
mate signal, that took place in some area. Usually the
homogenization procedure allows to improve the consis-
tency of the data, which can be seen in the process of a
statistical comparison of the raw and homogenized time
series (e.g., Mamara et al., 2014; Prohom et al., 2016;
Osadchyi et al., 2018; Yosef et al., 2018; Fioravanti
et al., 2019; Skrynyk et al., 2019; Dumitrescu et al., 2020).
However, the question that may remain unclear is: how
far are the homogenized data from the true climate sig-
nal? Or, in other words, what potential uncertainties
could still be present in the data homogenized by means
of some homogenization algorithm or software? It is a
very important yet largely overlooked issue, because the
climate signal (clean data) is essentially unknown and it
is impossible to conduct a direct quantitative comparison
and evaluation of the homogenization results. At the
same time, understanding the uncertainties and their
causes is vital for the correct interpretation of outputs of
any predicting model (e.g., Iman and Helton, 1988),
including homogenization software.

The problem of climate data homogenization can be
divided into two sub-problems, namely the detection of
discontinuities (most probable dates of potential inhomo-
geneities) and adjustment of inhomogeneous data (some
segments of raw time series) to homogeneous state. Both
sub-problems might produce a certain number of com-
mon errors, which deviate the homogenized data from
the true climate signal. Evaluation of the efficiency of the
detection algorithms has been performed in many works
(e.g., Ducré-Robitaille et al., 2003; DeGaetano, 2006;
Reeves et al., 2007; Domonkos, 2011; Kuglitsch
et al., 2012; Venema et al., 2012; Willett et al., 2014;
Killick, 2016; Yozgatligil and Yazici, 2016; Coll
et al., 2020). Assessment of the performance of the adjust-
ment methods has also been considered (e.g., Della-
Marta and Wanner, 2006; Mestre et al., 2011;
Trewin, 2013; Squintu et al., 2020). In both cases, the

evaluation was mainly performed in a relative form, that
is, several homogenization algorithms are usually com-
pared in order to define which one gives the best output
and is most suitable for practical applications. Such rela-
tive comparison is usually performed based on some
benchmark data. However, the quantification of the
uncertainties of the homogenization procedures has been
considered in few works (e.g., Lindau and Venema, 2016;
Trewin, 2018; Vincent et al., 2018). Lindau and Ven-
ema (2016) studied the uncertainty of the multiple
breakpoint detection algorithms applied to the yearly cli-
mate time series. To do so, they defined a probability dis-
tribution for possible shifts of the detected break from its
true position based on a theoretical approach. According
to their findings, the probability of the shifts or, in other
words, detection errors, can be described statistically by a
Brownian motion with drift. Vincent et al. (2018) and
Trewin (2018) evaluated the uncertainty of the homoge-
nization adjustment algorithms applied to the daily air
temperature time series. In both works, parallel measure-
ments of temperature were used in order to assess poten-
tial residual errors. However, the uncertainty of the
adjustment was quantified using different methodology.
In (Vincent et al., 2018) the remaining errors in corrected
time series were evaluated through two statistical met-
rics, the root mean square error (RMSE) and the percent-
age of days within 0.5�C (POD05) that were calculated
based on daily data. As described in the paper, RMSE and
POD05 were used to assess the uncertainty in the mean
and extreme temperature values, respectively. In
(Trewin, 2018) the uncertainty is also evaluated through
some statistical indicators, but they were calculated on
the seasonal and annual scales. The uncertainty was
defined as the standard deviation (SD) of the indicator
values that were obtained by repeating calculations for
slightly different adjustment conditions (changing the set
of reference stations, their number, etc.). It is important
to note that in spite of intuitively clear meaning of the
term ‘uncertainty’, which can be simply interpreted as a
range or a distribution of possible residual errors, there is
no unique methodology how it can be quantified for the
homogenization/adjustment of climate data.

The objective of this work is to evaluate the uncer-
tainty associated to the adjustment of the daily maximum
and minimum temperature series using Climatol
(Guijarro, 2018; http://climatol.eu/). In order to focus on
Climatol's adjustment algorithm, we base our analysis on
the assumption of perfect detection. It should be empha-
sized that the problem of the uncertainty evaluation of
the homogenization adjustment is particularly important
when dealing with daily time series, since the climate
data of such time resolution is the basis for many modern
climatological studies (e.g., detection, monitoring, and
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attribution of changes in climate extremes). In order to
achieve our goal we used benchmark data sets (Aguilar
et al., 2018; Pérez-Zanón et al., 2018) generated in the
framework of the European project INDECIS (Integrated
approach for the development across Europe of user ori-
ented climate indicators for GFCS high-priority sectors:
agriculture, disaster risk reduction, energy, health, water,
and tourism) (INDECIS, 2018).

The methodology proposed in the present work and
applied to Climatol can be generalized for other homoge-
nization software, which is capable of adjusting daily
time series of climatological variables in automatic mode
with predefined break points. We believe our findings
should be useful for developers of homogenization
methods and software as well as for the end users of that
software as they provide an insight of what kind of errors
they might expect after applying the homogenization
adjustment.

2 | DATA AND METHODS

2.1 | The Climatol homogenization
software

The R package Climatol is a homogenization software
that has been widely used in recent years for removing
inhomogeneities from collections of raw time series of
different climate variables and different time resolution
(e.g., Mamara et al., 2013; Sanchez-Lorenzo et al., 2015;
Guijarro et al., 2018; Meseguer-Ruiz et al., 2018; Azorin-
Molina et al., 2019; Coll et al., 2020; Dumitrescu
et al., 2020). The effectiveness of the software has been
evaluated in several benchmark tests (Venema
et al., 2012; Killick, 2016; Guijarro et al., 2017; Guijarro
et al., 2019) where it demonstrated good results, which
are comparable in terms of accuracy to other well
established and tested homogenization algorithms.
According to the benchmarks, both part of the homogeni-
zation procedure in Climatol, namely the detection and
adjustment, work well and allow to remove different
types of artefacts (abrupt shifts/jumps, gradual trends,
outliers, etc.), thereby increasing the consistency of raw
data sets. One of Climatol's feature characteristics is that
it can be used automatically, which significantly
increases its applicability to large data sets such as the
European Climate Assessment and Dataset (ECA&D)
(Klein Tank et al., 2002). Several versions of the software
have been released since its creation. In our work, we
used Climatol 3.1.1., available through CRAN (https://
cran.r-project.org/package=climatol).

The Climatol detection method (Guijarro, 2018) is
based on the standard normal homogeneity test (SNHT)

(Alexandersson, 1986; Alexandersson and Moberg, 1997).
For any candidate time series, Climatol uses data from
neighbouring stations to create a single composite refer-
ence series as their optionally weighted average.

Climatol first normalizes the data and infills the origi-
nal missing values (as well as those that were generated
by the outlier deletion or the splitting operations on the
later computing steps) through an iterative process in
which the main statistical properties of time series,
namely means and SD, are recalculated at every iteration
until their stationary values are obtained. Once the
means become stable, all data are normalized and esti-
mated (whether existing or missing, in all of the series)
by means of respective value from the composite refer-
ence series, that is, as a weighted average of a prescribed
number of the nearest available data. From the statistical
point of view, the approach used is equivalent to applying
a type II linear regression model (Sokal and Rohlf, 1969),
which is justified because all climatic time series from a
network of stations under study usually have similar
errors. At the next step, the normalized original data and
their estimates are used to create time series of anomalies
(the estimated values are subtracted from the observed
ones), which in turn are exploited to find and eliminate
outliers and to detect inhomogeneities by applying
SNHT. Since SNHT is a test originally devised for finding
a single break point in a series, it is applied iteratively,
splitting the candidate time series or its segment into two
parts every cycle until no inhomogeneous segments are
found. Moreover, during iterations, the test is applied
twice: (a) to stepped overlapping temporal windows and
after that (b) to complete series. Such a two-stage proce-
dure allows to minimize detection errors that occur when
two or more shifts in the mean of similar size could mask
its results. Finally, all homogeneous sub-periods/seg-
ments originate a corresponding number of new series
spanning the entire period of study which are
reconstructed by using new estimated values to fill in all
missing data/segments.

