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PHYS 451 Quantum Mechanics II (Fall 2017)
Instructor: Sergiy Bubin

Midterm Exam 2

Instructions:

• All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

• This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are provided in the appendix. Please
look through this appendix before you begin working on the problems.

• No communication with classmates is allowed during the exam.

• Show all your work, explain your reasoning. Answers without explanations will receive
no credit (not even partial one).

• Write legibly. If I cannot read and understand it then I will not be able to grade it.

• Make sure pages are stapled together before submitting your work.



Problem 1. Consider the radial motion of an electron in the hydrogen atom (recall that the
effective potential Veff(r) that gives rise to an infinite number of bound states includes the

centrifugal term h̄2

2m
l(l+1)
r2

). Using the WKB approximation estimate the bound state energies
of the electron. Some integral(s) in the formula sheet may be useful.

Problem 2. Consider a two-level atom with states ψa and ψb and energies Ea < Eb that at t = 0
is in the ground state and is subjected to a harmonic perturbation H ′(x, t) = 1

2
exE(eiωt+e−iωt).

Without assuming smallness of H ′ but neglecting rapidly oscillating terms ei(ω+ωab)t find the
probability of transition to the excited state at t > 0. Make sure you apply the selection rules
for the dipole matrix elements with atomic states. It may be convenient to express your result
through the quantities Ω ≡ eE

h̄
⟨ψa|x|ψb⟩, δ ≡ ω − ωab, and ωR ≡ 1

2

√
δ2 + Ω2.

Problem 3. A spin 1 particle is in a strong uniform magnetic field (Bx, 0, 0). The gyromagnetic
ratio that relates the particle’s spin to its magnetic moment is g, i.e. µ = gS. Initially (at
t = 0) the particle is in the state corresponding to the zero projection of its spin on the the
x-axis. A weak additional magnetic field (0, By, 0) is suddenly turned on at time t = 0 and then
sharply turned back off at t = T . What is the probability of measuring a positive or negative
value of the x-projection of spin at t > T?

Problem 4. Consider a 1D quantum harmonic oscillator (mass m, force constant k0) sitting in
its ground state. At t > 0 the force constant begins changing with time as k(t) = k0 + αte−βt,
where both α and β are some positive numbers and α is small. Find the probability of transition
to the first, second, etc. excited states at t = +∞.



Appendix: formula sheet

Schrödinger equation

Time-dependent: ih̄∂Ψ
∂t

= ĤΨ Stationary: Ĥψn = Enψn

De Broglie relations

λ = h/p, ν = E/h or p = h̄k, E = h̄ω

Heisenberg uncertainty principle

Position-momentum: ∆x∆px ≥ h̄
2

Energy-time: ∆E∆t ≥ h̄
2

General: ∆A∆B ≥ 1
2
|⟨[Â, B̂]⟩|

Probability current

1D: j(x, t) = ih̄
2m

(
ψ ∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
3D: j(r, t) = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ)

Time-evolution of the expectation value of an observable Q
(generalized Ehrenfest theorem)

d
dt
⟨Q̂⟩ = i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂Q̂

∂t
⟩

Infinite square well (0 ≤ x ≤ a)

Energy levels: En = n2π2h̄2

2ma2
, n = 1, 2, ...,∞

Eigenfunctions: ϕn(x) =
√

2
a
sin
(
nπ
a
x
)

(0 ≤ x ≤ a)

Matrix elements of the position:
a∫
0

ϕ∗
n(x)xϕk(x)dx =


a/2, n = k
0, n ̸= k; n± k is even
− 8nka
π2(n2−k2)2 , n ̸= k; n± k is odd

Quantum harmonic oscillator

The few first wave functions (α = mω
h̄
):

ϕ0(x) =
α1/4

π1/4 e
−αx2/2, ϕ1(x) =

√
2α

3/4

π1/4 x e
−αx2/2, ϕ2(x) =

1√
2
α1/4

π1/4 (2αx
2 − 1) e−αx

2/2

Matrix elements of the position: ⟨ϕn|x̂|ϕk⟩ =
√

h̄
2mω

(√
k δn,k−1 +

√
n δk,n−1

)
⟨ϕn|x̂2|ϕk⟩ = h̄

2mω

(√
k(k − 1) δn,k−2 +

√
(k + 1)(k + 2) δn,k+2 + (2k + 1) δnk

)
Matrix elements of the momentum: ⟨ϕn|p̂|ϕk⟩ = i

√
mh̄ω
2

(√
k δn,k−1 −

√
n δk,n−1

)
Creation and annihilation operators for harmonic oscillator

â =
√

mω
2h̄
x̂+ i√

2mh̄ω
p̂ Ĥ = h̄ω

(
N̂ + 1

2

)
N̂ = â†â [â, â†] = 1

â† =
√

mω
2h̄
x̂− i√

2mh̄ω
p̂ â |n⟩ =

√
n |n− 1⟩ â† |n⟩ =

√
n+ 1 |n+ 1⟩

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

− h̄2

2m
1
r2

∂
∂r
r2 ∂Rnl

∂r
+
[
V (r) + h̄2

2m
l(l+1)
r2

]
Rnl = EnlRnl

Energy levels of the hydrogen atom

En = − m
2h̄2

(
e2

4πϵ0

)2
1
n2 ,



The few first radial wave functions Rnl for the hydrogen atom (a = 4πϵ0h̄
2

mZe2
)

