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In this work we report progress in the development and implementation of quantum-mechanical methods
for calculating bound ground and excited states of small atomic systems. The work concerns singlet states
with the L = 1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass
(non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for
expanding the nonrelativistic wave function of the system. The development presented here includes derivation and
implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections
are determined in the framework of the perturbation theory as expectation values of the corresponding effective
operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states
of the helium atom and the four lowest 1P states of the beryllium atom.
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The determination of atomic energy levels and transition
frequencies with spectroscopic precision (i.e., well below
1 cm−1) as well as the corresponding wave functions remains
one of the most technically and computationally challenging
tasks for the quantum theory of atoms and molecules. The
amount of computations required grows very rapidly with each
additional electron. As a result, retaining accuracy at manage-
able computational cost becomes a difficult task even for few-
electron systems. Many accurate methods of various natures
have been developed in the electronic structure theory in the
past several decades. However, in practical calculations most
of them can reach only chemical accuracy (1 kcal/mol) and
often cannot be applied to excited states. Yet some emerging
physical problems related to precision measurements, atomic
clocks, and high-resolution spectroscopy require very accurate
quantum-mechanical calculations that exceed chemical accu-
racy by several orders of magnitude.

Precise determination of the atomic energies, transition fre-
quencies, and other basic properties requires precise calcula-
tion of the effects resulting not only from the strong Coulombic
interactions between the particles but also from more subtle
effects due to relativism, quantum electrodynamics (QED), and
finite nuclear mass and size. There has been a steady progress
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in high-precision atomic calculations over the last two decades.
In 2002 very accurate calculations were reported for the lithium
atom [1,2]. In 2006–2007 works were published concerning the
lowest S excitation energy of the beryllium atom [3,4] where
all-electron explicitly correlated Gaussian functions (ECGs)
were used for expanding the wave functions of the system. The
calculated energy of the 3 1S → 2 1S transition was within the
experimental error bar from the experimental value reported
earlier by Johansson [5] and Kramida and Martin [6]. Recently,
ECGs were used to calculate the lowest S → P transitions
of beryllium [7]. The calculations were performed with the
infinite-nuclear-mass (INM) approach and the finite-mass
effects were obtained using the perturbation theory. In that
work, the leading relativistic corrections for the 21S, 31S, and
21P states of beryllium were calculated using the INM wave
functions. We should also mentioned our recent high-accuracy
calculations of the lowest four 2S states of the boron atom [8]
where similar accuracy as achieved before for four-electron
atoms was reached. In those calculations the finite-nuclear-
mass (FNM) approach was used. Thus, the finite-mass effects
were directly incorporated in the nonrelativistic total energy,
as well as in the relativistic corrections which were calculated
using the first-order level of the perturbation theory with the
FNM wave function being the zeroth-order solution.

In this work we report on a next step in the development of
methods for precision calculations of the ground and excited
states of small atoms. The development involves derivation
and implementation of algorithms for calculating the leading
relativistic corrections for atomic singlet states with the total
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angular momentum quantum number of one (the P states).
The first-order perturbation-theory approach is used and the
corrections are calculated as expectation values using the FNM
wave functions expanded in terms of all-electron ECGs. The
wave functions are obtained in variational calculations where
the linear and nonlinear parameters involved in the wave
functions are extensively optimized.

We have used various types of ECG basis functions in high-
accuracy atomic and molecular calculations performed with an
approach where the Born-Oppenheimer (BO) approximation is
not assumed [9–11]. In the calculations the coupled motion of
the electrons and nuclei and the effects due to the finite masses
of the nuclei (the nucleus for an atom) are described in the wave
functions and the corresponding energies. When these wave
functions are used in calculating the relativistic corrections,
the relativistic recoil effects, etc., are directly accounted for in
the results. Thus their determination does not require resorting
to the perturbation theory.

ECGs are not as efficient in describing the cusps and the
tail behavior of the wave functions of bound atomic and
molecular states as some other types of explicitly correlated
functions, such as Slaters or Hylleraas-type functions [12–16].
However, with ECGs the multiparticle integrals involved in
the Hamiltonian matrix elements and in the matrix elements of
the relativistic operators can be easily calculated. This allows
for the use of long ECG expansions of the wave functions
and effectively remediates the deficiencies of these basis
functions in the atomic and molecular calculations provided
the Gaussian exponential parameters are well optimized. For
ECGs such optimization can be carried out very efficiently
using the variational method because the expression for the
total energy obtained using ECGs can be easily analytically
differentiated with respect to the Gaussian exponential pa-
rameters and the energy gradient can be determined and
provided to the optimization procedure [9]. The availability
of the analytic gradient in the optimization helps considerably
in achieving high accuracy in the calculations. It is mostly
due to the implementation of the analytical energy gradient
in our variational non-Born-Oppenheimer (non-BO) atomic
and molecular calculations that the results concerning ground
and excited states of these systems have been unmatched in
accuracy by calculations performed by others. The results for
the four lowest 1P states of the beryllium atom obtained in the
calculations performed in the present work provide an example
of the efficiency of the gradient-aided optimization approach.

I. METHOD USED IN THE CALCULATIONS

We consider an atomic system with N particles (a nucleus
+ (N − 1) = n electrons). After separating out the motion of
the center of mass [10], the N -particle problem is effectively
reduced to an (N − 1)-particle problem. In the separation the
total nonrelativistic Hamiltonian initially expressed in terms
of laboratory 3N Cartesian coordinates is transformed into a
Hamiltonian expressed in terms of new Cartesian coordinates,
three of which are the laboratory coordinates of the center of
mass of the system and the remaining (3N − 3) are internal
coordinates. The origin of the internal coordinate system is
placed at the nucleus. With the implementation of the new
coordinates, the total Hamiltonian rigorously separates into

the operator representing the kinetic energy of the motion of
the center of mass and the so-called internal nonrelativistic
Hamiltonian Hnr, which has the following form (in a.u.):

Ĥnr = −1

2

⎛
⎝ n∑

i=1

1

μi

∇2
ri

+
n∑

i=1

n∑
j �=i

1

m0
∇T

ri
·∇rj

⎞
⎠

+
n∑

i=1

q0qi

ri

+
n∑

i=1

n∑
j<i

qiqj

rij

, (1)

where q0 is the nuclear charge; qi = −1, i = 1, . . . ,n, are
charges of the electrons; m0 is the mass of the nucleus; mi = 1,
i = 1, . . . ,n, are the electron masses; and μi = m0mi/(m0 +
mi), i = 1, . . . ,n, are the reduced masses of the electrons.
The superscript “T ” denotes the transposition. The effects
of a finite nuclear mass are represented in a nonperturbative
way in Eq. (1) by the mass-polarization term and the reduced
masses μi included in the first component of the kinetic energy
operator.

The most frequently used approach to account for relativis-
tic and QED effects in light atomic systems is to expand the
total energy in powers of the fine-structure constant [17,18]:

Etot = E(0)
nr + α2E

(2)
rel + α3E

(3)
qed + · · · ,

where E(0)
nr is the nonrelativistic energy [an eigenvalue of the

nonrelativistic Hamiltonian (1)], E(2)
rel includes the leading rela-

tivistic corrections, and E
(3)
qed includes the leading QED correc-

tions. α is the fine-structure parameter (α = 7.297 352 569 8 ×
10−3 [19]).

E
(2)
rel incorporates corrections represented by the expectation

values of some effective relativistic Hamiltonian, which in this
work is the Dirac-Breit Hamiltonian in the Pauli approximation
[20,21]. The expectation values are evaluated in the framework
of the perturbation theory using the non-BO nonrelativistic
wave function obtained for the considered state in the vari-
ational FNM calculation. For singlet states the relativistic
Hamiltonian contains the following contributing terms,

Ĥrel = Ĥmv + Ĥd + Ĥoo + Ĥss, (2)

which represent the mass-velocity (mv), Darwin (d), orbit-orbit
(oo), and spin-spin (ss) interactions (the spin-orbit interaction
is zero for the singlet states). The explicit form of the Ĥmv, Ĥd,
Ĥoo, and Ĥss Hamiltonians can be found in Ref. [10].

II. THE NOTATION

Let us first introduce the notation convention used in this
work.

