Lowest ten ${ }^{1} P$ Rydberg states of beryllium calculated with all-electron explicitly correlated Gaussian functions

Monika Stanke ${ }^{1}$, Sergiy Bubin ${ }^{2}$ and Ludwik Adamowicz ${ }^{3,4,5}$ ©
${ }^{1}$ Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, Toruń, PL 87-100, Poland
${ }^{2}$ Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan
${ }^{3}$ Department of Chemistry and Biochemistry and Department of Physics, University of Arizona, Tucson, Arizona 85721, United States of America
${ }^{4}$ Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, ul. Wileńska 4, Toruń, PL 87-100, Poland

E-mail: ludwik@email.arizona.edu
Received 13 March 2019, revised 9 May 2019
Accepted for publication 28 May 2019
Published 16 July 2019

Abstract

In this work we report very accurate calculations of the ten lowest ${ }^{1} P(L=1)$ bound states of the beryllium atom performed with the finite-nuclear-mass (FNM) approach and with all-electron explicitly correlated Gaussian functions. The FNM non-relativistic variational energies of the states are augmented with the leading relativistic and quantum-electrodynamics (QED) corrections. The latter include the Araki-Sucher QED correction whose implementation for the $L=1$ states is featured in this work. The calculated energies for interstate transition energies are compared with the experimental results.

Keywords: Rydberg spectrum of beryllium atom, explicitly correlated all-electron Gaussian functions, finite-nuclear-mass approach

1. Introduction

One of the major challenges of the quantum theory of atoms is to determine the energy levels corresponding to bound ground and excited states and the frequencies of the transitions between these levels with the spectroscopic accuracy (i.e. below $1 \mathrm{~cm}^{-1}$). As such determination involves the calculation of the corresponding wave functions representing the computed states, various properties of the states can also be determined. That involves, for example, the transition intensities, the average distances of the electrons to the nucleus and between the electrons, etc. As the amount of computations required grows very rapidly with the number of electrons (this growth is proportional to the factorial of the number of electrons), even for atoms with a few electrons this becomes a computationally very demanding task. Thus, in undertaking calculations of an atomic spectrum a balance needs to be achieved between the accuracy one aims for in the

[^0]calculations and the amount of resource these calculations are expected to take.

One of the many challenges involved in atomic calculations is to target not only a few lowest lying states but to extend the calculations to a wider spectrum of states. For both helium and lithium atoms calculations exist where nearly ten lowest states were calculated with very high accuracy [1, 2]. For the beryllium atoms only the lowest five ${ }^{1} S$ states [3] and one ${ }^{1} P$ state [4] were calculated. Recently, very accurate calculations were also performed for the lowest four ${ }^{2} S$ states of the boron atom [5]. The capabilities now exist to extend the calculations for the beryllium and boron atoms to ten states and beyond. This is being done in the present work where very accurate calculations are performed for the lowest ten ${ }^{1} P$ states of the beryllium atom.

The electronic structure of the beryllium atom is of great relevance to various problems arising in different areas of modern science. Stellar astrophysics and plasmas research, as well as studies in high-temperature physics and applied nuclear physics,
relay on precise knowledge and understanding of the beryllium spectrum.

Precise determination of atomic energy levels and other properties is an involved undertaking because the strong Coulombic interaction between electrons leads to rather large contribution due the electron correlation, which needs to be accurately described in the calculations. Moreover, there are some subtle effects due to relativity, quantum-electrodynamics (QED), and finite nuclear mass and size that need to be also described. To accurately represent the correlated motion of the electrons in an atom one needs to make the wave function explicitly dependent on the inter-electron distances. This can be, for example, accomplished by expanding the wave function in terms of basis functions that depend on these distances. Allelectron explicitly correlated Gaussian functions (ECGs) are such functions. They have been used is atomic calculations since they were first introduced to the field by Boys [6]. For example, for the beryllium atom calculations involving ECGs [7] resulted in the determination of the $3^{1} S \rightarrow 2^{1} S$ transition energy within the experimental error bar from the value measured by Johansson [8, 9]. ECGs were also used to calculate the lowest $S \rightarrow P$ transitions of beryllium [4]. While the latter beryllium calculations were performed with the infinite-nuclear-mass (INM) approach and the finite-mass effects were obtained using the perturbation theory, the finite-nuclear-mass (FNM) approach was used in the former calculations. Thus, the FNM effects (adiabatic and non-adiabatic) were explicitly included in the nonrelativistic energies, as well as in the leading relativistic corrections, as those corrections were calculated as expectation values of the corresponding relativistic operators with the wave functions obtained in the FNM calculations. Thus, the relativistic corrections explicitly include the so-called recoil effects that in the INM approach are determined in a more complicated way using the perturbation-theory approach.

In this work we report first large-scale applications of the algorithms for calculating the leading relativistic corrections for singlet states with $L=1$ (the P states) recently implemented by our group [10]. We also report the derivation and implementation of the Araki-Sucher QED correction calculated using the FNM wave function expanded in terms of allelectron ECGs.

In recent years we have used various types of ECG basis functions in accurate atomic and molecular calculations performed with an approach where the Born-Oppenheimer approximation has not assumed [11-13]. The standard variational method and large ECG basis sets have been employed in the calculations and the nonlinear parameters of the Gaussians have been extensively optimized to obtained very well converged non-relativistic energies of the considered states. As the expression for the total energy obtained using the various forms ECGs can be easily analytically differentiated with respect to the Gaussian exponential parameters, the energy gradient in an analytical form can be determined [11, 14]. The implementation of the gradient in our atomic and molecular calculations has been of critical importance. The variational optimization of the Gaussian nonlinear parameters is much more effective when the energy gradient is made available to the subroutine that runs the energy minimization. Thus, even
though the Gaussians less efficient in describing the cusps and the long-range behavior of the wave function in comparison with, for example, explicitly-correlated Slater functions, this deficiency can be effectively remediated with the use of sufficiently large and well optimized basis sets. Due to the implementation of the gradient, the very accurate results we have generated for ground and excited states of some atomic systems with more than three electrons have been unmatched in accuracy by calculations performed by others.

2. Method used in the calculations

We first write the total non-relativistic Hamiltonian of an n-electron atom in the laboratory Cartesian coordinate system without the Born-Oppenheimer approximation. This Hamiltonian describing a $n+1$-particle system consisting of a nucleus and n electrons is dependent on $3(n+1)$ coordinates. Next separation of the motion of the center of mass [12] is performed that effectively reduces the $(n+1)$-particle problem to an n-particle problem. The separation is accomplished by transforming the laboratory coordinate system to a new system of coordinates of which the first three are the laboratory Cartesian coordinated of the center of mass and the remaining $3 n-3$ are internal Cartesian coordinates. To define the internal coordinates the nucleus is placed in the center of the internal coordinates system and vectors \mathbf{r}_{i} are used to define the positions the electrons $(i=1, \ldots, n)$ with respect to the nucleus. When the total Hamiltonian is transformed from the laboratory coordinate system to the new system of coordinates, it separates into the Hamiltonian representing the kinetic energy of the center-of-mass motion (dependent only on the center-ofmass coordinates) and the so-called internal Hamiltonian (dependent only on the internal $\mathbf{r}_{i}, i=1, \ldots, n$, coordinates). The separation is rigorous. The internal Hamiltonian, H_{nr}, which has the following form (in a.u.):