R10 = 2a−3/2 e−
r
a R20 =

1√
2
a−3/2

(
1− 1

2
r
a

)
e−

r
2a R21 =

1√
24
a−3/2 r

a
e−

r
2a

The few first spherical harmonics

Y 0
0 = 1√

4π
Y 0
1 =

√
3
4π

cos θ =
√

3
4π

z
r

Y ±1
1 = ∓

√
3
8π

sin θ e±iϕ = ∓
√

3
8π

x±iy
r

Operators of the square of the orbital angular momentum and its projection on
the z-axis in spherical coordinates

L̂2 = −h̄2
[

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

]
L̂z = −ih̄ ∂

∂ϕ

Fundamental commutation relations for the components of angular momentum

[Ĵx, Ĵy] = ih̄Ĵz [Ĵy, Ĵz] = ih̄Ĵx [Ĵz, Ĵx] = ih̄Ĵy

Raising and lowering operators for the z-projection of the angular momentum

Ĵ± = Ĵx ± iĴy Action: Ĵ±|j,m⟩ = h̄
√
j(j + 1)−m(m± 1) |j,m± 1⟩

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Matrix form of angular momentum operators for l = 1

Lx =
1√
2
h̄

 0 1 0
1 0 1
0 1 0

 Ly =
1√
2
h̄

 0 −i 0
i 0 −i
0 i 0

 Lz = h̄

 1 0 0
0 0 0
0 0 −1


Relation between coupled and uncoupled representations of states formed by two

subsystems with angular momenta j1 and j2

|J M j1 j2⟩ =
j1∑

m1=−j1

j2∑
m2=−j2

⟨j1m1 j2m2|J M j1 j2⟩ |j1m1⟩ |j2m2⟩ m1 +m2 =M

|j1m1⟩ |j2m2⟩ =
j1+j2∑

J=|j1−j2|
⟨JMj1j2|j1m1j2m2⟩ |J M j1 j2⟩ M = m1 +m2

Electron in a magnetic field

Hamiltonian: H = −µ ·B = −γB · S = e
m
B · S = µBB · σ

here e > 0 is the magnitude of the electron electric charge and µB = eh̄
2m

Bloch theorem for periodic potentials V (x+ a) = V (x)

ψ(x) = eikxu(x), where u(x+ a) = u(x) Equivalent form: ψ(x+ a) = eikaψ(x)

Density matrix ρ̂

ρ̂ =
∑
i

pi|ψi⟩⟨ψi|, where
∑
i

pi = 1

Expectation value of some observable A: ⟨Â⟩ =
∑
i

pi⟨ψi|Â|ψi⟩ = tr(ρ̂Â), where tr(ρ̂) = 1

Time evolution operator



Û(tf , ti) = T̂ exp
[
− i
h̄

∫ tf
ti
Ĥ(t)dt

]
= 1+

∞∑
n=1

(
− i
h̄

)n ∫ tf
ti
dt1
∫ t1
ti
dt2 . . .

∫ tn−1

ti
dtnĤ(t1)Ĥ(t2) . . . Ĥ(tn)

In particular, Û(tf , ti) = exp
[
− i
h̄
Ĥ(tf − ti)

]
when Ĥ ̸= Ĥ(t)

Schrödinger, Heisenberg and interaction pictures

ψH = Û−1ψS, ψH = ψS(t=0), ÂH = Û−1ÂSÛ , ih̄ ÂH

dt
= [ÂH , Ĥ] + ih̄∂ÂH

∂t
, ∂ÂH

∂t
≡ Û−1 ∂ÂS

∂t
Û

If Ĥ = Ĥ0 + V̂ (t), then

ψI = Û−1
0 ψS, Û0 = exp

[
− i
h̄
Ĥ0t
]
, ÂI = Û−1

0 ÂSÛ0, ih̄∂ψ̂I

∂t
= V̂IψI

ψI(t) = ψI(0) +
1
ih̄

t∫
0

V̂I(t
′)ψI(t

′)dt′

Rayleigh-Ritz variational method

ψtrial =
n∑
i=1

ciϕi Hc = ϵSc, where c =


c1
c2
...
cn

 and
Hij = ⟨ϕi|Ĥ|ϕj⟩
Sij = ⟨ϕi|ϕj⟩

Stationary perturbation theory formulae

H = H0 + λH ′, En = E
(0)
n + λE

(1)
n + λ2E

(2)
n + . . ., ψn = ψ

(0)
n + λψ

(1)
n + λ2ψ

(2)
n + . . .