(i) α, β, ξ , etc. Lowercase Greek letters are used for scalars.
(ii) a, b, etc. Bold font in the lowercase Latin letters is

used to denote vectors in the n × 3 space. These have 3n

components. For example, rT = (r1x,r1y,r1z,r2x, . . . ,rnz).
(iii) A, X, etc. Uppercase Latin letters are used for matrices

in the particle space. These are n × n matrices.
(iv) A, X, etc. Bold font in uppercase Latin letters is used to

denote matrices in 3n-dimensional space. These are 3n × 3n

matrices.
(v) AT , AT , etc. The T stands for matrix or vector

transpose.
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(vi) A−1, A−1 Stands for the inverse of the matrix.
(vii) |A|, |A| The vertical bars stand for the determinant of

the matrix. However, if the object in between the vertical bars
is a vector or a scalar then the bars denote the absolute value
of the vector (scalar).

(viii) Tr A, Tr A The Tr stands for the trace of the matrix.
(ix) I3, In The letter I is only used for identity matrices,

so that I3 is the 3 × 3 identity matrix, In is the n × n identity
matrix, etc.

III. BASIS FUNCTIONS

The general form of the basis functions for describing the
L = 1 states used in this work is

φk = zmk
exp[−rT Akr]. (3)

Here mk is an integer that depends on k with values from 1 to
n and Ak is a 3n × 3n symmetric matrix. r is a vector of the
internal Cartesian coordinates of the n moving electrons (for
the He and Be atoms r is a 6 × 1 vector and a 12 × 1 vector,
respectively).

In the derivations we often use the following alternative
representation of the basis functions (3):

φk = ∂

∂αk

exp
[−rT Akr + αkzmk

]∣∣
αk=0

= ∂

∂αk

exp
[−rT Akr + αk(vk)T r

]∣∣
αk=0, (4)

where αk is a parameter and vk is a vector whose components
are all zeros, except the 3mk component, which is set to 1.
For example, in the case when n = 2 and mk = 1, the six-
component vector vk is

vk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= vk ⊗ εz, where εz =

⎛
⎜⎝

0

0

1

⎞
⎟⎠. (5)

Furthermore, it is convenient to define the following “gen-
erator” function that can be used to generate φk in Eq. (4) as

ϕk = exp[−rT Akr + αk(vk)T r]. (6)

Basis functions used to expand wave functions of bound
atomic states need to be square integrable. This puts restrictions
on the Ak matrix as it needs to be positive definite. To assure
that Ak is positive definite, it is represented in our approach in
the Cholesky-factored form as Ak = (LkL

T
k ) ⊗ I3, where Lk

is a n × n lower triangular matrix, I3 is a 3 unit matrix, and ⊗
denotes the Kronecker product. There are restrictions on the
values of the Lk-matrix elements. They can be any real number
with values ranging from −∞ to +∞. Thus, the ECGs in the
present approach have the following form:

φk = zmk
exp

[−rT
(
LkL

T
k ⊗ I3

)
r
]
. (7)

The Lk-matrix elements are the nonlinear exponential param-
eters which are variationally optimized in our calculations.

The spin-free formalism is used to implement the correct
permutational symmetry and properly evaluate all necessary
matrix elements. In this formalism, an appropriate symmetry
projector is applied to the spatial parts of the wave function
to impose the desired symmetry properties. The symmetry
projector can be constructed using the standard procedure
involving Young operators as described, for example, in
Ref. [22]. In the case of the 1P states of the beryllium atom
the permutation operator can be chosen as (1 − P 13)(1 −
P 24)(1 + P 12)(1 + P 34), where P ij denotes the permutation
of the spatial coordinates of the ith and j th electrons. The above
operator yields 4! = 24 terms for the matrix elements of the
Hamiltonian and the overlap.

The linear coefficients ck in the expansion of the wave
function in terms of the basis functions and the nonlinear
parameters (i.e., matrices Lk) are determined by performing a
minimization of the total energy based on a multistep approach
that employs the analytic energy gradient determined with
respect to these parameters [10]. The variational calculations
are performed separately and independently for each state; i.e.,
for each state a different basis set is generated.

The final basis set for each state considered in this work
is generated in a multistep process. It starts with a small set
of randomly chosen functions and involves the incremental
addition of new functions. The new functions are added to
the basis set one by one and their nonlinear Lk parameters
are optimized using an approach employing the analytical
energy gradient. At this stage, the mk index of z for each
added function is also varied from 1 to n and the index is
set equal to the value that gives the lowest energy. The initial
guess for a new function is generated by selecting a subset
of most contributing functions already included in the basis
set, randomly perturbing their exponential parameters, and
selecting, as a new function, the function from the subset which
lowers the energy the most. After a certain number of functions
(10–20 in the present calculations) are added to the basis set, the
entire basis is reoptimized. The reoptimization involves cycling
over all functions, one by one, several times and reoptimizing
their nonlinear parameters. Such a one-by-one optimization
process can be made very numerically efficient and it has been
highly tuned in our calculations. The analytic energy gradient
is also employed in this process. At each optimization step
the basis set is checked for linear dependencies. If any appear,
they are removed as they may cause numerical instability in
the calculation.

In the test calculations performed in this work some of
the lowest 1P states of the He and Be atoms are considered.
The calculations involving growing the basis sets for He are
performed using the INM approach (∞He) and for Be are
performed using the FNM approach with the 7Be nuclear mass.
As our previous tests have shown, no reoptimization of the
nonlinear variational parameters is needed when states of a
different isotope are calculated. The adjustment of the linear
coefficients ck through rediagonalization of the Hamiltonian
and overlap matrices is quite sufficient for describing the
relatively small changes in the wave function caused by the
change of the nuclear mass.
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IV. PERMUTATIONAL SYMMETRY

In the calculation of the wave function expanded in terms of ECGs (3) each Gaussian is transformed with the appropriate
permutational symmetry operator resulting from the total wave function (which includes and spatial and spin coordinates of the
electrons) being antisymmetric with respect to the permutation of each two electron labels. The permutational symmetry operator
is a sum of operators permuting the labels of the electrons multiplied by appropriate linear coefficients. Each labels-permuting
operator is represented by a 3n × 3n permutation matrix. Let us denote by P the permutation matrix representing a particular P̂

permutation operator. Then, acting with P̂ on φl we get

P̂ φl = P̂
∂

∂αl

exp[−rT Alr + αl(vl)T r]
∣∣
αl=0 = ∂

∂αl

exp[−rT (PT AlP)r + αl(PT vl)T r]
∣∣
αl=0. (8)

In calculating the expectation value of an operator, the following property is used:

〈P̂βφk|Ô|P̂γ φl〉 = 〈φk|Ô|P̂ †
β P̂γ φl〉 = 〈φk|Ô|P̂δφl〉. (9)

The following notation is used:

|φ̃l〉 ≡ P̂ |φl〉. (10)

The Al matrix of the nonlinear parameters and the vl vector for the φl basis function are transformed in the following way (the
transformed quantities are denoted as Ãl and ṽl):

Ãl ≡ PT AlP, (11)

ṽl ≡ PT vl . (12)

V. SOME AUXILIARY FORMULAS

There are some simple relations that have been used in deriving the expressions for the integrals. They are as follows:
(i) ∫ +∞

−∞
dx exp[−xT Ax + yT x] = πn/2

|A|1/2
exp

[
1

4
yT A−1y

]
. (13)

The integration here is over n variables, and x is an n-component vector of these variables. y is a constant vector, n × n matrix A

is assumed to be symmetric, and its real part is positive definite. Also, here and everywhere below, by the square root one should
understand its principal value (i.e., that root whose real part is greater than zero).

(ii) The following symbols are used in the derivations:

Akl ≡ Ak + Al , Ãkl ≡ Ak + Ãl . (14)

(iii) Some useful matrix relations are used:
(a) determinant derivative—d|X| = |X|Tr [X−1dX], d|X|−3/2 = − 3

2 |X|−3/2 Tr [X−1dX],
(b) inverse matrix derivative—dX−1 = −X−1(dX)X−1.

(iv) By ∇r = [∂x,∂y,∂z] we denote the gradient with respect to the vector of the coordinates, r, and we have

∇α
r ϕ ≡ ∇αϕ ≡ ∂αϕ and ∇rαϕ ≡ ∇αϕ ≡ ∂αϕ.