$$
\begin{align*}
\hat{\mathrm{H}}_{\mathrm{nr}}= & -\frac{1}{2}\left(\sum_{i=1}^{n} \frac{1}{\mu_{i}} \nabla_{\mathbf{r}_{i}}^{2}+\sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{1}{m_{0}} \nabla_{\mathbf{r}_{i}}^{T} \cdot \nabla_{\mathbf{r}_{j}}\right) \\
& +\sum_{i=1}^{n} \frac{q_{0} q_{i}}{r_{i}}+\sum_{i=1}^{n} \sum_{j<i}^{n} \frac{q_{i} q_{j}}{r_{i j}}, \tag{1}
\end{align*}
$$

where q_{0} is the nuclear charge, $q_{i}=-1, i=1, \ldots, n$, are charges of the electrons, m_{0} is the mass of the nucleus ($16424.2055 m_{e}$ for ${ }^{9} \mathrm{Be}$, where m_{e} is the mass of an electron), $m_{i}=1$, $i=1, \ldots, n$ are the electron masses, and $\mu_{i}=m_{0} m_{i} /\left(m_{0}+m_{i}\right)$, $i=1, \ldots, n$ are the reduced masses of the electrons. 'T' denotes the transposition. The finite-nuclear-mass effects are represented by the mass-polarization term and by the reduced masses μ_{i}.

The most convenient way to account for the leading relativistic and QED effects is to expand the total energy in powers of the fine structure constant $[15,16]$

$$
E_{\mathrm{tot}}=E_{\mathrm{nr}}^{(0)}+\alpha^{2} E_{\mathrm{rel}}^{(2)}+\alpha^{3} E_{\mathrm{qed}}^{(3)}+\ldots
$$

where $E_{\mathrm{nr}}^{(0)}$ is an eigenvalue of the nonrelativistic Hamiltonian (1), $\alpha^{2} E_{\text {rel }}^{(2)}$ represents the leading relativistic corrections, and
$E_{\text {qed }}^{(3)}$ represents the leading QED corrections (α is the fine structure parameter; $\alpha=7.297352569810^{-3}$ [17]). In this work $E_{\text {qed }}^{(3)}$ only includes the Araki-Sucher term. In appendix we show the derivation of this term for the basis functions used in this work to expand the wave functions of the n electron ${ }^{1} P$ states.

The $E_{\text {rel }}^{(2)}$ corrections are evaluated in this work in the framework of the perturbation theory using the non-BO nonrelativistic wave function corresponding to $E_{\mathrm{nr}}^{(0)}$ as the zero-order solution. These corrections are expectation values of the respective effective Dirac-Breit Hamiltonians in the Pauli approximation [18, 19]. For the singlet ${ }^{1} P$ states of beryllium considered in this work the relativistic Hamiltonian contains the following terms:

$$
\begin{equation*}
\hat{H}_{\mathrm{rel}}=\hat{H}_{\mathrm{MV}}+\hat{H}_{\mathrm{D}}+\hat{H}_{\mathrm{OO}}+\hat{H}_{\mathrm{SS}} \tag{2}
\end{equation*}
$$

which represent the mass-velocity (MV), Darwin (D), orbitorbit (OO), and spin-spin (SS) interactions (the spin-orbit interaction does not appear as it is zero for singlet states). The explicit form of these terms is given in [12]. The terms are:

$$
\left.\begin{array}{c}
H_{\mathrm{MV}}=-\frac{1}{8}\left[\frac{1}{m_{0}^{3}}\left(\sum_{i=1}^{4} \nabla_{\mathbf{r}_{i}}\right)^{4}+\sum_{i=1}^{4} \frac{1}{m_{i}^{3}} \nabla_{\mathbf{r}_{i}}^{4}\right] \\
H_{\mathrm{D}}=-\frac{\pi}{2}\left(\sum_{i=1}^{4} \frac{q_{0} q_{i}}{m_{i}^{2}} \delta\left(\mathbf{r}_{i}\right)+\sum_{\substack{i, j=1 \\
j \neq i}}^{4} \frac{q_{i} q_{j}}{m_{i}^{2}} \delta\left(\mathbf{r}_{i j}\right)\right] \\
H_{\mathrm{OO}}= \\
\\
-\frac{1}{2} \sum_{i=1}^{4} \frac{q_{0} q_{i}}{m_{0} m_{i}}\left(\frac{1}{r_{i}} \nabla_{\mathbf{r}_{i}} \cdot \nabla_{\mathbf{r}_{i}}+\frac{1}{r_{i, j=1}^{3}} \mathbf{r}_{i} \cdot\left(\mathbf{r}_{i} \cdot \nabla_{\mathbf{r}_{i}}\right) \nabla_{\mathbf{r}_{i}}\right) \tag{5}\\
q_{0} q_{i} \\
m_{0} m_{i} \\
\\
\\
\left.+\frac{1}{r_{i}} \nabla_{\mathbf{r}_{i}} \cdot \nabla_{\mathbf{r}_{j}}+\frac{1}{r_{i}^{3}} \mathbf{r}_{i} \cdot\left(\mathbf{r}_{i} \cdot \nabla_{\mathbf{r}_{i}}\right) \nabla_{\mathbf{r}_{j}}\right) \\
\sum_{i, j=1}^{4} \frac{q_{i} q_{j}}{j>i} \\
m_{i} m_{j}
\end{array} \frac{1}{r_{i j}} \nabla_{\mathbf{r}_{i}} \cdot \nabla_{\mathbf{r}_{j}}+\frac{1}{r_{i j}^{3}} \mathbf{r}_{i j} \cdot\left(\mathbf{r}_{i j} \cdot \nabla_{\mathbf{r}_{i}}\right) \nabla_{\mathbf{r}_{j}}\right),
$$

and

$$
\begin{equation*}
H_{\mathrm{SS}}=-\frac{8 \pi}{3} \sum_{\substack{i, j=1 \\ j>i}}^{4} \frac{q_{i} q_{j}}{m_{i} m_{j}}\left(\mathbf{s}_{i} \cdot \mathbf{s}_{j}\right) \delta\left(\mathbf{r}_{i j}\right), \tag{6}
\end{equation*}
$$

where $\delta(\mathbf{r})$ is the Dirac delta function and \mathbf{s}_{i} are spin operators for individual electrons. For the states considered in this work $\mathbf{s}_{i} \cdot \mathbf{s}_{j}=-\frac{3}{4}$.