2.2 | The INDECIS benchmark data sets

In the scope of the INDECIS project (see www.indecis.
eu), two different collections of benchmark time series
were created, which cover two regions in Europe with
different climate, namely southern Sweden and Slovenia
(Aguilar et al., 2018; Pérez-Zanón et al., 2018). Each col-
lection contains the daily series of nine essential climate
variables (cloud cover, wind speed, relative humidity, sea
level pressure, precipitation amount, snow depth, sun-
shine duration, maximum and minimum air tempera-
ture) over the period of 1950–2005. Each benchmark data
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set consists of clean data, extracted from the output of
the Royal Netherlands Meteorological Institute (KNMI)
Regional Atmospheric Climate Model (RACMO) version
2, driven by Hadley Global Environment Model 2—Earth
System (MOHC-HadGEM2-ES) (Collins et al., 2008), and
inhomogeneous data, created by introducing realistic
breaks and errors. Missing values and other quality prob-
lems (different from biases) were also added to generate
other flavours of the perturbed benchmarks, however,
they were not used in our study. The RACMO model was
chosen due to its high spatial resolution (0.11� × 0.11�)
and the daily time step of the output provided: gridded
time series of essential climate variables.

In our study, we used only the maximum (TX) and
minimum (TN) air temperature benchmark data sets for
the southern Sweden (Figure 1a). Both data sets contain
100 ‘stations’, a subset of the RACMO grid points chosen
to imitate stations spatial distribution. Their geographical
locations on the domain under study are shown in
Figure 1b.

The introduction of biases in the homogeneous series
was done by simulating relocations. First, the closest
pairs of the RACMO grid time series were used to build a
database of differences between nearby locations. Then,
for every random sub-period to perturb in the homoge-
neous series, a difference was randomly chosen, modified
by a random factor drawn from N(2, 0.2) to enhance the
lower variability of modelled series, and applied to bias
the sub-period. The total numbers of break points intro-
duced into TN and TX clean time series are 258 and
280, respectively. That is, the mean break frequency was
set to ~4/~5 (TN/TX) in 100 years, as it was found in

previous studies on European series
(e.g., Domonkos, 2011; Venema et al., 2012;
Domonkos, 2017). Figure 2 represents the time distribu-
tion of the break points, while Figure 3 shows the distri-
bution of the number of stations/time series with respect
to the number of breaks in one time series.

Due to the daily time resolution and the way that was
used to create the realistic, to the extent possible, station
signals (considered here as the time series of the intro-
duced errors, see an example in Figure 7a below), they
are characterized by intensive noise presence at each of
the homogeneous segments except for the last ones. That
makes it difficult to precisely define the factors and
amplitudes of the shifts at the break points. Nevertheless,
we estimated such parameters by averaging the
corresponding sub-periods of the error time series. Thus,
in our case the factors are mean values of errors at the
homogeneous segments, while the amplitudes are differ-
ences between pairs of two consecutive factors: between
the means at previous and next segments. As can be seen
from Figure 4, where the histograms of the factors and
amplitudes are presented, their range for TN, approxi-
mately from −6 to 6�C (Figure 4a,c), is wider comparing
to TX, (−3; 3) (�C) (Figure 4b,d). This was deliberately
introduced into the benchmark to mimic real effects such
as those related to larger local microclimate differences at
nights comparing to daylight period of days (e.g., Brunet
et al., 2008). Beside the factors and amplitudes, the homo-
geneous segments can also be characterized by SD of
errors. Figure 5 shows their histograms for TN and TX
time series. The mean and SD of the errors on the homo-
geneous segments can be combined in a single parameter

FIGURE 1 (a) The domain of

the southern Sweden (inside of the

red rectangular frame) and (b)

locations of the ‘stations’ (the subset
of the RACMO grid points, shown as

black dots) on it
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called as signal to noise ratio. But in our work, we con-
sider them separately. It is worth noting that similar to
real relocation the introduced errors influence mainly on
the average daily temperature causing jumps in the
means. However, the extreme daily temperature should
be also affected.

The presented statistical properties of the break points
and respective homogeneous segments in the introduced
station signals are close to reality. Such conclusion is
supported by many homogenization results of real data
sets where similar statistical features of inhomogeneities
have been found (e.g., Brunet et al., 2008; Trewin, 2018).

2.3 | Methodology used to evaluate
uncertainty of homogenization adjustment

In order to describe our approach to the evaluation of
Climatol's adjustment uncertainty, we first introduce
the formalism and present some graphical illustra-
tions. Let

X I , XH , and XC ð1Þ

be inhomogeneous, homogenized, and clean daily
data, respectively. XI and XC can be also referred to as

FIGURE 2 Number of break points per year introduced to clean (a) TN and (b) TX air temperature time series

FIGURE 3 Distribution of the number of stations/time series with respect to the number of break points in one time series:

(a) TN, (b) TX
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raw and homogeneous data, correspondingly. All these
data sets are collections of time series

X= xij
� �

, i=1,…, M, j=1,…,N , ð2Þ

where M is the number of meteorological stations
considered and N is the number of time steps/days. From
the mathematical point of view, X is a rectangular matrix
with dimension of M × N. Let Xk, which is the k-th row
in (2), denote the entire time series for the k-th station.
The homogenization adjustment can be formally thought
as mapping g that transforms the input matrix XI in to
the output one XH

X I !g XH : ð3Þ

X C is the reference, etalon result for the outputs.
Based on the data available in (1), time series of real,

ER, detected, ED, and homogenization, EH, errors can be
calculated:

ER = X I−XC, ED = X I−XH , EH = XH−XC: ð4Þ

Specifically in our case, ER is a collection of station
signals (or, more precisely, station signals plus noise; but
we will call them as station signals for simplicity) that
were introduced into the clean data XC. EH is a data set
of residual errors that might be still present in the
homogenized or adjusted series XH. The error datasets
ER, ED and EH are also M × N-matrices: E = {eij}, i = 1, …,
M, j = 1, …, N.

Figure 6 shows some typical examples of the time
series associated with the same (k-th) station. They were
extracted from the TN raw, homogenized by means of
the Climatol software, and clean data sets. Figure 7
shows the corresponding error time series (4), calculated
from the data given in Figure 6. All figures can be also
interpreted as graphical representations of the k-th rows
in the respective matrices. We will refer to both figures
throughout this paper to illustrate the configuration and
layout of our numerical experiments and results.

The main object of our study is the matrix EH: we
want to know how large could be the residual errors in
the adjusted data or, in other words, how large could be
the departure of the adjustment prediction XH from the
reference, etalon result XC. According to, for example,
Walker et al. (2003), such departure is usually called
‘uncertainty’. Typically, there exist multiple reasons,
referred to as sources of the uncertainty (Jakeman
et al., 2006), which may affect the adjustment perfor-
mance and magnitude of the errors in EH. Therefore, in

order to evaluate the uncertainty of the homogenization
adjustment we must consider all these sources—the
whole credible range of every uncertain input and param-
eter of the adjustment software—and define the effective
width of the corresponding probability distribution of the
residual errors (Domonkos and Efthymiadis, 2013). The
wider the error distribution, the more uncertain the soft-
ware prediction XH is.

The residual errors of the homogenization adjustment
EH should depend on the introduced errors ER. The more
complex station signals in ER (e.g., the larger number of
break points, the higher amplitudes of shifts, etc.), the
larger residual errors should be expected. Thus, to clarify
how wide the distribution of the potential remaining
errors could be, we need to consider a large number of
different yet real variants of ER. Performing the homoge-
nization adjustment for each of them provides a respec-
tive ensemble of Climatol's outputs, necessary for the
uncertainty quantification.

The result of the homogenization adjustment should
also depend on other factors, such as the mean correla-
tion between candidate and reference time series
(Szentimrey, 2008; Guijarro, 2011; Domonkos and
Coll, 2017), number of reference series (Trewin, 2018),
and so forth. However, in the present study we focus only
on the influence of the station signals on the adjustment
result. That is, we aim to quantify the adjustment uncer-
tainty, which comes from a single source only: the errors
introduced into the input data to be adjusted. The sensi-
tivity of Climatol's adjustment to other possible factors
will be addressed in our future works.