(v) In this work we use the following first-order derivatives. For example, the derivatives of the k function ϕk are

∇αϕk ≡ ∂αϕk = [−2rT Ak + αk(vk)T ]αϕk, (15)

∇αϕk ≡ ∂αϕk = [−2Akr + αk(vk)]αϕk. (16)

Hence some useful relations can be derived:

∂α∂βϕk = {−2(Ak) α
β + 4 (rT Ak)α(Akr)β − 2αk (rT Ak)α(vk)β − 2αk(vk)α(Akr)β + α2

k (vk)α(vk)β
}
ϕk, (17)

∂α∂βϕk = {−2(Ak)α β + 4 (Akr)α(Akr)β − 2αk (Akr)α(vk)β − 2αk(vk)α(Akr)β + α2
k (vk)α(vk)β

}
ϕk, (18)

(D∇)βϕk = Dβ
α∂αϕk = [−2D Akr + αkD(vk)]βϕk, (19)

(∇T D)βϕk = Dα
β∂αϕk = [−2rT Ak D + αk(vk)T D]βϕk, (20)

∇T D∇ϕk = {−2 Tr [AkD] + 4 (rT Ak D Akr) − 2αk (rT Ak D vk) − 2αk(vk D Akr) + α2
k (vk D vk)

}
ϕk. (21)
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∂ρ∂β∂αϕk = [+4 (Ak)ρα(Akr)β + 4 (Ak)ρβ(Akr)α − 2αk (Ak)ρα(vk)β − 2αk(Ak)ρβ(vk)α + 4(Ak)α β(rT Ak)ρ

+ − 8(Akr)α(Akr)β(rT Ak)ρ + 4αk (Akr)α(vk)β(rT Ak)ρ + 4αk(vk)α(Akr)β(rT Ak)ρ − 2α2
k (vk)α(vk)β(rT Ak)ρ

− 2αk (vkT )ρ(Ak)α β + 4αk (vkT )ρ(Akr)α(Akr)β − 2α2
k (vkT )ρ(Akr)α(vk)β

+ − 2α2
k (vkT )ρ(vk)α(Akr)β + α3

k (vkT )ρ(vk)α(vk)β
]
ϕk. (22)

(vi) The matrix J
ij

used in the above expressions is defined as

J
ij

=
{

Eii i = j

Eii + Ejj − Eij − Eji i �= j

}
,

where Eij is the 3n × 3n matrix with 1 in the ij th position and 0 elsewhere. Formally this can be written as (Eij )α
β

= δi
αδjβ .

(vii) Transformations involving determinants can be be handled using the following theorem [23]:

|In + α H1| = 1 + αTr[H1], (23)

|In + α H1 + β H2| = 1 + αTr[H1] + βTr[H2] + αβ(Tr[H1]Tr[H2] − Tr[H1f H2]). (24)

(viii) The inverse of a sum of matrices is obtained as follows.
(a) If A is an arbitrary nonsingular square matrix and B is a nonsingular matrix with rank one then [23]

(A + B)−1 = A−1 − A−1BA−1

1 + Tr[BA−1]
. (25)

(b) The sum of two Kronecker products, A ⊗ G + B ⊗ E, where B and E are matrices of rank one and A and G are
nonsingular matrices is obtained as

(A ⊗ G + B ⊗ E)−1 = A−1 ⊗ G−1 − 1

1 + Tr[EG−1] Tr[BA−1]
A−1BA−1 ⊗ G−1E G−1. (26)

VI. HAMILTONIAN

The relativistic Hamiltonian for singlet states used in this work [see Eq. (2)] consists of the following terms:

Ĥmv = −1

8

⎡
⎣ 1

m3
0

(
n∑

i=1

∇ri

)4

+
n∑

i=1

1

m3
i

∇4
ri

⎤
⎦, (27)

Ĥdar = π

2

n∑
i=1

(
1

m2
0

+ 1

m2
i

)
q0qiδ

3(ri) + π

2

n∑
i=1

n∑
j �=i

1

m2
i

qiqj δ
3(rij ), (28)

Ĥoo = −1

2

n∑
i=i

q0qi

m0mi

{
1

ri

∇T
ri

· ∇ri
+ 1

r3
i

rT
i · (rT

i · ∇ri

)∇ri

}
− 1

2

n∑
i=1

n∑
j �=i

q0qi

m0mi

{
1

ri

∇T
ri

· ∇rj
+ 1

r3
i

rT
i · (rT

i · ∇rj

)∇ri

}

+1

2

n∑
i=1

n∑
j>i

qiqj

mimj

{
1

rij

∇T
ri

· ∇rj
+ 1

r3
ij

rT
ij · (rT

ij · ∇ri

)∇rj

}
. (29)

All these terms are treated as perturbations.

VII. MASS-VELOCITY HAMILTONIAN MATRIX ELEMENT

The mass-velocity Hamiltonian matrix element is given as

〈φk|Ĥmv|φ̃l〉 = −1

8

⎡
⎣ 1

m3
0

〈φk|
(

n∑
i=1

∇ri

)4

|φ̃l〉 +
n∑

i=1

1

m3
i

〈φk|∇4
ri
|φ̃l〉

⎤
⎦. (30)

The matrix elements that need to be calculated are

〈φk|Ĥmv|φ̃l〉 = −1

8

(
1

m3
0

〈∇T
r J∇rφk

∣∣∇T
r J∇rφ̃l

〉+ n∑
i=1

1

m3
i

〈∇T
r J

ii
∇rφk

∣∣∇T
r J

ii
∇rφ̃l

〉)
, (31)

where we use matrix J (with no indicies), whose matrix elements are all equal to 1: J
αβ

= 1.
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Only one type of integral appears in the expression for the Ĥmv matrix elements: 〈∇r
T D∇rφk|∇r

T D∇rφ̃l〉, where D is either
J or J

ii
. To compute it we express it, according with (21), through the following elementary integrals:

〈∇r
T D∇rφk|∇r

T D∇rφ̃l〉 = ∂

∂αk

∂

∂αl

〈∇r
T D∇rϕk|∇r

T D∇rϕ̃l〉
∣∣
αk=αl=0

= 36 Tr [AkD] Tr [ÃlD] 〈φk|φ̃l〉 − 24 Tr [ÃlD]〈φk|rT AkDAkr|φ̃l〉 + 16〈φk|(rT AkDAkr) (rT ÃlDÃlr)|φ̃l〉
+ 12 Tr [AkD]〈ϕk|(vkT r)(rT AlDṽl)|ϕ̃l〉 + 12 Tr [AkD]〈ϕk|(vkT r)(rT AlDṽl)|ϕ̃l〉
+ 12 Tr [AlD]〈ϕk|(rT AkDvk)(ṽlT r)|ϕ̃l〉 + 12 Tr [AlD] 〈ϕk|(vkT DAkr)(ṽlT r)|ϕ̃l〉. (32)

VIII. DARWIN HAMILTONIAN MATRIX ELEMENT

The Darwin Hamiltonian matrix element is given as

〈φk|Ĥdar|φ̃l〉 = π

2

n∑
i=1

(
1

m2
0

+ 1

m2
i

)
q0qi 〈φk|δ3(ri)|φ̃l〉 + π

2

n∑
i=1

n∑
j �=i

1

m2
i

qiqj 〈φk|δ3(rij )|φ̃l〉 . (33)

The contributing integrals to this matrix elements are calculated as

〈φk|δ3(rg)|φ̃l〉 = Skl

π3/2 Tr
[
Ã−1

kl Jg

]3/2

{
1 − 1

Tr
[
Ã−1

kl Jg

] vk′Ã−1
kl JgÃ

−1
kl ṽl

vk′Ã−1
kl ṽl

}
, (34)

where Jg = Jii or Jg = Jij . Matrix elements with the Dirac δ function were calculated in our previous work [24].