The leading QED correction for the beryllium atom that accounts for the two-photon exchange, the vacuum polarization, and the electron self-energy effects are expressed as:

$$
\begin{align*}
H_{\mathrm{QED}}= & \sum_{\substack{i, j=1 \\
j>i}}^{4}\left[\left(\frac{164}{15}+\frac{14}{3} \ln \alpha\right) \delta\left(\mathbf{r}_{i j}\right)-\frac{7}{6 \pi} P\left(r_{i j}^{-3}\right)\right] \\
& +\sum_{i=1}^{4}\left(\frac{19}{30}-2 \ln \alpha-\ln k_{0}\right) \frac{4 q_{0}}{3} \delta\left(\mathbf{r}_{i}\right) . \tag{7}
\end{align*}
$$

Here the last term is the Araki-Sucher distribution [20-24] and the expectation value of $P\left(r_{i j}^{-3}\right)$ is:

$$
\begin{equation*}
\left\langle P\left(r_{i j}^{-3}\right)\right\rangle=\lim _{a \rightarrow 0}\left\langle r_{i j}^{-3} \Theta\left(r_{i j}-a\right)+4 \pi(\gamma+\ln a) \delta\left(\mathbf{r}_{i j}\right)\right\rangle, \tag{8}
\end{equation*}
$$

where Θ is the Heaviside step function and $\gamma=0.5772 \ldots$ is the Euler-Mascheroni constant. The derivation of the $k l$ matrix element of $\left\langle P\left(r_{i j}^{-3}\right)\right\rangle$ for the basis functions used in this work to expand the spatial parts of the wave functions of the considered ${ }^{1} P$ states is presented in appendix. The numerical values of the conversion factor from a Hartree to a wavenumber and of the fine structure constant used in present work are: 1 hartree $=2.194746313705 \times 10^{5} \mathrm{~cm}^{-1}$ and $\alpha=7.2973525376 \times 10^{-3}$, respectively.

In the calculations for all ${ }^{1} P$ states considered in this work we use a single value of the Bethe logarithm, $\ln k_{0}=5.752$ 32, which was calculated for the $2^{1} P$ state of beryllium atom by Puchalski et al [4]. Obviously, this is an approximation. It can be justified by almost constant values of $\ln k_{0}$ for the lowest ${ }^{1} S$ states of beryllium calculated in our previous work [3].

The HQED correction is calculated using the following approximate formula developed by Pachucki et al [25, 26]:

$$
\begin{equation*}
H_{\mathrm{HQED}}=\pi q_{0}^{2}\left(\frac{427}{96}-2 \ln 2\right) \sum_{i=1}^{4} \delta\left(\mathbf{r}_{i}\right) . \tag{9}
\end{equation*}
$$

It corresponds to the dominant part of the so-called oneloop term.

3. Basis functions

The spatial parts of the wave functions of the ten lowest ${ }^{1} P$ states of beryllium considered in this work are expanded in terms of following ECGs:

$$
\begin{equation*}
\phi_{k}=z_{m_{k}} \exp \left[-\mathbf{r}^{T} \underline{\mathbf{A}}_{k} \mathbf{r}\right] . \tag{10}
\end{equation*}
$$

Here m_{k} is an integer that depends on k with a value from 1 to n, $\underline{\mathbf{A}}_{k}$ is $3 n \times 3 n$ symmetric matrix, and \mathbf{r} is a $3 n$ vector of the internal Cartesian coordinates of the electrons (for the Be atoms \mathbf{r} has the length of 12).

As basis functions (10) are used to expand wave functions of bound atomic states, they need to be square integrable. This only happens if the $\underline{\mathbf{A}}_{k}$ matrix is positive definite. To make it positive definite we represent it in the Choleskyfactored form as $\underline{\mathbf{A}}_{k}=\left(L_{k} L_{k}^{T}\right) \otimes I_{3}$, where L_{k} is a $n \times n$ lower triangular matrix, I_{3} is a 3 unit matrix, and \otimes denotes the Kronecker product. With the L_{k} matrix elements being any real numbers, $\underline{\mathbf{A}}_{k}$ is positive definite. This is an important feature because it allows to use the L_{k} matrix elements as the variational optimization parameters which can be varied without any restrictions in the range form $-\infty$ to $+\infty$. The optimization of these parameters through the variational energy minimization is performed in our calculations.

The proper permutational symmetry in the present calculations is implemented with the use of the spin-free formalism. In this formalism, an appropriate symmetry projector is constructed and applied to the spatial parts of the wave function to
impose the desired symmetry properties. The projector, which introduces the desired symmetry properties, is constructed using the standard procedure involving Young operators [27]. For the ${ }^{1} P$ states of the beryllium atom the symmetry projector can be chosen as: $P=(1-P 13)(1-P 24)(1+P 12)(1+P 34)$, where Pij permutes the spatial coordinates of the i th and j th electrons. In the calculations of the Hamiltonian and overlap matrix elements, as well as in the operators representing the relativistic corrections, the projector is placed only in the 'ket' $(\tilde{\phi}\rangle=P|\phi\rangle)$ part of the integrals because the operators are symmetric with respect to permutations of the electron labels. As in the beryllium calculations the projector contains $4!=24$ terms, each matrix element is a sum of 24 different terms.

The variational calculations are performed separately and independently for each state and for each state a different basis set is generated. In the calculations the linear expansion coefficients, c_{k}, of the wave function in terms of basis functions are obtained in the standard way by solving the secular equation. The nonlinear parameters (i.e. the L_{k} matrix elements) are optimized through the variational minimization of the total nonrelativistic energy. The analytic energy gradient determined with respect to these parameters is used in the minimization [12].

The growing of the basis set for each state is a multistep process. It involves choosing a small starting set of ECGs (for the lowest state this set is generated using a orbital guess obtained using a standard AO basis set; for a higher state a basis set generated for the next lower state is used as the initial guess). After the initial basis set is optimized the updating of the set starts. It involves addition of small groups of functions, optimizing them, and reoptimizing the whole set. All this is done using the one-function-at-the time approach. The initial guesses for the added functions are generated by selecting a set of most contributing functions already included in the basis set, randomly perturbing their nonlinear parameters, and choosing the functions which lower the energy the most. At this stage, the m_{k} indices involved in the angular components of the basis functions are also optimized. After a certain number of functions (100 in the present calculations) is added to the basis set, the entire basis is reoptimized. The reoptimization involves cycling over all functions, one by one, several times and reoptimizing their nonlinear parameters. In the calculations performed before for other systems it was determined that the above strategy is efficient and numerically stable. The stability of the calculations is also enhanced by checking if the optimization generates any linear dependencies between the basis functions. Such dependencies may lead to numerical inaccuracies and destabilization of the optimization process. If during the optimization of a basis function it becomes linearly dependent with other functions already included in the basis set, the function is reset to what it was before the optimization. The use of the analytic gradient is crucial in making the optimization efficient.

The variational optimization of the nonlinear parameters of the Gaussians is carried out using the FNM approach. Thus, the total energies obtained in the calculations include the adiabatic and non-adiabatic effects resulting from the finite mass of nucleus of ${ }^{7} \mathrm{Be}$. The same basis are used to perform the INM energy calculations (${ }^{\infty} \mathrm{Be}$) without
reoptimization of the nonlinear parameters. As our previous calculations of atomic isotopomers have shown, no reoptimization of the nonlinear variational parameters is needed when states of different isotopes are calculated. The adjustment of the linear coefficients, c_{k}, through rediagonalization of the Hamiltonian and overlap matrices is quite sufficient for describing the relatively small changes in the wave function and the energy caused by the change of the nuclear mass.

4. Results

The $L=1$ atomic code written in Fortran90 and employing the MPI (message passing interface) used in the present calculations has been updated to include the algorithm to calculate the ArakiSucher QED correction. The lowest ten ${ }^{1} P$ states of the beryllium atom are calculated. The optimization of the nonlinear parameters of the basis functions has been by far the most time consuming part of the calculations that had lasted for several months. The INM energy of the lowest ${ }^{1} P$ state obtained in the present calculations of -14.4734513882 hartree can be compared the value of $-14.47345137(4)$ reported by Puchalski et al [4]. Our value is slightly lower than theirs.