2.3.1 | The concept of a random field/
function applied to the residual errors EH

The considerations presented above suggest an appro-
priate theoretical model for EH that can provide a basis
for further calculations and can make calculation results
more solid, both statistically and theoretically. Since we
are going to consider an ensemble of different realiza-
tions of EH, it is natural to assume that EH is a random
field or, more generally, a random function, that is given
at the limited number (M × N) of discrete points in space
and time domains, D and T, respectively. Therefore, in
order to evaluate the homogenization adjustment and to
quantify the adjustment uncertainty we have to define and
study statistical properties of the random field EH.
According to the theory, a multidimensional (M × N-
dimensional) probability distribution function

f M×N eH11,e
H
12,…,eH1N ,eH21,…,eH2N ,…,eHMN

� � ð5Þ

E2400 SKRYNYK ET AL.



FIGURE 4 Histograms of the factors (a, b) and amplitudes (c, d) of the shifts at break points, that were introduced to TN (a, c) and TX

(b, d) clean data sets. The frequency/count was normalized by the total number of the breaks. The factors/amplitudes were estimated by

averaging homogeneous segments in the time series of the introduced error

FIGURE 5 Histograms of SD of the introduced errors at the homogeneous segments: (a) TN, (b) TX. The frequency/count was

normalized by the total number of the breaks
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provides complete and the most detailed description of
EH. Based on fM × N it is possible to derive multi-
dimensional probability distribution of the residual errors
in any of M meteorological stations. For instance, for k-th
station we get f N eHk1,e

H
k2,…,eHkN

� �
. The fN is obtained by

integrating fM×N with respect to its all arguments except
eHk1,e

H
k2,…,eHkN . Function f 1 eHkl

� �
defines probability distri-

bution of the residual error in k-th meteorological station
(i = k) and l-th day (j = l).

In the most general case, a random field might be
non-stationary in time and heterogeneous in space. In
this situation, the simplest statistical properties of the
random field defined in a single point of the space–time
domain, such as the mean or SD, vary in the domain. On
the contrary, when the field is stationary and homoge-
neous, these statistical moments are constant in time and
space. Specifically to the homogenization adjustment, we
can expect EH to be non-stationary (e.g., due to seasonal
cycle in temperature time series) and heterogeneous
(e.g., due to possible different topography in D and, as a

result, different local correlation between temperature
time series). Such peculiarities of EH, namely non-
stationarity and spatial heterogeneity, make its analysis
more difficult. In particular, that means we cannot use
the ergodic assumption in order to calculate statistical
properties of EH based on its only realization.

Let ERq, q = 1, …, Q be Q different but real variants of
the collection of the introduced station signals. Let us
also assume that the same number of numerical experi-
ments, the homogenization adjustments, were performed
and corresponding number of realizations of EH were
obtained using a chain of the calculations.

ERq + XC = X Iq, X Iq !g XHq, XHq − XC = EHq, q=1,…,Q:
ð6Þ

Based on these realizations, it is theoretically possible
to evaluate fM × N. However, such task is hardly feasible
in practice due to the extremely large number of dimen-
sions to be considered. On the other hand, based on the

FIGURE 6 Examples of TN time series belonging to the same (k-th) station extracted from the inhomogeneous XI (a), homogenized XH

(b) and clean XC (c) data sets
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statistical ensemble of Q individual realizations of EH we can
evaluate some of the moments of the residual error distribu-
tion (5). In the context of our objective, the most important
of them are a mean value (m) and some parameter that can
characterize a width of the distribution such as the SD (σ) or
the percentile range. The mean value provides information
regarding the systematic bias of the homogenization adjust-
ment, while the SD or the percentile range characterize its
uncertainty. Both statistics, m and σ, can vary in the space–
time domain where EH is defined and they can be evaluated
using the following formulas

mij=
1
Q

XQ
q=1

eHqij , ð7:1Þ

σij=
1

Q−1ð Þ
XQ

q=1
eHqij −mij

� �2� 	1
2

, ð7:2Þ

i = 1, …, M, j = 1, …, N.

While the proposed approach to the evaluation of the
adjustment uncertainty on the daily time scale appears
attractive and theoretically rigorous, it can potentially
lead to some problems that may limit its practical appli-
cability. For instance, one of the limitations can be
related to difficulties with constructing a statistical
ensemble for ER with a sufficient number of its individual
realizations in order to perform the calculations
according to (6). Another example of possible limitations
can be explained as follow: typically, at the end of the
time domain T, all station signals in ER contain
undisturbed segments (see, e.g., Figure 7a). Hence, many
of zero values in EH are usually obtained there. Such zero
values have to be excluded from the analysis when evalu-
ating the homogenization adjustment since they do not
mean the ‘perfect’ adjustment. However, it is not very
easy to do so, because individual station signals usually
have undisturbed segments of different length.

Estimating the statistical properties of the random field
of the residual error EH is not the only way to evaluate the

FIGURE 7 Examples of time series of errors: Real/introduced ER
k (a), detected ED

k (b) and residual EH
k (c) calculated from the data

presented in Figure 6
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performance of the homogenization adjustment and to
quantify its uncertainty on the daily time resolution. An
alternative approach is to use specially elaborated statisti-
cal metrics or indicators (e.g., Trewin, 2018; Vincent
et al., 2018). As noted in Coll et al. (2020), such metrics
can provide useful indications in relation to the strengths
and weaknesses of homogenization methods used.

2.3.2 | Metrics for the adjustment
evaluation on the daily time scale

The performance evaluation of an adjustment algorithm
and the quantification of its uncertainty are slightly differ-
ent tasks in several aspects. For instance, we can evaluate
the performance even if there is only a single realization of
the adjustment output XH. Whereas to define the uncer-
tainty we normally should have a statistical ensemble of
XH (XHq, q = 1, …, Q) and the corresponding ensemble of
EH (EHq, q = 1, …, Q). As it was already mentioned above,
a single realization of EH can be used for the uncertainty
quantification only if EH satisfies special conditions. The
evaluation is usually performed by means of some metrics
or statistical indicators. The metrics are computed for each
individual station in the data set based on error data EH

i

(i = 1, …, M) or on comparison of the corresponding pair
of time series XH

i and XC
i . Calculated for a single output

of the homogenization adjustment XH, they yield general
(averaged in time) estimates of the systematic and ran-
dom residual errors in this actual software run. The met-
rics values can be averaged over all stations, providing
overall (for the whole space domain) evaluation. Some of
such averaged metrics, however, can also be used to
quantify the adjustment uncertainty.

Figure 8a shows a graphical comparison between the
homogenized XH

k and clean XC
k time series, presented in

Figure 6b,c. A similar plot for inhomogeneousX I
k and

clean XC
k data (Figure 6a,c) is presented in Figure 8b for

comparison. The solid bisecting line of black colour, usu-
ally referred to as the line of true predictions, shows full
agreement between respective time series. The perfect/
ideal adjustment algorithm would yield corrected values,
which are exactly the same as the corresponding clean
data. In this case, all dots depicting all pairs xCkj, x

H
kj

� �
,

j = 1, …, N would lie on the line of true predictions. The
dots lying below the black line mean underestimation of
the adjustment algorithm, while the dots above it show
overestimation. Other lines in the diagrams are explained
later. The figures are used below for further explanations.

The discrepancy between the homogenized and clean
time series (Figure 8a) is obviously reduced compared to
the discrepancy between the inhomogeneous and clean
data (Figure 8b). The residual disagreement in Figure 8a
might be quantified by means of some statistical metrics.
Due to the random nature of XH

k and XC
k , it is evident,

that several metrics should be used because no single one
can provide complete information regarding the residual
errors of both types, systematic and random.