E(1)
n = H ′

nn

ψ(1)
n =

∑
m

cnmψ
(0)
m , cnm =

{
H′

mn

E
(0)
n −E(0)

m

, n ̸= m

0, n = m

E(2)
n =

∑
m ̸=n

|H ′
mn|2

E
(0)
n − E

(0)
m

ψ(2)
n =

∑
m

dnmψ
(0)
m , dnm =


1

E
(0)
n −E(0)

m

(∑
k ̸=n

H′
mkH

′
kn

E
(0)
n −E(0)

k

)
− H′

nnH
′
mn(

E
(0)
n −E(0)

m

)2 , n ̸= m

0, n = m

Bohr-Sommerfeld quantization rules

b∫
a

p(x)dx = (n− 1
2
)πh̄ – the potential has no vertical walls at a or b

b∫
a

p(x)dx = (n− 1
4
)πh̄ – only one wall of the potential is vertical

b∫
a

p(x)dx = nπh̄ – both walls of the potential are vertical

Here a and b are classical turning points and n = 1, 2, 3, . . .

Semiclassical barrier tunneling

T ∼ exp

[
−2

b∫
a

κ(x)dx

]
κ(x) = 1

h̄

√
2m(V (x)− E)

General time-dependence of the wave function (TDSE in matrix form)



H(r, t) = H0(r) + λH ′(r, t), H0φn = E
(0)
n φn, ψ(r, t) =

∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ ,

ih̄dcn(t)
dt

= λ
∑
k

H ′
nke

iωnktck(t), H ′
nk = ⟨ϕn|H ′|ϕk⟩, ωnk =

E
(0)
n −E(0)

k

h̄

Time-dependent perturbation theory formulae

H(r, t) = H0(r) + λH ′(r, t), H0φn = E
(0)
n φn, λH ′ is small

ψ(r, t) =
∑
n

cn(t)φn(r)e
−iE

(0)
n t
h̄ , cn(t) = c

(0)
n + λc

(1)
n + λ2c

(2)
n + . . .

If cn(t0) = δnm then at time t > t0

c
(0)
n = δnm,

c
(1)
n (t) = 1

ih̄

t∫
t0

H ′
nm(t

′) eiωnmt′dt′,

c
(2)
n (t) =

(
1
ih̄

)2∑
k

t∫
t0

dt′
t′∫
t0

H ′
nk(t

′)H ′
km(t

′′) eiωnkt
′
eiωkmt

′′
dt′′, . . .

Fermi’s golden rule

Transition probability: Pi→f (t) =
2πt
h̄
|H′

fi|2 g(Ef ), Transition rate: Γi→f =
2π
h̄
|H′

fi|2 g(Ef )
where H′

fi = ⟨φf |H′(r)|φi⟩ and g(E) is the density of states



Dirac delta function

∞∫
−∞

f(x)δ(x− x0)dx = f(x0) δ(x) = 1
2π

∞∫
−∞

eikxdk δ(−x) = δ(x) δ(cx) = 1
|c|δ(x)

Fourier transform conventions

f̃(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx f(x) = 1√
2π

+∞∫
−∞

f̃(k)eikxdk

or, in terms of p = h̄k

f̃(p) = 1√
2πh̄

+∞∫
−∞

f(x)e−ipx/h̄dx f(x) = 1√
2πh̄

+∞∫
−∞

f̃(p)eipx/h̄dp

Useful integrals∫ √
a2 − x2 dx = 1

2

(
x
√
a2 − x2 + a2 arctan

[
x√

a2−x2

])
b∫
a

1
x

√
(x− a)(b− x) dx = π

2

(√
b−

√
a
)2

∞∫
0

x2ke−βx
2
dx =

√
π (2k)!

k! 22k+1βk+1/2 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

x2k+1e−βx
2
dx = 1

2
k!

βk+1 (Re β > 0, k = 0, 1, 2, ...)

∞∫
0

xke−γxdx = k!
γk+1 (Re γ > 0, k = 0, 1, 2, ...)

∞∫
−∞

e−βx
2
eiqxdx =

√
π
β
e−

q2

4β (Re β > 0)

π∫
0

sin2k x dx = π (2k−1)!!
2k k!

(k = 0, 1, 2, ...)

π∫
0

sin2k+1 x dx = 2k+1 k!
(2k+1)!!

(k = 0, 1, 2, ...)

2π∫
0

cosmϕeinϕ dx = π(δm,n + δm,−n) (m,n = 0,±1,±2, ...)

Useful trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β cos(α± β) = cosα cos β ∓ sinα sin β

sinα sin β = 1
2
[cos(α− β)− cos(α + β)] cosα cos β = 1

2
[cos(α− β) + cos(α + β)]

sinα cos β = 1
2
[sin(α + β) + sin(α− β)] cosα sin β = 1

2
[sin(α + β)− sin(α− β)]

Useful identities for hyperbolic functions

cosh2 x− sinh2 x = 1 tanh2 x+ sech2 x = 1 coth2 x− csch2 x = 1