IX. ORBIT-ORBIT HAMILTONIAN MATRIX ELEMENT

The matrix notation of the orbit-orbit interaction operator is as follows (for details see Refs. [25,26]):

〈φk|Ĥoo|φ̃l〉 = −1

2

n∑
i=1

q0qi

m0mi

〈φk| 1

ri

∇T Eii∇ − (rT Eii)
α

(
∇T Eii

1

ri

)β

(Eii∇)β(Eii∇)α|φ̃l〉 (35)

− 1

2

n∑
i=1

n∑
j �=i

q0qi

m0mi

〈φk| 1

ri

∇T Eij∇ − (rT Eii)
α

(
∇T Eij

1

ri

)β

(Ejj∇)β(Eii∇)α|φ̃l〉 (36)

+ 1

2

n∑
i=1

n∑
j>i

qiqj

mimj

〈φk| 1

rij

∇T Eij∇ + (rT (Eij − Ejj ))α
(

∇T Eji

1

rij

)β

(Eii∇)β(Ejj∇)α|φ̃l〉. (37)

To simplify the expression for the expectation value of Ĥoo we use the following general integral for each of the three terms
appearing in the expectation value:

〈φk| 1

rg

∇T B∇|φ̃l〉 − 〈φk|(rT K)α
(

∇T D
1

rg

)β

(F∇)β(G∇)α|φ̃l〉 (38)

= ∂

∂αk

∂

∂αl

〈ϕk| 1

rg

∇T B∇|ϕ̃l〉
∣∣
αk=αl=0 − ∂

∂αk

∂

∂αl

〈ϕk|(rT K)α
(

∇T D
1

rg

)β

(F∇)β(G∇)α|ϕ̃l〉
∣∣
αk=αl=0, (39)

where

for the term (35): g = i, B = Eii , K = Eii , D = Eii , F = Eii , G = Eii ;

for term (36): g = i, B = Eij , K = Eii , D = Eij , F = Ejj , G = Eii ;

for the term (37): g = ij, B = Eij , K = (Eij − Ejj ), D = Eji , F = Eii , G = Ejj .

(40)

Now, the integrals appearing in the above matrix elements are expressed in terms of more elemental integrals. After that these
elemental integrals are calculated.

A. Integral 〈φk| 1
rg

∇T B∇|φ̃l〉

〈φk| 1

rg

∇T B∇|φ̃l〉 = ∂

∂αk

∂

∂αl

〈ϕk| 1

rg

∇T B∇|ϕ̃l〉
∣∣
αk=αl=0. (41)
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Based on (21) we have

∇T B∇ϕ̃l = ∂αB β
α ∂βϕ̃l = {− 2 Tr [ÃlB] + 4(rT ÃlB Ãlr) − 2αl(rT ÃlB ṽl) − 2αl(vlT B Ãlr) + α2

l (ṽlT Bṽl)
}
ϕ̃l (42)

and
∂

∂αk

∂

∂αl

〈ϕk| 1

rg

∇T B∇|ϕ̃l〉
∣∣
αk=αl=0 = −6 Tr [ÃlB]〈φk| 1

rg

|φ̃l〉 + 4 〈φk| 1

rg

(rT AlB Ãlr)|φ̃l〉

+ − 2〈ϕk| 1

rg

(vkT r)(rT ÃlB ṽl)|ϕ̃l〉 − 2〈ϕk| 1

rg

(vkT r)(ṽlT BÃlr)|ϕ̃l〉. (43)

B. Integral 〈φk|(rT K )α(∇T D 1
rg

)β (F∇)β (G∇)α|φ̃l〉

〈φk|(rT K)α
(

∇T D
1

rg

)β

(F∇)β(G∇)α|φ̃l〉 = ∂

∂αk

∂

∂αl

〈ϕk|(rT K )α
(

∇T D
1

rg

)β

(F∇)β(G∇)α|ϕ̃l〉
∣∣
αk=αl=0.

We rewrite this integral in the following way:

〈ϕk|(rT K)α
(

∇T D
1

rg

)β

(F∇)β(G∇)α|ϕ̃l〉 = −
∫

dr
1

rg

(∇T D)β{ϕk (rT K)α(F∇)β(G∇)αϕ̃l}.

The integral can be split into three terms:

−
∫

dr
1

rg

(∇T D)β{ϕk (rT K)α (F∇)β(G ∇)αϕ̃l}

= −
∫

dr
1

rg

{(∇T D)βϕk} (rT K G∇)(F∇)βϕ̃l ≡ term 1

−
∫

dr
1

rg

ϕk {(∇T D)β(rT K)α}(F∇)β(G∇)αϕ̃l ≡ term 2

−
∫

dr
1

rg

ϕk (rT K)α{(∇T D)β(F∇)β(G∇)αϕ̃l} ≡ term 3.

As similar integrals were calculated in our previous works [25,26], we only show here the final results for term 1, term 2, and
term 3.

1. Term 1:
∫

dr 1
rg

{(∇T D)βϕk}(rT K G∇)(F∇)βϕ̃l

{(∇T D )βϕk} (rT K G∇)(F∇)βϕ̃l

= {
Dγ

β∂γ ϕk

}[
(rT K G)αFβ

ρ∂α∂ρϕ̃l

] = ϕk

[
4(rT K G Ãl FT DT Akr) − 8(rT K G Ãlr)(rT AkD F Ãlr)

+ 4αl(rT K G Ãlr)(rT AkD F ṽl) + 4αl(rT K Gṽl)(rT AkD F Ãlr) − 2α2
l (rT K Gṽl)(rT AkD Fṽl)

− 2αk(rT K G ÃlF
T DT vk) + 4αk(rT K G Ãlr)(vkT D F Ãlr) − 2αkαl(rT K G Ãlr)(vkT D F ṽl)

− 2αkαl(rT K Gṽl)(vkT D F Ãlr) + αkα
2
l (rT K Gṽl)(vkT D Fṽl)

]
ϕ̃l , (44)

where the above transformations (44) can be easily performed using (15) and (18). Hence the final form of the integral is∫
dr

1

rg

{(∇T D)βφk}(rT K G ∇)(F∇)βφ̃l

= ∂

∂αk

∂

∂αl

∫
dr

1

rg

{(∇T D)βϕk}(rT K G∇)(F∇)βϕ̃l

∣∣
αk=αl=0

= 4〈φk| 1

rg

[rT K G Ãl(D F)T Akr]|φ̃l〉 − 8 〈φk| 1

rg

(rT K G Ãlr)(rT AkD F Ãlr)|φ̃l〉

+4〈ϕk| 1

rg

(vkT r)(rT K G Ãlr)(rT Ak D Fṽl)|ϕ̃l〉 + 4〈ϕk| 1

rg

(vkT r)(rT K Gṽl)(rT AkD F Ãlr)|ϕ̃l〉

−2〈ϕk| 1

rg

[rT K G Ãl(D F)T vk](ṽlT r)|ϕ̃l〉 + 4〈ϕk| 1

rg

(rT K G Ãlr)[rT Ãl(D F)T vk] (ṽlT r)|ϕ̃l〉

−2(vkT D Fṽl)〈ϕk| 1

rg

(rT K G Ãlr)|ϕ̃l〉 − 2〈ϕk| 1

rg

(rT K Gṽl)[rT Ãl (D F)T vk]. (45)
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2. Term 2:
∫

dr ϕk
1
rg

{(∇T D )β (rT K)α}(F ∇)β (G ∇)α ϕ̃l

We note that

{(∇T D)β(rT K)αg}(F∇)β(G∇)αϕ̃l = (D F∇)γ (K G∇)γ ϕ̃l = (∇T GT KT D F∇)ϕ̃l . (46)

Hence, the expression (46) is analogous to (43).