Keeping in mind the daily resolution of our data, we
applied six different metrics: the bias (B), root mean
square error (RMSE), factor of exceedance (FOEX), per-
centage of days within ±0.5/±2�C margin (POD05/
POD2), and difference in slopes (SlopeD). The use of met-
rics B, FOEX, and SlopeD is intended for estimating the
systematic errors, while the other three, RMSE and
POD05/POD2, are used for evaluation of the random or
scatter residual errors. In the context of the uncertainty
evaluation, the two most important metric are B and
RMSE, which averaged values can also provide informa-
tion regarding the overall deviation of the adjustment
prediction from the true climate signal and the range of
the possible residual errors, respectively. Formulas for
most of the metrics are standard and well-known. How-
ever, we include them for completeness. Note that all for-
mulas are presented for individual pairs of time series,
XH

i and XC
i , i = 1, …, M. Obviously, similar metrics can

FIGURE 8 Example of scatter

diagrams. Homogenized xK
H (a) and

raw xK
I (b) daily data are built against

respective clean values xK
C presented

in Figure 6
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be calculated for inhomogeneous data by replacing XH
i

with X I
i .

(1) Bias

Bi=
1
Ni

XNi

j=1
xHij −xCij
� �

=
1
Ni

XNi

j=1
eHij , ð8Þ

where Ni is a number of pairs xCij , x
H
ij

� �
in an adjusted

segment/segments. The data from the last uncorrected
segment are not used in calculations (Ni<N). The bias
can be positive or negative. Depending on its sign it
shows average overestimation (+) or underestimation (−)
of the adjusted data. However, the bias does not provide
any information whether overestimations are more fre-
quent than underestimations or vice-versa. The ‘perfect’
homogenization algorithm would give 0 for this metric,
while Bi = 0 does not mean that all differences
xHij −xCij =eHij , j = 1, …, Ni are zeros. In the case when a sta-
tistical ensemble of Q individual realizations of the
adjustment outputs is available, Bi can be averaged over
this statistical ensemble. By comparing (7.1) and (8) it
becomes clear that such averaged value can be considered an
estimate of the mean of the random field EH for i-th station.

(2) RMSE

RMSEi=
1
Ni

XNi

j=1

xHij −xCij
� �2 !1

2

=
1
Ni

XNi

j=1

eHij
� �2 !1

2

: ð9Þ

RMSE provides information about the average devia-
tion of the adjusted data from the true climate signal.
However, this metric can be also interpreted as a value
that is proportional to the Euclidian distance between XH

i

and XC
i in a multidimensional space. Consequently, such

an interpretation provides qualitative explanation why
RMSEi, averaged over the statistical ensemble of Q model
runs, can characterize the width of possible residual error
distribution for the i-th station and, hence, can be used to
characterize the homogenization adjustment uncertainty.
Comparing (7.2) and (9), it can be concluded that such
averaged value should be close to the SD of the random
field EH for the i-th station.

(3) Factor of exceedance

FOEXi=
N xHij >x

C
ijð Þ

Ni
−0:5

 !
100, ð10Þ

where N xHij >x
C
ijð Þ is a number of pairs xCij , x

H
ij

� �
when

xHij >x
C
ij , i.e., a homogenized value is overestimated in

comparison with the respective value from a clean time
series. The factor of exceedance is measured in percent-
age and its values range from −50 to 50%. For instance,
FOEX = 50% means that all homogenized data are

overestimated with respect to the true climate data. This
measure is widely used in climate analysis and applied
meteorology, for example, Mosca et al. (1998).

(4, 5) Percentage of days within ±0.5/±2�C margin.
In addition to the line of true values in Figure 8, other
reference lines might be shown on a scatter diagram in
order to facilitate the qualitative evaluation of adjustment
performance. For instance, pairs of parallels can be
drawn that are defined as

xH−xC


 

=ΔT, ð11Þ

where j…j denotes an absolute value, xH and xC stand for
independent and dependent variables (abscissas and ordi-
nates) in Figure 8, respectively, ΔT is a certain threshold
of temperature differences. Following Vincent et al. (2018),
in our study as the thresholds we chose 0.5 and 2�C by
analogy with the factor of 2 used in other fields of applied
meteorology (e.g., Mosca et al., 1998). A pair of such ref-
erence lines when ΔT = 2 are shown in red colour in
Figure 8. Now metrics POD05 and POD2 can be simply
explained as percentage of dots xCij , x

H
ij

� �
, which lie in

the area between respective reference lines (11). That is,

POD05i=
N

xHij −xCij



 

<0:5
Ni

100 andPOD2i=
N

xHij −xCij



 

<2
Ni

100,

ð12Þ

where N
xHij −xCij



 

≤0:5 and N
xHij −xCij



 

≤2 stand for the num-

bers of dots xCij , x
H
ij

� �
, which lie in the areas inside

respective lines (11). Such metrics characterize the mag-
nitude of the scatter of the adjusted values around the
clean data.

(6) Difference in slopes

SlopeDi=bi−1, ð13Þ

where bi is the slope of a linear regression model
XH

i =ai+biXC
i , which is built using the standard least-

squares approach. The need to introduce such metric can
be explained based on Figure 8a. As can be seen from this
figure, neither B nor FOEX can clearly capture the ten-
dency of general simultaneous underestimation of posi-
tive temperatures and overestimation of negative ones
(the opposite situation is also possible). The absolute
values of the under/over-estimations depend on the tem-
perature magnitude, and they are the largest for tempera-
ture extreme. In other words, the under/over-estimation
should be reflected in the underestimation of the ampli-
tude of the seasonal cycle showing less variability of the
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adjusted temperature values. We propose to evaluate
such type of discrepancies (systematic error) between
homogenized and clean data based on comparison of
slopes of the true value line, which always equals to
1, and the linear regression built on the data (blue line in
Figure 8). The metric is important when evaluating the
adjustment of the daily data, since the under/over-
estimation of values from tails of the temperature distri-
bution can affect the calculations of some climate
extremes indices. The best value for SlopeD is 0. It is
worth noting that a similar approach was used in (Della-
Marta and Wanner, 2006), where a comparison of the
candidate and reference series by means of a scatter dia-
gram was part of the proposed adjustment method.
According to that work, deviation of the slope of a line
that fits the data from 1 indicates that daily temperatures
at the candidate are less/more variable than those at the
reference.

The set of the introduced metrics is capable of provid-
ing a fairly detailed description of the adjustment perfor-
mance on the daily time resolution.

2.3.3 | Quantifying discrepancies
between homogenized and clean data on
the yearly scale

As it was pointed out in the introduction, daily air
temperature data are used for computing climate
extremes indices. Therefore, it is important to evaluate
how the accuracy of the adjustment algorithm for data
with such temporal resolution is reflected in calcula-
tion of these indices and their regular tendencies
(trends) (Trewin and Trevitt, 1996). To do so, we calcu-
lated the yearly time series of the temperature data,
TNy and TXy, and the following indices (Klein Tank
et al., 2009; Zhang et al., 2011): FD (frost days), TR
(tropical nights), TN10p (cold nights), TN90p (warm
nights), ID (ice days), SU (summer days), TX10p (cold
days), TX90p (warm days). However, due to peculiari-
ties of the southern Sweden climate (relatively cold)
we slightly shifted the standard absolute thresholds in
the respective climate extremes indices. That is,
instead of 0 and 20�C for FD and TR, respectively, we
used −10 and 10�C. Instead of 0 and 25�C for ID and
SU, respectively, the thresholds of 5 and 20�C were
used. In order to indicate these changes in the calcu-
lating algorithms of the indices clearly, we will denote
them as FD-10, TR10, ID5, and SU20. Calculation of
the indices was performed for raw, clean, and homoge-
nized data based on the RClimDex software (Zhang
et al., 2018). After that, quantifying the discrepancies
between the indices calculated based on the clean and

homogenized data was performed by means of only
two metrics, namely B and RMSE. Similarly, to the
daily time series, the metrics were calculated using the
adjusted segment/segments only. In addition, we com-
puted differences/errors in the indices linear trends
(TrD), calculated for the adjusted and clean data. The
trends were evaluated over the whole time series
(including undisturbed segments) through the least
squares regression.