The results for the ten states that include the nonrelativistic energies and the expectation values which appear in the leading relativistic and QED corrections are shown in table 1. For ${ }^{9} \mathrm{Be}$ the results include values obtained for 14600,15500 , and 16400 ECGs (15000,16000 , and 16400 ECGs for state $11 p$), as well as the results obtained with the basis set of 16400 ECGs where several additional optimization cycles of the nonlinear parameters are performed to further lower the total energies of each of the considered states. While the first several additional optimization cycles are performed using the standard double-precision computer arithmetic (with 8 bytes per a floating-point number), the last cycles are performed with an extended precision (with 10 bytes per a floating-point number). As the results presented in table 1 show, the additional optimization cycles are particularly important for the upper states whose energies are noticeably lowered by carrying out the additional optimization. Undoubtedly, further optimization and/or increasing the size of the basis sets would produce further improvement of the energies, but with the computer capabilities available to us, this would not be practical. For ${ }^{\infty} \mathrm{Be}$ only the results obtained with 16400 ECGs are shown.

The ${ }^{9} \mathrm{Be}$ results allow to examine the convergence of the results in terms of the number of the basis functions. As one can see, for the lowest five states the total energies are converged within nine digits after the decimal point. Beyond the sixth state the convergence becomes progressively worse. For the $11 s$ state only six digits after the decimal point are converged. Also, in the calculations for the higher states switching from the double computer precision to the extended precision results in more significant energy lowering. The calculations of the expectation values of the quantities used to determine the relativistic and QED corrections for all states are also carried out using the extended precision.

Table 1. Convergence of the total nonrelativistic energies, E_{nr}, and expectation values which appear in the leading relativistic and QED corrections with the number of basis functions for the lowest ten ${ }^{1} P$ states of ${ }^{9} \mathrm{Be}$. The nonrelativistic infinite-nuclear mass energies of beryllium $\left({ }^{\infty} \mathrm{Be}\right)$ is also shown. Superscript a after the basis size indicates that several additional optimization cycles have been performed for the whole basis set. All values are given in a.u.

State	Isotope	Basis	$E_{\text {nr }}$	$\left\langle\hat{H}_{\text {mv }}\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{i j}\right)\right\rangle$	$\left\langle\hat{H}_{\text {oo }}\right\rangle$	$\left\langle P\left(1 / r_{i j}^{3}\right)\right\rangle$
$2{ }^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.472 5437568	-266.592 68	8.7226350	0.2613003	-0.838 2247	-0.565 745
	${ }^{9} \mathrm{Be}$	15500	-14.472 5437576	-266.592 67	8.7226365	0.2612997	-0.838 2247	-0.565 715
	${ }^{9} \mathrm{Be}$	16400	-14.472 5437584	-266.592 67	8.7226379	0.2612996	-0.838 2247	-0.565 710
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.472 5437598	-266.592 59	8.7226369	0.2612996	-0.838 2246	-0.565 709
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.473 4513882	-266.659 02	8.7242648	0.2613439	-0.8120915	-0.565 917
$3^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.392 2428802	-267.380 49	8.7474147	0.2622659	-0.882 0804	-0.585898
	${ }^{9} \mathrm{Be}$	15500	-14.392 2428817	-267.38152	8.7474493	0.2622656	-0.882 0804	-0.585 885
	${ }^{9} \mathrm{Be}$	16400	-14.392 2428826	-267.38156	8.7474556	0.2622658	-0.882 0804	-0.585 899
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.3922428844	-267.38159	8.7474571	0.2622657	-0.882 0804	-0.585 892
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.3931435385	-267.447 85	8.7490774	0.2623096	-0.855 8115	-0.586 099
$4^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.361 0377945	-267.880 92	8.7629781	0.2629337	-0.913 5496	-0.594 291
	${ }^{9} \mathrm{Be}$	15500	-14.361037 7960	-267.882 04	8.7630295	0.2629331	-0.913 5496	-0.594 266
	${ }^{9} \mathrm{Be}$	16400	-14.361037 7972	-267.882 15	8.7630314	0.2629234	-0.913 5495	-0.593 773
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.361037 7999	-267.882 15	8.7630321	0.2629233	-0.913 5495	-0.593766
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.361938 3998	-267.94834	8.7646490	0.2629670	-0.887204 0	-0.593 972
$5{ }^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.346975 8540	-268.058 27	8.7684768	0.2631970	-0.924 9323	-0.598 223
	${ }^{9} \mathrm{Be}$	15500	-14.3469758567	-268.058 18	8.7685075	0.2631962	-0.924 9322	-0.598 189
	${ }^{9} \mathrm{Be}$	16400	-14.346975 8593	-268.057 76	8.7685102	0.2631961	-0.924 9322	-0.598 186
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.3469758638	-268.057 72	8.7685104	0.2631960	-0.924 9322	-0.598 183
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.3478762953	-268.123 91	8.7701270	0.2632397	-0.898 5614	-0.598 388
$6{ }^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.3395698969	-268.130 65	8.7706020	0.2632889	-0.929 8393	-0.598777
	${ }^{9} \mathrm{Be}$	15500	-14.3395699047	-268.130 79	8.7706144	0.2632884	-0.929 8393	-0.598 763
	${ }^{9} \mathrm{Be}$	16400	-14.3395699110	-268.134 10	8.7706706	0.2632882	-0.929 8393	-0.598758
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.3395699242	-268.134 20	8.7706741	0.2632879	-0.929 8393	-0.598 743
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.3404701944	-268.200 39	8.7722907	0.2633316	-0.903 4578	-0.598 948
$7^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.335 2154668	-268.13794	8.7706938	0.2633742	-0.932 2866	-0.600 765
	${ }^{9} \mathrm{Be}$	15500	-14.335 2154835	-268.144 00	8.7709314	0.2633738	-0.932 2866	-0.600 749
	${ }^{9} \mathrm{Be}$	16400	-14.335 2155108	-268.146 90	8.7710660	0.2633691	-0.932 2865	-0.600 572
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.335 2155592	-268.15107	8.7712046	0.2633668	-0.932 2865	-0.600 471
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.336 1157060	-268.217 26	8.7728210	0.2634106	-0.905 8997	-0.600 677
$8^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.3324449402	-268.136 69	8.7702308	0.2634755	-0.9336411	-0.604 013
	${ }^{9} \mathrm{Be}$	15500	-14.332 4450069	-268.136 56	8.7702667	0.2634732	-0.933 6409	-0.603 936
	${ }^{9} \mathrm{Be}$	16400	-14.332445 1009	-268.137 02	8.7703278	0.2634714	-0.933 6411	-0.603 880
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.332 4452635	-268.136 89	8.7703427	0.2634709	-0.933 6411	-0.603 864
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.3333453168	-268.203 08	8.7719591	0.2635147	-0.9072510	-0.604 071
$9^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.3305753772	-268.149 13	8.7701900	0.2635768	-0.9344521	-0.607244
	${ }^{9} \mathrm{Be}$	15500	-14.3305754902	-268.149 45	8.7702265	0.2635727	-0.934 4527	-0.607110
	${ }^{9} \mathrm{Be}$	16400	-14.330 5756143	-268.149 70	8.7702839	0.2635578	-0.934 4530	-0.606 524
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.330 5759732	-268.150 47	8.7703085	0.2635559	-0.934 4530	-0.606 464
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.3314759537	-268.216 68	8.7719249	0.2635997	-0.908 0607	-0.606 671
$10^{1} P$	${ }^{9} \mathrm{Be}$	14600	-14.329 2519445	-268.094 62	8.7658687	0.2639259	-0.934 9749	-0.618 801
	${ }^{9} \mathrm{Be}$	15500	-14.329 2524374	-268.093 83	8.7660086	0.2639191	-0.934 9767	-0.618630
	${ }^{9} \mathrm{Be}$	16400	-14.329 2529206	-268.094 17	8.7661713	0.2638747	-0.934 9743	-0.617 224
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.329 2550099	-268.096 76	8.7662913	0.2638718	-0.934 9745	-0.617 144
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.330 1549127	-268.162 95	8.7679073	0.2639156	-0.908 5776	-0.617 352
$11^{1} \mathrm{P}$	${ }^{9} \mathrm{Be}$	15000	-14.328 2747322	-267.843 75	8.7564355	0.2643620	-0.935 3444	-0.630531
	${ }^{9} \mathrm{Be}$	16000	-14.328 2766050	-267.842 22	8.7566971	0.2643206	-0.935 3413	-0.629488
	${ }^{9} \mathrm{Be}$	16400	-14.328 2773158	-267.847 23	8.7568944	0.2643129	-0.935 3426	-0.629 292
	${ }^{9} \mathrm{Be}$	16400^{a}	-14.328 2854223	-267.850 13	8.7570962	0.2643069	-0.935 3442	-0.629 147
	${ }^{\infty} \mathrm{Be}$	16400^{a}	-14.329185 2411	-267.916 26	8.7587110	0.2643507	-0.908 9403	-0.629 355