3. Term 3:
∫

dr ϕk
1
rg

(rT K)α{(∇T D)β (F∇)β (G∇)αϕ̃l}
First we make a few simple transformations:

(rT K)α{(∇T D)β(F∇)β(G∇)αϕ̃l} = (rT K G)α(D F)ρ
β ∂ρ∂β∂αϕ̃l . (47)

Based on (22) we get∫
dr φk

1

rg

(rT K)α{(∇T D)β(F∇)β(G∇)αφ̃l}

= ∂

∂αk

∂

∂αl

∫
dr ϕk

1

rg

(rT K)α{(∇T D)β(F∇)β(G∇)αϕ̃l}
∣∣
αk=αl=0

= +4 〈φk| 1

rg

(rT K G ÃlD F Ãlr)|φ̃l〉 + 12 Tr [ÃlDF ] 〈φk| 1

rg

(rT K G Ãlr)|φ̃l〉

+4 〈φk| 1

rg

(rT K G Ãl FT DT Ãlr)|φ̃l〉 − 8 〈φk| 1

rg

(rT K G Ãlr)(rT Ãl D F Ãlr)|φ̃l〉

−2 〈ϕk| 1

rg

(vkT r)(rT K G ÃlD F ṽl)|ϕ̃l〉 − 6 Tr [ÃlDF ] 〈ϕk| 1

rg

(vkT r)(rT K Gṽl)|ϕ̃l〉

−2 〈ϕk| 1

rg

(vkT r)[rT K G Ãl(D F)T ṽl]|ϕ̃l〉 + 4 〈ϕk| 1

rg

(vkT r)(rT K G Ãlr)(rT Ãl D F ṽl)|ϕ̃l〉

+4 〈ϕk| 1

rg

(vkT r)(rT K Gṽl)(rT ÃlD F Ãlr)|ϕ̃l〉 + 4 〈ϕk| 1

rg

(vkT r)(rT K G Ãlr)(ṽlT D F Ãlr)|ϕ̃l〉. (48)

X. MATRIX ELEMENTS

The elemental integrals are now evaluated.

A. Overlap integral

The overlap integral is

〈ϕk|ϕ̃l〉 = ∂

∂αk

∂

∂αl

〈ϕk|ϕ̃l〉
∣∣
αk,αl=0 = π3n/2

|Ãkl|3/2

∂

∂αk

∂

∂αl

exp

[
1

4
(αkv

k + αlṽ
l)T Ã−1

kl (αkv
k + αlṽ

l)

]∣∣∣∣
αk,αl=0

= π3n/2

2

vkT Ã−1
kl ṽl

|Ãkl|3/2
. (49)

The normalized overlap integral is

Skl ≡ 〈φk|φ̃l〉
(〈φk|φk〉〈φl|φl〉)1/2

= (|Akk|3/2|All|3/2)1/2

|Ãkl|3/2

(
vkT Ã−1

kl ṽl
)

(
vkT A−1

kk vk ṽlT A−1
ll ṽl

)1/2

= 23n/2

(‖Lk‖ ‖Ll‖
|Ãkl|

)3/2 (
vkT Ã−1

kl ṽl
)

(
vkT A−1

kk vk ṽlT A−1
ll ṽl

)1/2 . (50)

The details of the derivation were shown in Ref. [24]. Now additional integrals need to be calculated.

B. 〈φk|(rT Xr)|φ̃l〉
Using the representation of basis functions (3) presented by Eq. (4) and using Eq. (13) we get

〈φk|(rT Xr)|φ̃l〉 = − ∂

∂β
〈φk| exp[−βrT Xr]|φ̃l〉|β=0 = − ∂

∂β

π3n/2

2

vkT (Ãkl + βX)−1ṽl

|Ãkl + βX|3/2

∣∣∣∣
β=0

= 〈φk|φ̃l〉
(

3

2
Tr
[
Ã−1

kl X
]+

(
vkT Ã−1

kl XÃ−1
kl ṽl

)
(
vkT Ã−1

kl ṽl
)

)
. (51)
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C. 〈φk|(rT Xr)(rT Yr)|φ̃l〉
This integral is evaluated in the following way:

〈φk|(rT Xr)(rT Yr)|φ̃l〉 = ∂

∂αk

∂

∂αl

∂

∂β

∂

∂γ

∫
dr exp[−rT (Ãkl + βX + γ Y)r + (αkvk + αl ṽl)T r]

∣∣
β=γ=αk=αl=0

= π3n/2 |Ãkl|−3/2 ∂

∂β

∂

∂γ

∣∣I + βÃ−1
kl X + γ Ã−1

kl Y
∣∣−3/2 1

2
[vkT (Ãkl + βX + γ Y )−1ṽl] |β=γ=0. (52)

Using the general expression for the derivative of a product of a determinant and a scalar both being dependent on the derivative
variable and the scalar being a product of a vector, a matrix, and a vector (vkT W−1vl) we get

∂

∂β

∂

∂γ
{|M|−3/2(vkT W−1vl)} |β=γ=0

= |M|−3/2

{
9

4
Tr [M−1∂βM] Tr [M−1∂γ M](vkT W−1vl) + 3

2
Tr [M−1∂βM][vkT W−1(∂γ W ) W−1vl]

+3

2
Tr [M−1(∂βM)M−1∂γ M](vkT W−1vl) + 3

2
Tr [M−1∂γ M][vkT W−1(∂βW )W−1vl]

+[vkT W−1(∂βW )W−1(∂γ W )W−1vl] + [vkT W−1(∂γ W )W−1(∂βW )W−1vl]

}∣∣∣∣
β=γ=0

. (53)

Using in (53) the following,
|M| = ∣∣I + βÃ−1

kl X + γ Ã−1
kl Y

∣∣, M−1 = I−1,

W−1 = (
I + βÃ−1

kl X + γ Ã−1
kl Y

)−1
, W−1 = Ã−1

kl , (54)

we get

〈φk|(rT Xr)(rT Yr)|φ̃l〉 = 〈φk|φ̃l〉
{

9

4
Tr
[
Ã−1

kl X
]

Tr
[
Ã−1

kl Y
] + 3

2
Tr
[
Ã−1

kl X
] (vkT Ã−1

kl Y Ã−1
kl vl

)
(
vkT Ã−1

kl vl
) + 3

2
Tr
[
Ã−1

kl XÃ−1
kl Y

]

+ 3

2
Tr
[
Ã−1

kl Y
](vkT Ã−1

kl XÃ−1
kl vl

)
(
vkT Ã−1

kl vl
) + 1(

vkT Ã−1
kl vl

) [(vkT Ã−1
kl X Ã−1

kl Y Ã−1
kl vl

)

+ (
vkT Ã−1

kl Y Ã−1
kl X Ã−1

kl vl
)]}

. (55)

D. 〈ϕk|(vkT r)(rT Xṽl )|ϕ̃l〉
This integral is calculated analogically to integral 〈φk|(rT Xr)|φ̃l〉:

〈ϕk|(vkT r)(rT Xṽl)|ϕ̃l〉 = ∂

∂α

∂

∂β
〈ϕk| exp[αvkT r + βrT Xṽl]|ϕ̃l〉

∣∣
α=0,β=0

= π3n/2

|Ãkl|3/2

1

4

(
ṽlT XT Ã−1

kl vk + vkT Ã−1
kl Xṽl

) = 〈φk|φ̃l〉 1(
vkT Ã−1

kl ṽl
)(vkT Ã−1

kl Xṽl
)
. (56)

E. 〈φk| 1
rg

|φ̃l〉, where g = i or i j

〈φk| 1

rg

|φ̃l〉 = 2√
π

〈φk|φ̃l〉
Tr
[
Ã−1

kl Jg

]1/2

{
1 − 1

3

(
vkT Ã−1

kl JgÃ
−1
kl ṽl

)
(
vkT Ã−1

kl ṽl
)

Tr
[
Ã−1

kl Jg

]}. (57)

Details of the derivation of this integral were shown in Ref. [24].

