PHYS 451 Quantum Mechanics II (Fall 2017)

Quiz \#3

(a) A spin $1 / 2$ particle with gyromagnetic ratio γ (the gyromagnetic ratio is the ratio of the particle's magnetic moment to its angular momentum) is placed in a magnetic field. The field lies in the $y z$-plane and has the form $\mathbf{B}_{0}=(0,4 B, 3 B)$. What are the possible energy levels of the particle? What are the corresponding states?
(b) Now an additional field is introduced. This weak field lies along the x-axis, $\mathbf{B}^{\prime}=(\beta B, 0,0)$, and its magnitude is much smaller than that of \mathbf{B}_{0}. In other words, $\left|\mathbf{B}^{\prime}\right| /\left|\mathbf{B}_{0}\right| \ll 1$ or $\beta \ll 1$. Using the perturbation theory find the corrections to the energy levels up to the lowest nonvanishing order.

Appendix 1: Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Appendix 2: Perturbation theory formulae (from lecture)

$H=H^{0}+\lambda H^{\prime}, \quad E_{n}=E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots, \quad \psi_{n}=\psi_{n}^{(0)}+\lambda \psi_{n}^{(1)}+\lambda^{2} \psi_{n}^{(2)}+\ldots$

$$
\begin{gathered}
E_{n}^{(1)}=H_{n n}^{\prime} \\
\psi_{n}^{(1)}=\sum_{m} c_{n m} \psi_{m}^{(0)}, \quad c_{n m}=\left\{\begin{array}{cl}
\frac{H_{m n}^{\prime}}{E_{n}^{(0)}-E_{m}^{(0)}}, & n \neq m \\
0, & n=m
\end{array}\right. \\
E_{n}^{(2)}=\sum_{m \neq n} \frac{\left|H_{m n}^{\prime}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}} \\
\psi_{n}^{(2)}=\sum_{m} d_{n m} \psi_{m}^{(0)}, \quad d_{n m}=\left\{\begin{array}{cc}
\frac{1}{E_{n}^{(0)}-E_{m}^{(0)}}\left(\sum_{k \neq n} \frac{H_{m k}^{\prime} H_{k n}^{\prime}}{E_{n}^{(0)}-E_{k}^{(0)}}\right)-\frac{H_{n n}^{\prime} H_{m n}^{\prime}}{\left(E_{n}^{(0)}-E_{m}^{(0)}\right)^{2}}, & n \neq m \\
0, & n=m
\end{array}\right.
\end{gathered}
$$