The results from table 1 are used to calculate excitation energies corresponding to $2 p \rightarrow n p, n=3, \ldots, 11$, transitions. The results obtained at the non-relativistic FNM level, with including the leading relativistic corrections, with including the
leading relativistic and QED corrections, and with additionally including higher-order QED corrections are shown in table 2. For each state, values obtained with various numbers of basis functions are presented to enable assessing the basis-set

Table 2. Convergence of the $2 p \rightarrow n p$ transition energies and their extrapolated values calculated using the FNM nonrelativistic energies $\left(\Delta E_{\mathrm{nr}}\right)$, FNM energies that include the leading relativistic corrections ($\Delta E_{\mathrm{nr}+\mathrm{rel}}$), and FNM energies that include the leading relativistic and QED corrections ($\Delta E_{\mathrm{nr}+\mathrm{rel}+\mathrm{qed}}, \Delta E_{\mathrm{nr}+\mathrm{rel}+\mathrm{qed}+\mathrm{hqed}}$). The transition energies are compared to the experimentally derived values from [28]. The values in parentheses shown after the experimental transition energies are uncertainties derived from the level uncertainties reported in [28]. All transitions are given in cm^{-1}. The values in parentheses shown after the transition energies extrapolated to the complete basis set provide an estimate of the order of magnitude of the extrapolation error.

Transition	Basis	ΔE_{nr}	$\Delta E_{\mathrm{nr}+\text { rel }}$	$\Delta E_{\mathrm{nr}+\mathrm{rel}+\mathrm{qed}}$	$\Delta E_{\mathrm{nr}+\mathrm{rel}+\mathrm{qed}+\mathrm{hqed}}$	Experiment
$2^{1} P \rightarrow 3^{1} P$	14600	17624.005	17621.777	17621.988	17621.997	
	15500	17624.005	17621.774	17621.985	17621.995	
	16400	17624.005	17621.775	17621.986	17621.996	
	16400^{a}	17624.005	17621.775	17621.986	17621.995	
	∞	17 624.005(0)	17 621.772(5)	17 621.983(5)	17 621.993(5)	
						17 621.99(0.20)
$2^{1} P \rightarrow 4^{1} P$	14600	24472.730	24469.004	24469.346	24469.361	
	15500	24472.730	24469.005	24469.347	24469.363	
	16400	24472.730	24469.001	24469.344	24469.359	
	16400^{a}	24472.730	24469.001	24469.343	24469.359	
	∞	24 472.729(0)	24468.996 (10)	24 469.339(10)	24 469.354(10)	
						24 469.35(0.20)
$2^{1} P \rightarrow 5^{1} P$	14600	27558.969	27554.710	27555.098	27555.116	
	15500	27558.969	27554.719	27555.108	27555.125	
	16400	27558.968	27554.724	27555.113	27555.130	
	16400^{a}	27558.968	27554.724	27555.112	27555.130	
	∞	27 558.967(2)	$27554.728(10)$	27 555.117(10)	$27555.134(10)$	
						$27555.14(0.20)$
$2^{1} P \rightarrow 6^{1} P$	14600	29184.389	29179.871	29180.277	29180.296	
	15500	29184.387	29179.871	29180.277	29180.296	
	16400	29184.386	29179.847	29180.254	29180.272	
	16400^{a}	29184.385	29179.845	29180.252	29180.270	
	∞	29184.383 (6)	$29179.819(50)$	$29180.227(50)$	$29180.245(50)$	
						$29180.74(0.20)$
$2^{1} P \rightarrow 7^{1} P$	14600	30140.076	30135.490	30135.897	30135.915	
	15500	30140.072	30135.485	30135.894	30135.912	
	16400	30140.067	30135.483	30135.893	30135.912	
	16400^{a}	30140.063	30135.470	30135.882	30135.900	
	∞	$30140.057(15)$	$30 \text { 135.459(25) }$	$30135.873(25)$	$30135.891(25)$	
						30136.45 (0.20)
$2^{1} P \rightarrow 8^{1} P$	14600	30748.136	30743.435	30743.838	30743.856	
	15500	30748.122	30743.432	30743.835	30743.853	
	16400	30748.101	30743.423	30743.827	30743.845	
	16400^{a}	30748.088	30743.415	30743.819	30743.837	
	∞	$30748.069(50)$	$30743.407(50)$	$30743.812(50)$	30743.830 (50)	
						$30744.35(2.0)$
$2^{1} P \rightarrow 9^{1} P$	14600	31158.458	31153.612	31154.015	31154.033	
	15500	31158.433	31153.593	31153.996	31154.014	
	16400	31158.406	31153.577	31153.980	31153.998	
	16400^{a}	31158.364	31153.532	31153.935	31153.953	
	∞	$31158.353(80)$	$31153.534(80)$	$31153.938(80)$	$31153.957(80)$	
						$31144.05(2.0)$
$2^{1} P \rightarrow 10^{1} P$	14600	31448.918	31443.511	31443.876	31443.893	
	15500	31448.810	31443.451	31443.818	31443.834	
	16400	31448.704	31443.379	31443.747	31443.764	
	16400^{a}	31448.578	31443.257	31443.626	31443.643	
	∞	31448.431 (400)	$31443.173(400)$	31443.544 (400)	$31443.561(400)$	
						$31443.85(2.0)$
$2^{1} P \rightarrow 11^{1} P$	15000	31663.391	31658.237	31658.521	31658.534	
	16000	31662.980	31657.912	31658.198	31658.211	
	16400	31662.824	31657.753	31658.041	31658.054	
	16400^{a}	31662.210	31657.162	31657.452	31657.465	
	∞	$31661.976(1200)$	$31657.017(1200)$	$31657.313(1200)$	$31657.327(1200)$	
						31 655.75(2.0)