F. 〈φk| 1
rg

(rT Xr)|φ̃l〉
This integral is evaluated as follows:

〈φk| 1

rg

(rT Xr)|φ̃l〉 = −π (3n−1)/2

|Ãkl|3/2

∫ ∞

0
dt

∂

∂β

∣∣I + t2Ã−1
kl Jg + βÃ−1

kl X
∣∣−3/2

[vkT (Ãkl + t2Jg + βX)−1ṽl] |β=0, (58)

where ∣∣I + t2Ã−1
kl Jg + βÃ−1

kl X
∣∣−3/2 ≡ [1 + t2a + βb + t2β(ab − c)]−3/2, (59)

and where a = Tr [Ã−1
kl Jg], b = Tr [Ã−1

kl X], and c = Tr [Ã−1
kl JgÃ

−1
kl X].
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Then
∂

∂β
{[1 + t2a + βb + t2β(ab − c)]−3/2[vkT (Ãkl + t2Jg + βX)−1ṽl]} |β=0

= −(1 + t2a)−3/2

{
3

2
b [vkT (Ãkl + t2Jg)−1ṽl] + [vkT (Ãkl + t2Jg)−1X(Ãkl + t2Jg)−1ṽl]

}

+3

2
c (1 + t2a)−5/2[vkT (Ãkl + t2Jg)−1ṽl] ≡ − 1

(1 + t2a)3/2
w0 + t2

(1 + t2a)5/2
w2 − t4

(1 + t2a)7/2
w4, (60)

where

w0 = 3

2
ba1 + c1, (61)

w2 = 3

2
ca1 + 3

2
ba2 + c2, (62)

w4 = 3

2
ca2 + c3, (63)

and

a1 = (
pT Ã−1

kl q
)
, (64)

a2 = (
pT Ã−1

kl JgÃ
−1
kl q

)
, (65)

c1 = (
pT Ã−1

kl XÃ−1
kl q

)
, (66)

c2 = [(
pT Ã−1

kl JgÃ
−1
kl XÃ−1

kl q
)+ (

pT Ã−1
kl X Ã−1

kl JgÃ
−1
kl q

)]
, (67)

c3 = (
pT Ã−1

kl JgÃ
−1
kl XÃ−1

kl JgÃ
−1
kl q

)
. (68)

So finally,

〈φk| 1

rg

(rT Xr)|φ̃l〉 = 2√
π

〈φk|φ̃l〉(
vkT Ã−1

kl ṽl
) 1

Tr
[
Ã−1

kl Jg

]1/2

{
w0 − 1

3

1

Tr
[
Ã−1

kl Jg

] w2 + 1

5

1

Tr
[
Ã−1

kl Jg

]2 w4

}
. (69)

G. 〈φk| 1
rg

(rT Xr)(rT Yr)|φ̃l〉
This integral is evaluated as follows:

〈φk| 1

rg

(rT Xr)(rT Yr)|φ̃l〉

= π (3n−1)/2

|Ãkl|3/2

∫ ∞

0
dt

∂

∂β

∂

∂γ

∣∣I + t2Ã−1
kl Jg + βÃ−1

kl X + γ Ã−1
kl Y

∣∣−3/2
[vkT (Ãkl + t2Jg + βX + γ Y )−1ṽl]|β=γ=0 (70)

Further calculations are tedious, but analogous to those for integrals 〈φk|(rT Xr)(rT Yr)|φ̃l〉 and 〈φk| 1
rg

(rT Xr)|φ̃l〉.

H. 〈ϕk| 1
rg

(rT Xvm)(rT Yvn)|ϕ̃l〉, where m,n = l or m,n = k

This integral is calculated analogously to 〈φk| 1
rg

|φ̃l〉 when αk and αl are set to zero:

〈ϕk| 1

rg

(rT Xvm)(rT Yvn)|ϕ̃l〉 = 〈ϕk| 1

rg

(Xvm)T r(Yvn)T r |ϕ̃l〉

= 2√
π

∂

∂α

∂

∂β

∫ ∞

0
dt

∫
dr exp{−rT (Ãkl + t2J

g
)r + [α(Xvm) + β(Yvn)]T r}|α=β=0

= π3n/2

2

(
vkT Ã−1

kl vl
)

|Ãkl|3/2

2√
π

1

Tr
[
Ã−1

kl Jg

]1/2(
vkT Ã−1

kl vl
)

×
[(

pT Ã−1
kl q

)− 1

3 Tr
[
Ã−1

kl Jg

] (pT Ã−1
kl JgÃ

−1
kl q

)]
, (71)

where a ≡ Tr [Ã−1
kl Jg], (Xvm) ≡ p, and (Yvn) ≡ q.
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I. 〈ϕk| 1
rg

(rT Xr) (rT Zvm) (rT Yvn) |ϕ̃l〉, where m,n = l or m,n = k

This integral is calculated analogously to integral 〈φk| 1
rg

(rT Xr)|φ̃l〉 with αk and αl set to zero:

〈ϕk| 1

rg

(rT Xr)(rT Zvm)(rT Yvn)|ϕ̃l〉 = − ∂

∂γ

∂

∂α

∂

∂β
〈ϕk| 1

rg

exp[−γ (rT Xr) + (αZvm + βYvn)T r]|ϕ̃l〉|γ=α=β=0

= −π (3n−1)/2∣∣Ãkl

∣∣3/2

∂

∂γ

∫ ∞

0
dt[1 + t2a + γ b + t2γ (ab − c)]−3/2(Zvm)T

×(Ãkl + t2Jg + γX)−1Yvn|γ=0, (72)

where ∣∣I + t2Ã−1
kl Jg + γ Ã−1

kl X
∣∣−3/2 = [1 + t2a + γ b + t2γ (ab − c)]−3/2 (73)

and a = Tr [Ã−1
kl Jg], b = Tr [Ã−1

kl X], c = Tr [Ã−1
kl JgÃ

−1
kl X], p = Zvm, and q = Yvn.

Then
∂

∂γ
{[1 + t2a + γ b + t2γ (ab − c)]−3/2pT (Ãkl + t2Jg + γX)−1q}|γ=0

= − 1

(1 + t2a)3/2

[
3

2
b
(
pT Ã−1

kl q
)+ (

pT Ã−1
kl XÃ−1

kl q
)]

+ t2

(1 + t2a)5/2

[
3

2
b
(
pT Ã−1

kl JgÃ
−1
kl q

)+ 3

2
c
(
pT Ã−1

kl q
)+ (

pT Ã−1
kl JgÃ

−1
kl XÃ−1

kl q
)+ (

pT Ã−1
kl XÃ−1

kl JgÃ
−1
kl q

)]

− t4

(1 + t2a)7/2

[
3

2
c
(
pT Ã−1

kl JgÃ
−1
kl q

)+ (
pT Ã−1

kl JgÃ
−1
kl XÃ−1

kl JgÃ
−1
kl q

)]

≡ − 1

(1 + t2a)3/2
w0 + t2

(1 + t2a)5/2
w2 − t4

(1 + t2a)7/2
w4, (74)

where

w0 = 3

2
b
(
pT Ã−1

kl q
)+ (

pT Ã−1
kl XÃ−1

kl q
)
, (75)

w2 = 3

2
b
(
pT Ã−1

kl JgÃ
−1
kl q

)+ 3

2
c
(
pT Ã−1

kl q
)+ (

pT Ã−1
kl JgÃ

−1
kl XÃ−1

kl q
)+ (

pT Ã−1
kl XÃ−1

kl JgÃ
−1
kl q

)
,

w4 = 3

2
c
(
pT Ã−1

kl JgÃ
−1
kl q

)+ (
pT Ã−1

kl JgÃ
−1
kl X Ã−1

kl JgÃ
−1
kl q

)
. (76)

Finally,

〈ϕk| 1

rg

(rT Xr) (rT Zvm) (rT Yvn) |ϕ̃l〉 = 2√
π

〈ϕk|ϕ̃l〉(
vkT Ã−1

kl ṽl
) 1

Tr
[
Ã−1

kl Jg

]1/2

{
w0 − 1

3

1

Tr
[
Ã−1

kl Jg

]w2 + 1

5

1

Tr
[
Ã−1

kl Jg

]2 w4

}
.

(77)

XI. COMPUTATIONAL IMPLEMENTATION
AND TEST CALCULATIONS

Algorithms for the leading relativistic corrections (mv, dar,
oo, and ss) for the singlet P states derived in this work were im-
plemented on a parallel computer platform using FORTRAN90
and a message passing interface. The implementation was
general and can be applied to atoms with an arbitrary number
of electrons.

The test calculations were performed for the lowest ten 1P

states of the helium atom and for the lowest four 1P states
of the beryllium atom. These systems were chosen because
results for some of the states considered here were calculated
before by Drake and Yan [27] and by Puchalski et al. [7]. This
enables comparison and verification of the present algorithms.

The results for the helium atoms are presented in Table I.
The INM and FNM total nonrelativistic energies and the
corresponding mv, dar, oo, and ss relativistic corrections are
shown. The INM results are compared with the results of Drake
and Yan [27]. Three basis sets were used in the calculations
for each state. For all states the basis sets include 800, 1000,
and 1200. The INM total energies obtained by Drake and Yan
are either equal or slightly lower than ours. For higher states,
where the energies of Drake and Yan are more noticeably lower
than our energies, including more ECGs would be necessary
to achieve better agreement of the two sets of results. For
the ground state, where our nonrelativistic energy agrees with
the energy of Drake and Yan to 12 significant figures, the
agreement between our and their values of the relativistic
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TABLE I. Helium atom. The convergence of the total nonrelativistic energies, the expectation values of δ functions, and the leading
relativistic corrections with the number of basis functions for the lowest ten 1P excited states. All values are given in a.u.