2.3.4 | Ensemble of introduced station
signals

As was noted above, the main source of the uncer-
tainty for the homogenization adjustment is the sta-
tion signals introduced into the raw time series. In
other words, the results of the adjustment are sensitive
to the input data and magnitude of errors contained
there. It is natural to expect that the larger the devia-
tion of raw time series from the clean ones, the larger
the residual errors should be after the adjustment. In
turn, the deviation of the raw time series from the
clean data is controlled by the system of break points
and corresponding statistical properties of homoge-
neous segments in the station signals ER, such as the
shift amplitudes/factors, signal to noise ratios etc. In
real situation when homogenizing a some set of raw
time series, such information is usually unknown. This
is a reason why in order to estimate the adjustment
uncertainty we have to use the benchmark data and
consider all possible but real variants of the station
signals or, in other words, consider their statistical
ensemble ERq, q = 1, …, Q.

Such ensemble is preferred for further calcula-
tions, no matter what approach is used to quantify
the adjustment uncertainty: the statistical metrics or
the random field formalism. Our general idea regard-
ing creating ERq, q = 1, …, Q is to use the collections
of the error time series, introduced in the benchmark,
and apply to them replacements and/or permuta-
tions. As was shown in Section 2.2., the collection of
the station signals ER, that was created in the INDE-
CIS project, possesses statistical properties, which are
close to reality. Therefore, we should expect that a
large enough number of the replacements and/or per-
mutations in the set of 94/96 (TN/TX, see Figure 3)
different station signals will provide a sufficient num-
ber of individual realizations of EH. Our methodology
will be applied to two different case studies, with
increasing complexity, which will be fully described
in the Results section.
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3 | RESULTS

3.1 | Case study #1

This first case study considers 10 stations (Figure 9) and
limits the length of the corresponding time series to the
period of 1971–1980 (10 years, similar to Vincent
et al. (2018)). Nine time series (the references), belonging
to the stations marked in black colour in Figure 9, are left
clean, while the time series of the tenth station (the can-
didate), depicted in red, is assumed to be corrupted with
only one break point dated to 01.01.1976. That is, the first
half (1971–1975) of the period under study is intended to
be corrupted. Using the same matrix notations as in (2),
these initial conditions can be written as follows

xIij
n o

= xCij
n o

,when i=1,…,9, j=1,…,3653,

or i=10, j=1827,…,3653; ð14:1Þ

xIij
n o

≠ xCij
n o

,when i=10, j=1,…,1826, ð14:2Þ

where 3653 is the total number of days in the time
interval 1971–1980, while 1826 is the number of days in
the interval 1971–1975.

The average distance between the candidate and ref-
erence stations is ~34 km, while the averaged Pearson's
correlation coefficient between XC

10 and XC
i , i = 1, …, 9 is

0.96 for TN and 0.97 for TX data. Before the correlation
calculation, the seasonal cycle was removed from each
time series using an approach similar to Vincent
et al. (2018).

In order to construct the raw data with the corrupted
5-year sub-period ( xIij

n o
, i = 10, j = 1, …, 1826), we

analysed all station signals in ER, that were initially intro-
duced in the INDECIS benchmark, and defined homoge-
neous error segments that have the length of more than
5 complete consecutive years (since January 1 until
December 31). For instance, in the error time series
shown in Figure 7 a, all three homogeneous non-zero
segments, that is, (January 1, 1950–August 13, 1966),
(August 14, 1966–February 19, 1972), (February 20,
1972–September 8, 2000), satisfy this condition. The total
numbers of such segments in TN and TX error data sets
are 185 and 193, respectively. Then 185 for TN and
193 for TX different versions of the raw time series were
constructed by shifting (translating along the time axis) a
5-year period from each of the defined segments to
1971–1975 and adding them to the respective clean data
xCij
n o

, i = 10, j = 1, …, 1826. This way (by performing
such replacements), we obtained a statistical ensemble of
individual realizations of the raw data set XIq, q = 1, …,

Q, where Q = 185 for TN and Q = 193 for TX. The mem-
bers of the ensemble differ from each other by only statis-
tical properties of the disturbed segment in the tenth
series (see (14.1) and (14.2)), which are well known
(Figures 4 and 5) and, hence, can be considered as con-
trolled. Applying Climatol with the predefined break
point to each member of the statistical ensemble, we
obtained a sample of the respective number of the adjust-
ment results, which were used for further calculations. It
should be mentioned that the average correlation
between X Iq

10, q = 1, …, Q and the system of the reference
series XC

i , i = 1, …, 9 slightly varies for different q. For TN
data the range of the correlation coefficient values is
(0.80, 0.95) with the mean around 0.89, while for TX data
the range and the mean are (0.81, 0.96) and 0.91, respec-
tively. We believe that such variations are not substan-
tially influencing on the adjustment results and,
furthermore, they are unavoidable since they come from
the variations of station signals in the statistical ensemble
of the candidate time series.

The same corrupted period along with unchanged
system of reference series allows to conduct statistically
reliable and justified evaluation of the residual errors.
Moreover, the approach, used in Case study #1, provides
an assessment of a nearly pure effect of the introduced
station signals on the adjustment uncertainty. This is

FIGURE 9 The chosen set of meteorological stations in case

study #1. Black dots show the stations whose time series were

always clean, red square is the station where inhomogeneities were

introduced
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because any other factors, which might have some effect
on the homogenization adjustment, were kept approxi-
mately constant or removed.

Figure 10 shows the results of the adjustment uncer-
tainty quantification on the daily scale by applying the
concept of a random field to the residual errors EH. Since
only a single time series of the raw data set was corrupted
on 1971–1975, EH has non-zero values only for one point
in the space domain (i.e., for tenth station) and just for
the first half of the period under study. Therefore, the sta-
tistical properties of EH were defined only for this station
and period. In Figure 10, the mean values, 5th (P05) and
95th (P95) percentiles of empirical distributions of EH,
calculated for each day of 1971–1975, are shown.
Figure (a) shows the calculations for TN, while
(b) depicts the similar results for TX. The mean values
were calculated based on formula (7.1), whereas the per-
centiles were evaluated using the samples of Q (185 for
TN and 193 for TX) values eHq10 j , q = 1, …, Q for each day
(j = 1, …, 1826).

As can be seen from the figure, the calculated param-
eters, means and percentiles, vary in time. Beside noise,
which is due to the limited number of individual realiza-
tions in the statistical ensemble, a regular 1-year

periodicity can be observed. Generally, the range of the
residual error is less in summertime compared to winter
months. Such non-stationary/periodic behaviour of the
widths of the residual error distributions can be attributed
to the similar periodicity of the introduced errors ER. The
reason for the seasonality in ER is significantly less local
spatial variability of air temperature in a summer period
compared to winter. Thus, we could expect that the
adjusted values of air temperatures, both TN and TX, are
closer to the true climate signal in summer than in winter.

The similar 1-year periodicity of the mean values of
the residual error distributions implies periodic bias of
the air temperature, adjusted by the Climatol software.
For both climatic variables, the residual errors are
slightly shifted to negative values during summertime,
while in winter months the shift has opposite direction.
Such bias periodicity means the average underestimation
of temperature in summer, and the overestimation in
winter and it should have some influence on the ampli-
tude of the seasonal cycle of the adjusted minimum and
maximum air temperature.

In order to provide additional evidences for the con-
clusions, stated after the qualitative analysis of the results
presented in Figure 10, we averaged the empirical

FIGURE 10 Mean, 5th and

95th percentiles (P05 and P95) of

empirical distributions of the

residual errors, evaluated for each

day of the corrupted segment:

(a) TN, (b) TX
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error distributions over the whole period, and over
January and July months separately (Figure 11).
Table 1 contains some of the parameters of these aver-
aged distributions. Similar parameters for the intro-
duced errors are presented in the table for comparison.
The seasonality of the residual error distributions is
seen in the figure for both variables and it is also
supported by the table content.