convergence and extrapolate the results to the basis set limit. The transition frequencies are compared the experimental results. The following conclusions can be drown by examining the results shown in the table. The transition energies for the lowest six states are very well converged at the non-relativist level. Beyond the sixth state the convergence is noticeably slowing down, but the results obtained with the largest basis sets are still within $0.1-0.2 \mathrm{~cm}^{-1}$ from the extrapolated basis-set-limit values. The contribution from the leading relativistic corrections to the transition energies varies from about $2 \mathrm{~cm}^{-1}$ for lower states to about $5 \mathrm{~cm}^{-1}$ for the higher states. This is by far the largest correction. The QED corrections contribute only $0.2-0.4 \mathrm{~cm}^{-1}$. The comparison of the transition frequencies calculated at the highest level of theory with the experimental values shows perfect agreement for the lowest three transitions. For higher transitions the deviation from the experimental values does not exceed $0.5 \mathrm{~cm}^{-1}$. However, for the $2 p \rightarrow 9 p$ transition the difference between the experiment and the theory suddenly rises to $10 \mathrm{~cm}^{-1}$. This is likely due to a typo in the experimental value which instead of the reported $31153.561 \mathrm{~cm}^{-1}$ [28] should be $31143.561 \mathrm{~cm}^{-1}$. Also, there is a more substantial difference between the calculated and the experimental results for the highest $2 p \rightarrow 11 p$ transition of about $1.7 \mathrm{~cm}^{-1}$. This difference is likely caused by inaccuracy in the non-relativistic energy which is not as well converged with the number of basis functions as the energies of other states. Inaccuracies in the experiment may also contribute to this difference.

5. Summary

In summary, high-accuracy calculations are performed for the
${ }^{1} P$ Rydberg spectrum of the beryllium atom. Ten lowest ${ }^{1} P$ are considered. The approach used involves expanding the wave functions of the states in terms of explicitly correlated Gaussian functions whose nonlinear parameters are extensively optimized by the variational minimization of the total energies of the states. The non-relativistic Hamiltonian used to calculate the energies and the wave functions explicitly depend on the mass of the nucleus. Subsequently, the wave functions are used to calculate the leading relativistic and QED corrections. The energies corrected for the relativistic and QED effects are used to calculate the $2 p \rightarrow n p$, $n=3, \ldots, 11$, transition energies, which are compared with the experimental values. For the lowest transition the calculated values agree very well with experiment. For higher transitions (except for the top transition) the deviation never exceeds $0.5 \mathrm{~cm}^{-1}$.

The present work provides the first ever comprehensive study of an extended spectral range of Rydberg states of a four-electron atomic system performed using the highest available level of theory. It represents a large undertaking involving many months of computing. The most time-consuming part of the calculations is the variational optimization of the nonlinear parameters of the non-relativistic wave functions of the considered states. The result show that, for
lower excited states, the approach used in this work is capable of reproducing the experimental values well within the experimental error bar. For higher states, the agreement is good, but not as good as for lower states. Not sufficiently large basis set of Gaussians and limitations of the model can contribute to the discrepancies.

Acknowledgments

This work of MS has been supported by the Polish National Science Centre, grant DEC-2013/10/E/ST4/00033. SB acknowledges funding from MES RK state-targeted program BR05236454 and NU faculty development grant 090118FD5345. The authors are grateful to Professor Gordon W F Drake (University of Windsor) for useful discussions. The authors are also grateful to the University of Arizona Research Computing and Nazarbayev University Library and IT Services for providing computational resources for this work.

Appendix

Following the approach described by Bethe and Salpeter [18] Araki [20], and Sucher [21] the matrix element, $Q_{k l}$, of the Araki-Sucher QED correction involving the ψ_{k} and ψ_{l} basis functions can be expressed as follows:

$$
\begin{align*}
& Q_{k l}=\left\langle\psi_{k}\right| P\left(\frac{1}{r_{i j}^{3}}\right)\left|\psi_{l}\right\rangle=\lim _{\alpha \rightarrow 0} \int \mathrm{~d} \mathbf{r} \psi_{k}^{*}(\mathbf{r}) \psi_{l}(\mathbf{r}) \\
& \times\left[\frac{1}{r^{3}} \Theta(r-\alpha)+4 \pi \delta^{3}\left(\mathbf{r}_{i j}\right)\left(\gamma_{E}+\ln \alpha\right)\right] \equiv \tag{11}\\
& \equiv \lim _{\alpha \rightarrow 0}\left[\left\langle\frac{1}{r^{3}} \Theta(r-\alpha)\right\rangle+4 \pi\left\langle\delta^{3}\left(\mathbf{r}_{i j}\right)\right\rangle\left(\gamma_{\mathrm{E}}+\ln \alpha\right)\right], \tag{12}
\end{align*}
$$

where

- Θ is the step function and
- γ_{E} is the Euler constant.

Let us first consider the two-electron contribution to the matrix element of the Araki-Sucher correction. We use the following expansion in terms of the Dirac delta function:

$$
\begin{align*}
Q_{k l} & =\left\langle\psi_{k}\right| P\left(\frac{1}{r_{i j}^{3}}\right)\left|\psi_{l}\right\rangle \\
& =\lim _{\alpha \rightarrow 0}\left[\left\langle\chi\left(\mathbf{r}_{i j}\right)\right\rangle+4 \pi\left\langle\delta^{3}\left(\mathbf{r}_{i j}\right)\right\rangle\left(\gamma_{\mathrm{E}}+\ln \alpha\right)\right], \tag{13}
\end{align*}
$$

where

$$
\begin{equation*}
\left\langle\chi\left(\mathbf{r}_{i j}\right)\right\rangle=\int_{-\infty}^{\infty} \mathrm{d} \boldsymbol{\xi} \chi(\boldsymbol{\xi})\left\langle\psi_{k}\right| \delta\left(\mathbf{r}_{i j}-\boldsymbol{\xi}\right)\left|\psi_{l}\right\rangle . \tag{14}
\end{equation*}
$$

In this case we have:
$\left\langle\phi_{k}\right| \frac{1}{r_{i j}^{3}(\alpha)}\left|\tilde{\phi}_{l}\right\rangle=\lim _{\alpha \rightarrow 0} \int_{\alpha}^{\infty} \mathrm{d} \boldsymbol{\xi} \frac{1}{|\boldsymbol{\xi}|^{3}}\left\langle\phi_{k}\right| \delta\left(\mathbf{r}_{i j}-\boldsymbol{\xi}\right)\left|\tilde{\phi}_{l}\right\rangle$.