State Basis 〈Ĥnr〉 〈δ(r1)〉 〈δ(r12)〉 × 104 〈Ĥmv〉 〈Ĥd〉 〈Ĥoo〉 × 102 〈Ĥss〉 × 103

2 1P 4He 800 −2.123545654114 1.2738542 7.3457900 −10.0236617 8.0015543 −2.2539634 4.6154960
4He 1000 −2.123545654122 1.2738551 7.3444226 −10.0236647 8.0015604 −2.2539634 4.6146368
4He 1200 −2.123545654125 1.2738674 7.3444465 −10.0237540 8.0016373 −2.2539633 4.6146518
3He 1200 −2.123448345016 1.2736977 7.3419103 −10.0219675 8.0005723 −2.3262136 4.6130583
∞He1200 −2.123843086496 1.2743859 7.3522038 −10.0292159 8.0048933 −2.0330474 4.6195259
∞He [27] −2.123843086498092(8)1.274392886(1) 7.351691(3) −10.029251357(5) 8.004937054 −2.03304741(2)

3 1P 4He 800 −2.054862661145 1.2731024 2.5177494 −10.0058893 7.9983476 −0.8896287 1.5819486
4He 1000 −2.054862661147 1.2731027 2.5177572 −10.0058816 7.9983493 −0.8896287 1.5819535
4He 1200 −2.054862661148 1.2731027 2.5176958 −10.0058816 7.9983493 −0.8896287 1.5819149
3He 1200 −2.054769843454 1.2729319 2.5168768 −10.0040897 7.9972764 −0.9615442 1.5814003
∞He1200 −2.055146362092 1.2736248 2.5202006 −10.0113599 8.0016291 −0.6697369 1.5834887
∞He [27] −2.05514636209195(3) 1.273627296(1) 2.520151(6) −10.011372887(6) 8.001644581 −0.669736894(7)

4 1P 4He 800 −2.030790385838 1.2728701 1.1136996 −9.9997559 7.9973287 −0.5113823 0.6997581
4He 1000 −2.030790385839 1.2728758 1.1136413 −9.9997941 7.9973646 −0.5113822 0.6997215
4He 1200 −2.030790385841 1.2728764 1.1136196 −9.9997943 7.9973683 −0.5113822 0.6997078
3He 1200 −2.030699019258 1.2727053 1.1132674 −9.9980016 7.9962936 −0.5831875 0.6994865
∞He1200 −2.031069650450 1.2733993 1.1146967 −10.0052750 8.0006536 −0.2918278 0.7003846
∞He [27] −2.03106965045024(3) 1.2734058005(6) 1.114645(6) −10.005316142(5) −0.291827835(6)

5 1P 4He 800 −2.019628669868 1.2727879 0.5826951 −9.9973160 7.9969792 −0.3710273 0.3661181
4He 1000 −2.019628669872 1.2727942 0.5826911 −9.9973578 7.9970189 −0.3710273 0.3661156
4He 1200 −2.019628669875 1.2727952 0.5826607 −9.9973570 7.9970252 −0.3710272 0.3660965
3He 1200 −2.019537939367 1.2726241 0.5824793 −9.9955642 7.9959498 −0.4427882 0.3659826
∞He1200 −2.019905989900 1.2733184 0.5832154 −10.0028384 8.0003125 −0.1516084 0.3664451
∞He [27] −2.01990598990083(2) 1.2733249851(1) 0.583173(3) −10.0028777129(6) −0.151608431(6)

6 1P 4He 800 −2.013557677123 1.2727421 0.3412714 −9.9961052 7.9967672 −0.3077908 0.2144271
4He 1000 −2.013557677128 1.2727517 0.3411935 −9.9961545 7.9968277 −0.3077907 0.2143782
4He 1200 −2.013557677130 1.2727573 0.3411921 −9.9961918 7.9968625 −0.3077907 0.2143773
3He 1200 −2.013467279447 1.2725861 0.3410870 −9.9943989 7.9957869 −0.3795307 0.2143113
∞He1200 −2.013833979671 1.2732806 0.3415137 −10.0016734 8.0001507 −0.0884360 0.2145794
∞He [27] −2.01383397967174(2) 1.27328904810(3) 0.3414934(3) −10.0017251175(3) −0.0884359852(3)

7 1P 4He 800 −2.009893609042 1.2727137 0.2165311 −9.9954896 7.9966281 −0.2752843 0.1360505
4He 1000 −2.009893609065 1.2727272 0.2164759 −9.9955113 7.9967128 −0.2752839 0.1360158
4He 1200 −2.009893609072 1.2727277 0.2164378 −9.9955122 7.9967158 −0.2752837 0.1359919
3He 1200 −2.009803406698 1.2725565 0.2163717 −9.9937192 7.9956401 −0.3470126 0.1359503
∞He1200 −2.010169314526 1.2732511 0.2166402 −10.0009939 8.0000044 −0.0559629 0.1361191
∞He [27] −2.01016931452935(2) 1.2732707343(3) 0.2166053(1) −10.001113216(2) −0.05596288972(3)

8 1P 4He 800 −2.007513801107 1.2726407 0.1458046 −9.9947009 7.9961916 −0.2569171 0.0916117
4He 1000 −2.007513801243 1.2726841 0.1458006 −9.9949443 7.9964640 −0.2569160 0.0916092
4He 1200 −2.007513801284 1.2727071 0.1457329 −9.9951065 7.9966088 −0.2569148 0.0915667
3He 1200 −2.007423723079 1.2725359 0.1456910 −9.9933136 7.9955330 −0.3286380 0.0915404
∞He1200 −2.007789127103 1.2732305 0.1458612 −10.0005882 7.9998976 −0.0376117 0.0916473
∞He [27] −2.00778912713322(2) 1.2732604446(3) 0.1457990(3) −10.000750251(2) −0.0376116535(8)

9 1P 4He 800 −2.005881313840 1.2725353 0.1029647 −9.9939087 7.9955430 −0.2457698 0.0646946
4He 1000 −2.005881314641 1.2725861 0.1028061 −9.9942233 7.9958620 −0.2457689 0.0645949
4He 1200 −2.005881314827 1.2726513 0.1027757 −9.9946361 7.9962720 −0.2457671 0.0645759
3He 1200 −2.005791320403 1.2724801 0.1027475 −9.9928433 7.9951962 −0.3174865 0.0645582
∞He1200 −2.006156384506 1.2731748 0.1028619 −10.0001172 7.9995606 −0.0264756 0.0646301
∞He [27] −2.00615638465286(5) 1.2732542261(2) 0.1027385(3) −10.000540617(1) −0.0264755498(5)

10 1P 4He 800 −2.004713084479 1.2721804 0.0755772 −9.9923789 7.9933213 −0.2386266 0.0474866
4He 1000 −2.004713090035 1.2724376 0.0753410 −9.9936184 7.9949378 −0.2386216 0.0473382
4He 1200 −2.004713092853 1.2724796 0.0751998 −9.9938568 7.9952017 −0.2386182 0.0472494
3He 1200 −2.004623157571 1.2723084 0.0751823 −9.9920642 7.9941261 −0.3103356 0.0472384
∞He1200 −2.004987981689 1.2730030 0.0752532 −9.9993375 7.9984902 −0.0193326 0.0472830
∞He [27] −2.00498798380222(4) 1.2732502491(2) 0.075076(1) −10.000398414(1) −0.019332591(2)

11 1P 4He 800 −2.003848396241 1.2719795 0.0572607 −9.9913523 7.9920649 −0.2338431 0.0359780
4He 1000 −2.003848412311 1.2721844 0.0569009 −9.9930260 7.9933525 −0.2338376 0.0357519
4He 1200 −2.003848424448 1.2723565 0.0566745 −9.9934859 7.9944338 −0.2338307 0.0356097
3He 1200 −2.003758532396 1.2721853 0.0566717 −9.9916942 7.9933584 −0.3055488 0.0356079
∞He1200 −2.004123180978 1.2728797 0.0566831 −9.9989639 7.9977212 −0.0145433 0.0356150
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TABLE II. Beryllium atom. The convergence of the total nonrelativistic energies, expectation values of δ functions, and leading relativistic
corrections with the number of basis functions for the lowest four 1P excited states. All values are given in a.u.