In summer months, the percentile intervals of the
residual errors, (P05, P95), for the adjusted daily TN and
TX air temperatures are (−2.80, 1.70) (�C) and (−2.60,
1.90) (�C), respectively. Note, that such quantitative
assessments can be considered as one of possible mea-
sures of Climatol's adjustment uncertainty. The
corresponding mean values of the error distributions are
−0.41 and −0.22�C. These results imply that in summer
we could expect any adjusted temperature value xHij to be
slightly underestimated (on average) compared to a
respective clean temperature xCij by 0.41�C for TN and
0.22�C for TX. In addition, we could expect with 90%
probability that for minimum air temperature the
adjusted value xHij lays in the interval
xCij −2:80,xCij +1:70
� �

(�C), while for maximum air tem-

perature the interval is xCij −2:60,xCij +1:90
� �

(�C). It is

important to note a reduction by ~26/11% (TN/TX) in the
percentile range length of the residual errors compared
to the introduced ones. Such decreasing of the uncer-
tainty is a quantitative assessment of the added value
(Sturm and Engström, 2019) of the homogenization

adjustment performed by the Climatol software on day-
to-day level in a summer period.

In winter months, the ranges (P05, P95), evaluated
for the homogenization adjustment errors in TN and TX
data are (−3.60, 4.50) (�C) and (−2.00, 2.60) (�C), respec-
tively. The corresponding mean values of the error distri-
butions are 0.40�C for TN and 0.28�C for TX. Thus, in
winter we could expect any adjusted temperature value
xHij to be slightly overestimated (on average) by 0.40�C for
TN and 0.28�C for TX relatively to the respective clean
value xCij and with 90% probability it lays in the interval
xCij −3:60,xCij +4:50
� �

(�C) in case of TN air temperature
and xCij −2:00,xCij +2:60

� �
(�C) in case of TX. Compared

with summer months, there is noticeable difference
between widths of (P05, P95) intervals calculated for TN
and TX winter residual errors. For minimum air tempera-
ture such interval is substantially larger (almost twice)
meaning larger uncertainty in the adjusted values of TN
in this period of the year. Similar to the summer period,
the homogenization adjustment reduced the width of the
introduced error distribution by 15/13% (TN/TX).

The parameters of the empirical distribution of the
residual errors, averaged over the whole 5-year period
(see Table 1), can characterize only overall (time-aver-
aged) Climatol performance and uncertainty. Some pecu-
liarities of the errors time evolution are neglected. For
instance, the shifts of the error mean values in the oppo-
site directions during the winter and summer seasons
compensate each other yielding perfect, almost unbiased
Climatol's adjustment. The 5th and 95th percentile for

FIGURE 11 Empirical distributions of the residual errors, averaged over (a, d) the whole 5-year period, (b, e) January months, (c, f)

July months: (top panel) TN, (bottom panel) TX
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TN and TX are between the respective summer and win-
ter values, showing averaged uncertainty of the Climatol
software. The SD of the residual error distributions,
which also can be used to characterize the adjustment
uncertainty along with the percentile range, are 2.15�C
for TN and 1.64�C for TX. These numbers are important
because they can be compared later with averaged values
of RMSE, which are also intended to show the general/
overall uncertainty of the homogenization adjustment.

Thus, we can conclude, that if it is possible, the errors
of the homogenization adjustment of daily air tempera-
ture time series should be evaluated on daily or, at least,
seasonal scale. The overall time-averaged evaluation
might omit some peculiarities of the residual errors.

Figure 12 summaries evaluating results of Climatol's
adjustment performance (including its uncertainty),
which were obtained by applying the statistical metrics.
It is important to keep in mind when interpreting these
results that the metrics can provide only information
regarding overall time-averaged performance of the soft-
ware. As was pointed above, the six metrics that were
used in the study yield detailed evaluation of Climatol's
capability of removing systematic and random errors in
each individual realization of the raw time series of a sta-
tistical ensemble. However, only averaged value of RMSE
(averaged over a statistical ensemble) can be considered
as a measure of the adjustment uncertainty, providing
information regarding the width of empirical distribution

TABLE 1 Parameters of averaged

empirical distributions of errors:

Homogenization/residual EH and real/

introduced ER (all in oC)

Year January July

EH ER EH ER EH ER

TN Mean −0.03 −0.11 0.40 −0.08 −0.41 −0.13

SD 2.15 2.53 2.56 2.97 1.39 1.85

P05 −3.20 −4.00 −3.60 −4.90 −2.80 −3.20

P95 3.20 3.70 4.50 4.60 1.70 2.90

P95–P05 6.40 7.70 8.10 9.50 4.50 6.10

TX Mean −0.02 −0.00 0.28 −0.03 −0.22 0.04

SD 1.64 1.84 1.58 1.78 1.48 1.67

P05 −2.50 −2.70 −2.00 −2.70 −2.60 −2.50

P95 2.30 2.60 2.60 2.60 1.90 2.50

P95–P05 4.80 5.30 4.60 5.30 4.50 5.00

FIGURE 12 Boxplots of the

metrics, calculated in the set of

numerical experiments #1:

(a) TN, (b) TX
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of the potential residual errors. For each metric, 185/193
(TN/TX) values were calculated, that corresponds to the
numbers of individual realizations in the statistical
ensembles. These metric values are summarized as
boxplots in the figure. Note, that the boxplots of the met-
rics, calculated for the respective raw data, are also
shown for relative evaluation of the adjustment effi-
ciency. Due to very short adjusted period (just 5 years)
the climate extremes indices were not calculated and the
evaluation of the Climatol software on the yearly scale
was not performed in this series of numerical
experiments.

As can be seen from the figure, the mean value of
bias (B) and its interquartile range (IQR), which we use
as a convenient measure of the metric distribution
width directly shown in the boxplots, tend to zero for
both variables, TN and TX. Similar tendencies are
observed for FOEX. Here IQR is not zero, but it has rela-
tively small magnitude, especially for TN. Both these
metrics indicate the almost perfect performance of the
Climatol software in removing systematic errors (shifts
in the means). Such conclusion is plainly and brightly
supported by a simple visual comparison with the same
metrics in the raw data.

However, another type of the systematic residual
errors associated with the seasonality of discrepancies
between the homogenized and clean data (described by
SlopeD) is not removed. Moreover, such type of errors
seems to be slightly amplified by Climatol in a sense that
almost all values of SlopeD became negative compared
with the symmetric distribution of the metric values in
the raw data. That means the simultaneous underestima-
tion of summer temperatures and overestimation of win-
ter ones, and as the result—the underestimation of the
amplitude of seasonal cycle. Such conclusion is fully
supported by the day-to-day evaluation provided above.
The potential ability of the Climatol software to slightly
alter seasonality was also pointed out by (Sturm and
Engström, 2019).

The performance of the Climatol software in remov-
ing random errors is not so pronounced as the removing
systematic ones. After adjusting, the means and IQRs of
metrics RMSE, POD05, and POD2 for both variables, TN
and TX, are slightly improved compared to similar
values in the raw data. However, this improvement
seems to be associated with the almost perfect removing
of break point shifts in the means, and not directly
related to the real Climatol's capability of coping with
the scatter of errors. The mean value of RMSE, which
yields the overall, time-averaged assessment of the
adjustment uncertainty, is 2.06�C for TN and 1.53�C for
TX. Such values are very close to the previously

calculated SD of the residual error distributions, calcu-
lated on the day-to-day level and averaged over 5-year
period (see Table 1). The coincidence of the uncertainty
estimates that were obtained by applying different
approaches indicates robustness of the drawn conclu-
sions and the quantitative assessments. In addition, our
assessments of RMSE for TN and TX adjusted data are
close to similar estimates presented by Vincent
et al. (2018).

It is worth noting again that the provided quantitative
assessments of Climatol's performance and uncertainty
(as well as those given in the following section) are valid
only for cases when the correlation between candidate
and reference series is quite high, ~ (0.80, 0.95) for TN
and (0.81, 0.96) for Tx. As it was already mentioned, the
uncertainty quantification in other situations, that is,
with other values of correlation ties between time series,
will be performed in our future work.