Detailed leads can be found at work [29].
The $Q_{k l}$ matrix element is calculated for the following basis functions:

$$
\begin{aligned}
\phi_{k} & =z_{m_{k}} \exp \left[-\mathbf{r}^{T} \underline{\mathbf{A}}_{k} \mathbf{r}\right] \\
& =\frac{\partial}{\partial \alpha_{k}} \exp \left[-\mathbf{r}^{T} \underline{\mathbf{A}}_{k} \mathbf{r}+\alpha_{k} \mathbf{v}^{k^{T}} \mathbf{r}\right], \\
& \text { where } \quad \mathbf{v}^{k}=v^{k} \otimes \boldsymbol{\epsilon}^{z}, \quad \boldsymbol{\epsilon}^{z}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

and where \mathbf{v}^{k} is a $\mathrm{n} n$ dimensional vector whose elements are all zeros except for the m_{k} element, which is equal to one. We now use the following [30]:

$$
\begin{align*}
& \left\langle\phi_{k}\right| \delta\left(\left(a \otimes I_{3}\right)^{T} \mathbf{r}-\boldsymbol{\xi}\right)\left|\tilde{\phi}_{l}\right\rangle=\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \pi^{-3 / 2}\left(a^{T} A_{k l}^{-1} a\right)^{-3 / 2} \\
& \quad \times\left[1+\frac{1}{\left(a^{T} A_{k l}^{-1} a\right)} \frac{v^{k T} A_{k l}^{-1} a a^{T} A_{k l}^{-1} v^{l}}{v^{k T} A_{k l}^{-1} v^{l}}\left(2 \frac{\left(\epsilon^{z^{T}} \boldsymbol{\xi}\right)^{2}}{a^{T} A_{k l}^{-1} a}-1\right)\right] \\
& \quad \times \exp \left[-\frac{\boldsymbol{\xi}^{T} \boldsymbol{\xi}}{a^{T} A_{k l}^{-1} a}\right] . \tag{16}
\end{align*}
$$

For $a=j^{j}-j^{i}$, where j^{i} is an n-component vector whose i th element is one while all others are zeros, we have:

- $a^{T} a=J_{i j}$ and
- $a^{T} A_{k l}^{-1} a=\operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]$.

It is worth noting that vectors j^{i} and $j^{j}-j^{i}$ have the following direct relation to matrices $J_{i i}$ and $J_{i j}$:

$$
\begin{equation*}
j^{i}\left(j^{i}\right)^{T}=J_{i i}, \quad\left(j^{j}-j^{i}\right)\left(j^{j}-j^{i}\right)^{T}=J_{i j} . \tag{17}
\end{equation*}
$$

$J_{i i}$ replaces $J_{i j}$ in the calculations of the one-electron contribution to the $Q_{k l}$ matrix element the Araki-Sucher correction.

With the above we have:

$$
\begin{align*}
& \left\langle\phi_{k}\right| \delta\left(\mathbf{r}_{i j}-\boldsymbol{\xi}\right)\left|\tilde{\phi}_{l}\right\rangle=\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \pi^{-3 / 2} \operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]^{-3 / 2} \\
& \quad \times\left[1+\frac{1}{\operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]} \frac{v^{k T} A_{k l}^{-1} J_{i j} A_{k l}^{-1} v^{l}}{v^{k T} A_{k l}^{-1} v^{l}}\right. \\
& \left.\quad \times\left(2 \frac{\left(\epsilon^{T} \boldsymbol{\xi}\right)^{2}}{\operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]}-1\right)\right] \exp \left[-\frac{\boldsymbol{\xi}^{T} \boldsymbol{\xi}}{\operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]}\right], \tag{18}
\end{align*}
$$

where

$$
\boldsymbol{\xi}=\left(\begin{array}{l}
\xi_{x} \\
\xi_{y} \\
\xi_{z}
\end{array}\right),
$$

is a vector with the length of 3 n . Introducing the following quantities:

- $\beta=1 / \operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]$ and
- $\eta=v^{k T} A_{k l}^{-1} J_{i j} A_{k l}^{-1} v^{l} / v^{k T} A_{k l}^{-1} v^{l}$
we have:
$\left\langle\phi_{k}\right| \delta\left(\mathbf{r}_{i j}-\boldsymbol{\xi}\right)\left|\tilde{\phi}_{l}\right\rangle=\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{\beta^{3 / 2}}{\pi^{3 / 2}}$
$\times\left[1+\beta \eta\left(2 \beta\left(\boldsymbol{\epsilon}^{2} \boldsymbol{\xi}\right)^{2}-1\right)\right] \exp \left[-\beta \boldsymbol{\xi}^{T} \boldsymbol{\xi}\right]$
$=\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{\beta^{3 / 2}}{\pi^{3 / 2}}\left[1+2 \eta \beta^{2}\left(\boldsymbol{\epsilon}^{z} \boldsymbol{\xi}\right)^{2}-\beta \eta\right] \exp \left[-\beta \boldsymbol{\xi}^{T} \boldsymbol{\xi}\right]$.

According to equations (14) and (15) er have:
$\left\langle\phi_{k}\right| \frac{1}{r_{i j}^{3}}\left|\tilde{\phi}_{l}\right\rangle=\left\langle\phi_{k}\right| \chi\left(\mathbf{r}_{i j}\right)\left|\tilde{\phi}_{l}\right\rangle$
$=\int_{-\infty}^{\infty} \mathrm{d} \boldsymbol{\xi} \chi(\boldsymbol{\xi})\left\langle\phi_{k}\right| \delta\left(\mathbf{r}_{i j}-\boldsymbol{\xi}\right)\left|\tilde{\phi}_{l}\right\rangle$
$=\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{\beta^{3 / 2}}{\pi^{3 / 2}} \int_{-\infty}^{\infty} \mathrm{d} \boldsymbol{\xi}|\boldsymbol{\xi}|^{-3}\left[1+2 \eta \beta^{2}\left(\boldsymbol{\epsilon}^{z T} \boldsymbol{\xi}\right)^{2}-\beta \eta\right]$
$\times \exp \left[-\beta \boldsymbol{\xi}^{T} \boldsymbol{\xi}\right]$.

Now, we transform the above integral to the spherical coordinates:

$$
z=R \cos \theta,\left.\quad \varphi\right|_{0} ^{2 \pi}, \quad \theta| |_{0}^{\pi}
$$

and using the volume element $J=R^{2} \sin \theta$, we have

$$
\begin{gather*}
\boldsymbol{\epsilon}^{T} \cdot \boldsymbol{\xi}=R \cos \theta \tag{21}\\
\boldsymbol{\xi}^{T} \cdot \boldsymbol{\xi}=R^{2} \tag{22}\\
\mathrm{~d} \boldsymbol{\xi}=2 \pi R^{2} \mathrm{~d} R \sin \theta \mathrm{~d} \theta \tag{23}\\
2 \eta \beta^{2}\left(\boldsymbol{\epsilon}^{z^{T} \boldsymbol{\xi}}\right)^{2}=2 \eta \beta^{2} R^{2} \cos ^{2} \theta \equiv \gamma R^{2} \cos ^{2} \theta, \\
\gamma=2 \eta \beta^{2} \tag{24}
\end{gather*}
$$