State Basis 〈Ĥnr〉 〈δ(r1)〉 〈δ(r12)〉 〈Ĥmv〉 〈Ĥd〉 〈Ĥoo〉 〈Ĥss〉
2 1P 9Be 9500 −14.472543745 8.722321 0.261305 −266.58448 214.29035 −0.8382247 9.850966

9Be 11000 −14.472543750 8.722423 0.261303 −266.58700 214.29296 −0.8382247 9.850898
9Be 12500 −14.472543754 8.722597 0.261301 −266.59220 214.29737 −0.8382247 9.850804
∞Be 12500 −14.473451382 8.724225 0.261345 −266.65862 214.33745 −0.8120914 9.852475
∞Be [7] −14.47345137(4) 8.7244787(2) 0.26132393(7) −266.66514(2) −0.8120929(3)

3 1P 9Be 9500 −14.392242865 8.747192 0.262268 −267.37477 214.89728 −0.8820805 9.887266
9Be 11000 −14.392242872 8.747341 0.262267 −267.37866 214.90104 −0.8820804 9.887241
9Be 12500 −14.392242876 8.747404 0.262267 −267.38043 214.90263 −0.8820804 9.887227
∞Be 12500 −14.393143530 8.749025 0.262311 −267.44668 214.94253 −0.8558113 9.888883

4 1P 9Be 9500 −14.361037776 8.762808 0.262962 −267.87692 215.27667 −0.9135497 9.913425
9Be 11000 −14.361037784 8.762842 0.262959 −267.87758 215.27759 −0.9135497 9.913310
9Be 12500 −14.361037790 8.762880 0.262958 −267.87788 215.27856 −0.9135497 9.913293
∞Be 12500 −14.361938390 8.764497 0.263002 −267.94406 215.31837 −0.8872040 9.914942

5 1P 9Be 9500 −14.346975824 8.768325 0.263217 −268.05502 215.41052 −0.9249324 9.923061
9Be 11000 −14.346975837 8.768433 0.263198 −268.05792 215.41361 −0.9249322 9.922326
9Be 12500 −14.346975845 8.768442 0.263198 −268.05783 215.41383 −0.9249322 9.922319
∞Be 12500 −14.347876276 8.770059 0.263241 −268.12402 215.45363 −0.8985612 9.923968

corrections is also very good. It is also very good for the first
and second excited states where our nonrelativistic energies
are virtually the same as theirs. For the nineth state, where our
total energy agrees with the energy of Drake and Yan to nine
digits, the difference in the mv and dar corrections appears in
the fourth digit and in the oo correction it appears in the sixth
digit.

It is interesting to compare the results obtained for
the top 111P state of 4He with the corresponding re-
sults for 4He+. For 4He+ with 25 Gaussians in the ba-
sis set the total energy and the mv, dar, and oo correc-
tions are −1.999 725 850 786, −9.993 059 1, 7.995 192 1, and
0.002 192 592 a.u., respectively. The corresponding values for
∞He+ are −1.999 999 999 913, −9.998 539 9, 7.998 480 420,
and 0 a.u. The comparison is interesting because, as the
helium atom becomes excited to increasingly higher Rydberg
states, the system starts to resemble the He+ ion and a free
electron. Thus, the nonrelativistic total energy, as well as the

corrections, should converge to the values obtained for He+

(with both finite and infinite nuclear masses). This indeed
happens. It is particularly interesting to examine the INM
and FNM oo corrections for He+. The INM result is zero
because the terms proportional to the inverse of the nuclear
mass vanish and the two-electron term is not present. It is also
not present in the FNM result, but the terms proportional to
the inverse of the nuclear mass are not zero. They represent
the interaction of the orbital momentum of the electron with the
orbital momentum of the moving nucleus. Also, as one can
see by examining the oo FNM results in Table I, the 4He n1P

results converge with increasing n to the 12S 4He+ result (given
above), as they should. In conclusion, the above analysis of the
results for the helium atom lends confidence that the algorithms
derived and implemented in this work are likely correct.

The next set of tests are performed for the lowest four
1P states of the beryllium atom. The INM and FNM results
obtained in the calculations with 9500, 11 000, and 12 500

TABLE III. Beryllium atom. Three lowest n1P → (n + 1)1P transition energies calculated using the INM nonrelativistic energies, the FNM
nonrelativistic energies, and the FNM energies that include the relativistic and relativistic corrections. The transition energies are compared
with the experimentally derived values from Ref. [6]. All transitions are given in cm−1.

Transition Basis �Enr (∞Be) �Enr (9Be) �Enr+rel (9Be) Experiment

21P → 31P 9500 17625.537 17624.006 17621.775
11000 17625.536 17624.006 17621.772
12500 17625.536 17624.005 17621.780

17621.99
31P → 41P 9500 6848.737 6848.726 6847.229

11000 6848.737 6848.725 6847.232
12500 6848.737 6848.725 6847.241

6847.36
41P → 51P 9500 3086.279 3086.242 3085.704

11000 3086.278 3086.241 3085.695
12500 3086.277 3086.240 3085.690

3085.79
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ECGs are presented in Table II. As one can see, the total
energy for all four states is converged to 10 or 11 digits with
the number of the basis functions. The convergence of the mv
and dar corrections and, in particular, the oo corrections is also
very good. The results for the lowest 1P state (the only state
calculated before) are compared with the results of Puchalski
et al. [7]. It should be noted that the “drachmanization”
procedure (extrapolation and regularization procedure) was
applied in their calculations, thus the results for the mv and dar
corrections were not directly obtained as expectation values
of the corresponding operators, as they have been in our
calculations. As one can see, our mv and dar INM corrections
converge very well with their results. Also, our oo correction
agrees with theirs within five significant digits.

Finally, the last set of results (shown in Table III) concerns
the n1P → (n + 1)1P transition energies for the beryllium
atom and their comparison with the experimental date [6]. In
Table III the transition energies are calculated using the results
from Table II obtained with 12 500 ECGs. The values obtained
at the nonrelativistic INM level, the nonrelativistic FNM level,
and the FNM + rel level are shown in Table III. For the lowest
21P → 31P transition, going from the nonrelativistic INM
result to the nonrelativistic FNM result lowers the transition-
energy value by about 1.5 cm−1. Further lowering by more than
2 cm−1 is due to including the relativistic corrections. The most
complete result of 17 621.780 cm−1 obtained at the FNM + rel
level differs from the experiment by only 0.21 cm−1. For
the other two transitions, 31P → 41P and 41P → 51P , the
calculated values are even closer to the experiment (0.15 and
0.10 cm−1, respectively). The difference is likely due to not
including the QED corrections in the present calculations.

XII. SUMMARY

In summary, algorithms for calculating the leading rela-
tivistic corrections for singlet P bound states of small atoms
have been derived and implemented. All-electron explicitly

correlated Gaussian functions are used in expanding the non-
relativistic INM and FNM wave functions of the system. The
wave functions are used to calculate the expectation values of
the mv, dar, oo, and ss relativistic operators. These operators are
obtained by transforming the laboratory-frame operators rep-
resenting both the nucleus and the electrons into operators
expressed in terms of the internal coordinates. With that the
effect of the finite nuclear mass is explicitly included in the
relativistic corrections and does not need to be added as a
perturbation. Such an approach also eliminates the need of
separately determining the relativistic recoil effects.

Test calculations are performed for some of the lowest-lying
P states of the helium and beryllium atoms. The results are
compared with literature values obtained in calculations and
with the experimental results. The results for the 31P , 41P , and
51P states of the Be atom are high-accuracy values for these
states.

The next step in this project will involve implementation of
the leading QED corrections for the P states. The spin-orbit
relativistic corrections will also be implemented to perform
calculations of spin states higher than singlet. This will be
followed by application calculations of the P spectra of the Be
and B atoms and of the B+ and C+ atomic ions.
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