According to Vincent et al. (2018), adjustment algo-
rithms, applied to daily air temperature data, might show
worse capability of removing small size shifts compared
to large ones. Thus, it would be interesting to define if
there are some relationships between statistical charac-
teristics of the introduced errors, such as their mean
value (an amplitude of shift in the break point) and SD,
and the corresponding values of the metrics, calculated
after applying Climatol. The main purpose of the follow-
ing calculations is to define what kind of errors (with
small or large shift amplitude, with small or large noise
component) is removed better. Because the statistical
ensemble of Climatol runs for TN data contains 185 differ-
ent individual realizations, the same number of different
values of the error means and SD were calculated and
bound to the corresponding values of the metrics
(Figure 13). A similar figure was created also for TX, but
it is not included in the text. Note, that in Figure 13 the
metrics calculated based on the raw data are also shown
for comparison.

The relationships for B and FOEX are trivial and they
were expected due to the almost perfect performance of
the Climatol software in removing jumps in the means.
However, other metrics show more interesting dependen-
cies on the error means and SD. For instance, SlopeD has
negative values for any shift amplitude. However, the
metric depends almost linearly on SD of the introduced
errors. The larger the SD, the larger negative value of
SlopeD should be expected, meaning the more intensive
seasonality in the residual error time series. There are no
any visible relations between the values of RMSE,
POD05, and POD2 and the shift amplitudes from some
interval around zero (shifts of small magnitudes). In this
interval (approximately from −2 to 2�C for TN and from
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−1 to 1�C for TX), there are also no visible differences
between the metric values computed based on the
homogenized and raw data. It means that removing shifts
of small magnitudes has small influence on the random
part of the residual errors. However, certain improve-
ment of the metrics is observed for relatively large shifts.
This conclusion is agreed well with the results by Vincent
et al. (2018). Similar to SlopeD, the metrics RMSE,
POD05, and POD2 show noticeable relationships with the
SD of the introduced errors. The larger magnitude of this
statistical parameter, the larger random residual errors

should be expected, what is indicated by the worse values
of the metrics.

3.2 | Case study #2

This case study is more complex since the raw time series
can have more than one break point and their positions
are not strictly fixed: they are different in different reali-
zations of the experiment. Here, we used the same 10 sta-
tions presented in Figure 9 but considered them on the

FIGURE 13 Relationships between the metric values and the main statistical properties of corrupted segment in the station signals:

means (left column) and SD (right column). TN data. Red and blue colours mean homogenized/adjusted and raw data, respectively
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initially defined period of time 1950–2005. Similar to
Case study #1, nine time series (the references) are
always kept clean, while constructing of the tenth dis-
turbed or candidate series was slightly changed. For-
mally, these initial conditions can be stated in the
following form

xIij
n o

= xCij
n o

,when i=1,…,9, j=1,…,20454,

or i=10, j=N10+1,…,20454; ð15:1Þ

xIij
n o

≠ xCij
n o

, when i=10, j=1,…,N10, ð15:2Þ

where 20454 is the total number of days in the time
interval 1950–2005, while N10 is the number of days in a
disturbed segment/s of the candidate time series. N10 var-
ies in different realizations of the numerical experiment.

In the INDECIS benchmark, 94 and 96 different non-
zero station signals were created for TN and TX data,
respectively (Figure 3). By adding these error series to the
clean data of the tenth station alternately, we created
corresponding numbers of different realizations of the
raw data, which were used as inputs for the Climatol soft-
ware. As in the previous case, each realization of this sta-
tistical ensemble consists of nine clean and one
perturbed time series. By performing such replacement of
the station signals, we do not change significantly the sta-
tistical properties of the introduced errors: the distribu-
tions of their means and SD are almost the same as in
Case study #1. Besides, we do not change the system of
reference stations. Pearson's correlation coefficients
between XC

10 and XC
i , i = 1, …, 9 and between X Iq

10 (q = 1,
…, Q) and XC

i , i = 1, …, 9 are almost the same as in the
previous case for both TN and TX data. But we change
the structure and timing of break points (which positions
are predefined during Climatol calculations), make it
more difficult for the software to adjust different seg-
ments happened simultaneously in the raw time series.
In addition, in this set of numerical experiments we can
estimate Climatol's performance and its uncertainty on
the yearly scale by defining the residual errors in the
adjusted time series of the climate extremes indices. Eval-
uation of the Climatol software in case study #2 on the
daily scale was performed only through metrics, that is,
only overall, time-averaging evaluation was carried out.
Day-to-day estimation of the residual error distributions,
based on the concept of a random field, was not con-
ducted. Such estimation is difficult to perform statistically
correct in Case study #2 since individual realizations of
the raw candidate time series in the statistical ensemble
have last undisturbed periods of different lengths. Conse-
quently, for days in the end of 1950–2005 calculations

would operate with considerably less quantity of non-
zero error values compared with days in the beginning of
1950–2005.

Figure 14 contains boxplots of the metrics that were
calculated on the daily scale for the adjusted TN and TX
data. Similar to the previous case, we provided also
corresponding metric values for raw data in order to eval-
uate relative success of the adjustment algorithm.

As it can be seen from the figure, the distributions of
the metric values are almost the same as in the previous
case. That means good Climatol's performance in remov-
ing systematic errors (shifts in the means) and moderate
improvement of the metrics showing removing of scatter/
random residual errors. However, the seasonality of
residual errors and the related issue of the underestima-
tion of the seasonal cycle amplitude is also preserved in
this case study. Therefore, a number of break points in
the raw time series does not influence significantly the
accuracy of Climatol's homogenization adjustment. If
they are correctly defined during the detection process,
the same (on average) adjustment results should be
expected, no matter how many breaks were detected in
each of raw time series.

The mean value of RMSE for the adjusted TN data is
2.07�C, while for the TX adjusted time series this parame-
ter equals to 1.54�C. These values are very close to the
similar estimates that were obtained in Case study #1.
Thus, the overall time-averaged uncertainty of Climatol's
adjustment is not influenced significantly by including
multiple break points in the raw time series.

The boxplots of the metrics calculated based on the
adjusted yearly time series of the air temperature data
and the climate extremes indices are presented in
Figure 15. Similar results that were obtained based on
the raw yearly series are also presented in the figure for
comparison. As can be seen in the figure, the averaging
TN and TX daily data to the yearly scale almost
completely remove the both types of residual errors.
Nearly zero values of B for adjusted TNy and TXy series
is a trivial result, since Climatol removes very well sys-
tematic errors even in daily data. The mean value of
RMSE for TNy is reduced after adjustment from 0.94 to
0.20�C (by ~78%) while for TXy the reduction is slightly
less: from 0.56 to 0.16�C (by ~63%). Such substantial
improvement of RMSE for both climatic variables can be
explained by the fact that averaging data to the yearly
scale removes random/noisy part of the residual errors,
seen on the daily scale. Note, that the mean values of
RMSE, 0.20�C for TNy and 0.16�C for TXy, can be also
considered as the measures of Climatol's adjustment
uncertainty on the yearly time scale. In addition, as can
be seen in the figure, Climatol removes most of the trend
error in TNy and TXy data. The mean value and IQR of
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FIGURE 14 Boxplots of the

metrics calculated in the set of

numerical experiments #2:

(a) TN, (b) TX

FIGURE 15 Boxplots of the metrics calculated based on the yearly series of the climate extremes indices in the set of numerical

experiments #2: (a) TN, (b) TX
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TrD are almost zeros (~0.00 and ~ 0.01�C/decade, respec-
tively) for both climatic variables.

Climatol removes well both types of errors also in the
time series of all considered extreme indices. This is clearly
seen in the figure, where empirical distributions of B and
RMSE, calculated based on the adjusted data, can be com-
pared with similar distributions, obtained for the raw
series. Both metrics for all indices indicate substantial
improvement after applying Climatol's adjustment. The
underestimation of the seasonal cycle amplitude in the
adjusted data, seen on the daily time resolution, is not so
noticeable in the indices time series, probably due to rela-
tively small negative values of SlopeD (see Figure 14).
However, the means of B for all indices with fixed thresh-
olds are slightly negative, meaning general slight underes-
timation of these indices in the adjusted data.