Using the above we now determine the matrix element:

$$
\begin{align*}
& \left\langle\phi_{k}\right| \frac{1}{r_{i j}^{3}(\alpha)}\left|\tilde{\phi}_{l}\right\rangle=2 \pi\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{\beta^{3 / 2}}{\pi^{3 / 2}} \lim _{\alpha \rightarrow 0} \int_{\alpha}^{\infty} \mathrm{d} R R^{2} \\
& \quad \times \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \frac{1}{R^{3}}\left[1+\gamma R^{2} \cos ^{2} \theta-\beta \eta\right] \\
& \quad \times \exp \left[-\beta R^{2}\right] \\
& \quad=2 \pi\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{\beta^{3 / 2}}{\pi^{3 / 2}} \lim _{\alpha \rightarrow 0} \int_{\alpha}^{\infty} \mathrm{d} R \frac{1}{R} \\
& \quad \times \exp \left[-\beta R^{2}\right] 2\left(1-\beta \eta+\frac{1}{3} \gamma R^{2}\right) \\
& \quad=4 \pi\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{\beta^{3 / 2}}{\pi^{3 / 2}} \frac{1}{6}\left(\frac{\gamma}{\beta}\right. \\
& \left.\quad+6(1-\beta \eta) \lim _{\alpha \rightarrow 0} \frac{1}{2} \Gamma\left[0, \alpha^{2} \beta\right]\right) . \tag{25}
\end{align*}
$$

We now use the above determined quantities in (13) and obtained the final equation for the two-electron $Q_{k l}$ matrix element:

$$
\begin{align*}
Q_{k l} & =\left\langle\phi_{k}\right| P\left(\frac{1}{r_{i j}^{3}(\alpha)}\right)\left|\phi_{l}\right\rangle=\lim _{\alpha \rightarrow 0}\left[\left\langle\chi\left(\mathbf{r}_{i j}(\alpha)\right)\right\rangle\right. \\
& \left.+4 \pi\left\langle\delta^{3}\left(\mathbf{r}_{i j}\right)\right\rangle\left(\gamma_{\mathrm{E}}+\ln \alpha\right)\right] \\
& =\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{4 \beta^{3 / 2}}{\pi^{1 / 2}} \lim _{\alpha \rightarrow 0}\left[\frac{1}{6}\left(\frac{\gamma}{\beta}+6(1-\beta \eta) \frac{1}{2} \Gamma\left[0, a^{2} \beta\right]\right)\right. \\
& \left.+(1-\beta \eta)\left(\gamma_{\mathrm{E}}+\ln \alpha\right)\right] \\
& =\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{4 \beta^{3 / 2}}{\pi^{1 / 2}}\left[\frac{1}{6} \frac{\gamma}{\beta}+(1-\beta \eta)\right. \\
\frac{1}{2} & \left.\left(-\gamma_{\mathrm{E}}-\ln \left(a^{2} \beta\right)+a^{2} \beta+\cdots\right)+(1-\beta \eta)\left(\gamma_{\mathrm{E}}+\ln \alpha\right)\right] \\
& =\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{2 \beta^{3 / 2}}{\pi^{1 / 2}}\left[\frac{1}{3} \frac{\gamma}{\beta}+(1-\beta \eta)\left(\gamma_{\mathrm{E}}-\ln \beta\right)\right] \\
& =\left\langle\phi_{k} \mid \tilde{\phi}_{l}\right\rangle \frac{2}{\pi^{1 / 2} \operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]^{3 / 2}} \\
& \times\left[\frac{2}{3} \frac{v^{k T} A_{k l}^{-1} J_{i j} A_{l}^{-1} v^{l}}{\operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]\left(v^{k l} A_{k l}^{-1} v^{l}\right)}\right. \\
& +\left(1-\frac{v^{k T} A_{k l}^{-1} J_{i j} A_{k l}^{-1} v^{l}}{\operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]\left(v^{k l} A_{k l}^{-1} v^{l}\right)}\right) \\
& \left.\times\left(\gamma_{\mathrm{E}}+\ln \operatorname{Tr}\left[A_{k l}^{-1} J_{i j}\right]\right)\right] . \tag{26}
\end{align*}
$$

To obtain the one-electron $Q_{k l}$ matrix element we replace $J_{i j}$ in the above equation with $J_{i i}$.

ORCID iDs

Ludwik Adamowicz © https://orcid.org/0000-0001-9557-0484

References

[1] Drake G W F and Yan Z-C 1992 Phys. Rev. A 462378
[2] Puchalski M, Kȩdziera D and Pachucki K 2010 Phys. Rev. 82 062509
[3] Stanke M, Komasa J, Bubin S and Adamowicz L 2009 Phys. Rev. A 80022514
[4] Puchalski M, Pachucki K and Komasa J 2014 Phys. Rev. A 89 012506
[5] Bubin S and Adamowicz L 2017 Phys. Rev. Lett. 118 043001
[6] Boys S F 1960 Proc. R. Soc. A 258402
[7] Stanke M, Kędziera D, Bubin S and Adamowicz L 2007 Phys. Rev. Lett. 99043001
[8] Johansson L 1963 Ark. Fys. 23119
[9] Kramida A and Martin W C 1997 J. Phys. Chem. Ref. Data 261185
[10] Stanke M, Bralin A, Bubin S and Adamowicz L 2018 Phys. Rev. A 97012513
[11] Kinghorn D B and Adamowicz L 1999 Phys. Rev. Lett. 832541
[12] Bubin S, Pavanello M, Tung W-C, Sharkey K L and Adamowicz L 2013 Chem. Rev. 11336
[13] Mitroy J, Bubin S, Horiuchi W, Suzuki Y, Adamowicz L, Cencek W, Szalewicz K, Komasa J, Blume D and Varga K 2013 Rev. Mod. Phys. 85693
[14] Kozlowski P M and Adamowicz L 1992 J. Chem. Phys. 969013
[15] Caswell W E and Lepage G P 1986 Phys. Lett. B 167437
[16] Pachucki K 1997 Phys. Rev. A 56297
[17] Mohr P J, Taylor B N and Newell D B 2012 Rev. Mod. Phys. 841527
[18] Bethe H A and Salpeter E E 1977 Quantum Mechanics of Oneand Two-Electron Atoms (New York: Plenum)
[19] Akhiezer A I and Berestetskii V B 1965 Quantum Electrodynamics (New York: Wiley)
[20] Araki H 1957 Prog. Theor. Phys. 17619
[21] Sucher J 1958 Phys. Rev. 1091010
[22] Kabir P K and Salpeter E E 1957 Phys. Rev. 1081256
[23] Yan Z-C and Drake G W F 1998 Phys. Rev. Lett. 81774
[24] Pachucki K 1998 J. Phys. B: At. Mol. Opt. Phys. 315123
[25] Pachucki K and Komasa J 2004 Phys. Rev. Lett. 92213001
[26] Pachucki K 2006 Phys. Rev. A 74022512
[27] Hamermesh M 1962 Group Theory and Its Application to Physical Problems (Reading, MA: Addison-Wesley)
[28] NIST ASD Team, Kramida A E, Ralchenko Y and Reader J 2013 NIST Atomic Spectra Database, ver. 5.1 (Online) (Gaithersburg, MD: National Institute of Standards and Technology) (https://doi.org/10.18434/T4W30F)
[29] Stanke M, Jurkowski J and Adamowicz L 2017 J. Phys. B: At. Mol. Phys. 50065101
[30] Bubin S and Adamowicz L 2008 J. Chem. Phys. 128 114107

[^0]: 5 Author to whom all correspondence should be addressed.