Below we focus mainly on trend evaluation in the
time series of the extreme indices due to their critical
importance in climatological applications. The empirical
distributions of errors (differences) in trends, TrD, calcu-
lated for the adjusted data are also presented in
Figure 15. Table 2 contains some of parameters of the
empirical distributions of TrD values. The first noticeable
qualitative conclusion that can be drawn from the figure
is substantial decreasing of the trend errors in the
adjusted data compared with the raw ones. Regular ten-
dencies of all extreme indices, evaluated based on the
corrected data, are much closer to real trends than evalu-
ated based on the raw time series.

Based on the table content, quantitative assessments of
Climatol's accuracy and uncertainty in the indices trend
calculation can be derived. For instance, the mean value

of the trend errors in the adjusted series of FD-10 (frost
days) is relatively small, 0.29 days/decade (2.9
days/100years). The uncertainty of the trend calculation in
the adjusted FD-10 data can be estimated by mean of the
SD (0.42 days/decade) or the percentile range (P05, P95),
which is (−0.23, 0.94)(days/decade). Thus, we could
expect, that a linear trend, calculated in the FD-10 yearly
time series that was corrected by the Climatol software, is
slightly shifted (on average) on 0.29 days/decade relatively
to the true climate trend (TrC), and with 90% probability it
lie in the interval (TrC − 0.23, TrC + 0.94)(days/decade). It
is worth noting, that the percentile range of the trend
errors in the raw time series is significantly larger, (−3.00,
2.92)(days/decade), that is, after applying Climatol, a 80%
decrease of the uncertainty can be reported. Similar assess-
ments can be obtained from Table 2 for other climate
extreme indices. We also can conclude, that, in general,
trends can be estimated more accurately and with less
uncertainty in the adjusted time series of the TX extreme
climate indices than in TN extremes. One more important
conclusion is that despite the substantial amount of the
residual scatter/random errors which still remain in the
adjusted daily time series, the linear trends calculated on
the corrected yearly time series are reliable and close to
real regular tendencies and they can be evaluated with sig-
nificantly removed uncertainty.

4 | CONCLUSION

In this study, the uncertainty quantification and the gen-
eral performance evaluation of Climatol's adjustment

TABLE 2 Parameters of empirical probability distributions of TrD (errors/differences in linear trends), defined for yearly time series of

climate extreme indices: (a) TN, (b) TX

(a)

FD-10, days/decade TR10, days/decade TN10p, %/decade TN90p, %/decade

Hom-cln Raw-cln Hom-cln Raw-cln Hom-cln Raw-cln Hom-cln Raw-cln

Mean 0.29 −0.26 0.64 −0.79 −0.35 −0.52 −0.29 −0.73

SD 0.42 1.83 0.74 3.59 0.42 1.25 0.34 1.27

P05 −0.23 −3.00 −0.42 −6.65 −1.02 −2.22 −0.79 −2.54

P95 0.94 2.92 2.05 2.55 0.32 1.44 0.31 0.28

P95–P05 1.17 5.92 2.47 9.20 1.34 3.66 1.10 2.82

(b)

ID5, days/decade SU20, days/decade TX10p, %/decade TX90p, %/decade

Hom-cln Raw-cln Hom-cln Raw-cln Hom-cln Raw-cln Hom-cln Raw-cln

Mean −0.05 −0.36 0.21 −0.56 −0.13 −0.13 −0.10 −0.36

SD 0.27 0.88 0.44 1.73 0.33 0.79 0.23 0.64

P05 −0.49 −1.88 −0.37 −3.41 −0.71 −1.47 −0.49 −1.40

P95 0.39 0.96 0.96 2.00 0.33 1.06 0.23 0.56

P95–P05 0.88 2.84 1.33 5.41 1.04 2.53 0.72 1.96
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algorithm, applied to daily minimum and maximum air
temperature time series, are presented. We focused our
attention only on the most influencing and important
source of the uncertainty, namely introduced station sig-
nals into the raw data set to be adjusted. Other possible
sources of the adjustment uncertainty were removed
from the analysis or kept approximately constant. For
instance, the mean correlation between candidate and
reference series was around (0.80, 0.95) for TN and (0.81,
0.96) for Tx data. Therefore, our results are valid only for
cases where the mentioned mean correlation can be
observed. The sensitivity of the obtained quantitative
assessments to other factors/sources will be addressed in
our future work.

In order to evaluate the adjustment uncertainty, we
used the INDECIS benchmark data and applied a com-
plex approach, quantifying the uncertainty at different
levels of detail and time resolution. According to our
findings, Climatol's adjustment uncertainty, evaluated on
day-to-day level, varies in time, and depends on the sea-
son. In summer months, the residual errors in the
adjusted daily TN and TX series are expected to belong to
the intervals, (P05, P95), (−2.80, 1.70) (�C) and (−2.60,
1.90) (�C), respectively. In winter months, the ranges of
the possible remaining errors are larger: (−3.60, 4.50)
(�C) for TN and (−2.00, 2.60) (�C) for TX. The overall
adjustment uncertainty, averaged over all seasons, can be
evaluated as the error range, (P05, P95), (−3.20, 3.20)
(�C) for TN and (−2.50, 2.30) (�C) for TX. In terms of SD
of the residual error distributions, the overall uncertainty
can be evaluated as 2.15�C for TN and 1.64�C for TX data.
These estimates agree well with the mean values of ,
which also can be used as a measure of the width of the
empirical distribution of the residual errors. Besides
1-year periodicity in the width of the residual error distri-
butions, their mean values are also slightly shifted peri-
odically. For both climatic variables, the shift is towards
negative values during summertime, while in winter
months it has opposite direction. Such peculiarities of the
residual errors can lead to the slight underestimation of
the amplitude of the seasonal cycle of the adjusted TN
and TX data. The calculations based on the specially
introduced metric (SlopeD) provide additional evidence
for such conclusion. Other metrics, used in the study,
showed that Climatol removes extremely well systematic
errors related to jumps in the mean and this Climatol's
capability is valid for shifts of any magnitude and does
not depend on the number of break points in the raw
time series. The ability of Climatol to remove scatter/ran-
dom errors in the daily raw time series is not so
pronounced.

However, on the yearly time scale, both types of
residual errors are removed well in adjusted time

series. The adjusted yearly TN and TX temperature
data are unbiased, and their uncertainty is reduced
significantly: mean values of RMSE for TNy and TXy
were decreased to 0.20�C (by ~78%) and 0.16�C (by
~63%), respectively. In addition, Climatol removes
most of the trend error in TNy and TXy data, so trend
analysis is more solid and better represents climate
variations.

Similar conclusions are valid for the yearly time series
of the considered climate extreme indices: both types of
errors are removed well by Climatol. The underestima-
tion of the seasonal cycle amplitude in the adjusted data,
seen on the daily time resolution, is not clearly reflected
in the indices time series. However, the mean values of
bias (B) for all indices with fixed thresholds are slightly
negative, meaning slight underestimation of these indices
in the adjusted data. However, this does not have sub-
stantial influence on the linear trend calculations in the
indices time series. The trends calculated in the adjusted
time series are generally unbiased. The percentile (P05,
P95) ranges of the errors in the indices trends, calculated
based on adjusted data, is reduced by ~70–80% compared
to the trend errors in the corresponding raw time series.
Despite the substantial amount of the residual scatter
errors in daily time series, the linear trends calculated on
the corrected yearly time series are close to real regular
tendencies and they can be evaluated with significantly
removed uncertainty.

The next step to be undertaken in the context of
Climatol's uncertainty evaluation is the analysis of how
the quantitative assessments obtained depend on the cor-
relation between a candidate and reference series. In
addition, a similar assessment of Climatol's adjustment
algorithm applied to daily precipitation data should be
performed. Also, a much more difficult case, when the
uncertainty of the adjustment and detection algorithms
are evaluated simultaneously, should be considered in
order to obtain the complete picture of Climatol capa-
bility to cope with inhomogeneities on the daily time
scale.
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