Name:

PHYS 452 - Quantum Mechanics IT (Spring 2015)
Instructor: Sergiy Bubin
Midterm Exam 2

Instructions:

All problems are worth the same number of points (although some might be more difficult
than the others). The problem for which you get the lowest score will be dropped. Hence,
even if you do not solve one of the problems you can still get the maximum score for the
exam.

This is a closed book exam. No notes, books, phones, tablets, calculators, etc. are allowed.
Some information and formulae that might be useful are attached.

No communication with classmates is allowed during the exam.

Show all your work, explain your reasoning. Answers without explanations will receive no
credit (not even partial one).

Write legibly. If I cannot read and understand it then I will not be able to grade it.

Make sure pages are stapled together before submitting your work.



Problem 1. Consider a 1D quantum harmonic oscillator with mass m and frequency w. Initially,
at time ¢t = 0, the oscillator is in the ground state. At time t > 0 a parametric interaction is
turned on. It changes the Hamiltonian to

nd* N mw?z?[1 + v cos(2wt)]
2m dx? 2

with v < 1.
(a) What is the probability of finding the system in state |1) at time ¢ > 07
(b) What is the probability of finding the system in state |2) at time ¢ > 07

(c) What is the probability of finding the system in state |4) at time ¢ > 07

Problem 2. A particle is in the ground state of a very narrow 1D potential well, V(z) =
—ad(z), where «v is a positive constant. At some moment of time, the strength of the potential
is instantaneously changed from « to 5. What is the probability that the particle flies away (i.e.
leaves the well) after that?

Hint: In this problem you need to know or solve for the ground state of the Hamiltonian
H = —%% — ad(z). This can be done easily if you rememeber that that the wave function
must be continuous. The first derivative of the wave function, however, may have a discontinuity
at the points of singularity. To determine the magnitude of the jump of the first derivative,
you may integrate the Schrodinger equation over an infinitely small region around the point of
singularity (i.e. from —e to €).

Problem 3. Consider scattering from the following spherically symmetric potential:
V(r) = ad(r — R),
where o and R are constants. Assuming that V' (r) is weak in some sense
(a) Compute the scattering amplitude

(b) In the low-energy limit, find the expressions for the scattering amplitude, differential and
total cross section

Problem 4. Using the Born approximation consider scattering from two identical scattering
centers, Us(r) = Uy (r) + Uy (r — a), separated by some distance a. What is the relation between
the differential cross section ‘& and % corresponding to the scattering from U, and just a single
U, when

(a) ka < 1 and kR is arbitrary (R is the effective range of Uy)

(b) kR ~ 1 while a > R (i.e. the distance between the two centers is much larger than their
effective range)



Appendiz: formula sheet
The Schrodinger equation
Time-dependent: ih%—‘f = HU Stationary: ]:I@/)n = E, ¥,
De Broglie relations
A=h/p, v=E/h or p=hk, E=hw
Heisenberg uncertainty principle

Position-momentum: Az Ap, > 2 Energy-time: AEAt > 2 General: AAAB > %|<[A, B))|

Probability current
ID: j(a,t) = & (W2 —¢*22)  3D: j(r,t) = {2 (YY" — ' V)

Time-evolution of the expectation value of an observable @)
(generalized Ehrenfest theorem)

Infinite square well (0 <z < a)

Energy levels: E, = il - 1,2,...,00

2ma?

Eigenfunctions: ¢, (z) = \/gsin (%x) (0<z<a)

Matrix elements of the position: [ ¢*(x)z ¢p(z)dx = ¢ 0, n # k; n £k is even
0 — e, Ak nt ks odd

Quantum harmonic oscillator

The few first wave functions (o = %*):
/ e~ ya / ooz / o
o) = ol/4 2/ o1(x) = f/i Te 2/2, ¢2( )= \/57;/2 (2c ax? —1)e 2/2

Matrix elements of the position: (¢, |Z|dx) = \/5— Qmw (\/— Onk—1+ /N Ok 1)
(Il 0n) = 52 (k= 1) iz + /(b + 1)k +2) Oz + (2 + 1) 61
Matrix elements of the momentum: (¢, |p|ox) = z\/mTh” (\/E On -1+ \/ﬁdkm,l)

Equation for the radial component of the wave function of a particle moving in a
spherically symmetric potential V (r)

At G [VO) & ] B = B

or 2m 72

Energy levels of the hydrogen atom

m e? 2 1
En — T on? (47r50) n2?
The few first radial wave functions for the hydrogen atom (a = 74’:;22?2)

The few first spherical harmonics

YOO:\/% VP =/ cosl =,/ 2 Vit =4/&sinfeF? =+ 3””?3’



Operators of the square of the orbital angular momentum and its projection on the
z-axis in spherical coordinates

T2 _ _ 2| 1 08 ;.00 19 T — 50
L7 =—h {sin96981n830+sin298¢2} L,= Zhaqs

Fundamental commutation relations for the components of angular momentum
od] =i, Uy d]—ide L d] =i,

Raising and lowering operators for the z-projection of the angular momentum

Jo=J,£iJ,  Action: Jeljm)=/j(j+1)—m(m=*1)|j,m=£1)
Relation between coupled and uncoupled representations of states formed by two
subsystems with angular momenta j; and j
o il 2 . o .
|J M j1ja) = X > (Juma gamal|J M ji ja) 51 ma) 72 mz) my+my =M

mi=—j1 ma=—j2

Pauli matrices

(01 (0 —i (10
==\ 1 0 D=\ 0 2=\ 0o —1

Stationary perturbation theory formulae

H=H+)\H', E,=E9 +XED +XE® + o, =0 A1 4222 4
B = H,,

H
0 — B M Em
%(11) _ chmwjn)’ Com = { EQ_g0>
m n =

H' |2
E7(12) — | mn
%n g — gV

1 H;nkHI/cn HiwnH;nn
2 0 0 0 D 0 | — \ 2, N 7é m
VD =Y A, du = BB <k¢ 2057 ) (B9 -p9)”
m

Bohr-Sommerfeld quantization rules

b
{p(m)dmz(n—%)ﬂh n=12...

where a and b are classical turning points and p(z) = \/Qm(E —Vi(x))
If the potential has vertical walls on one or both sides then the above equation becomes

b b
{p(m)dm =(n—3)7h or afp(x)dx = nmwh respectively.

Semiclassical barrier tunneling

b
T = exp [—QJn(x)dx] k(x) = %\/Qm(V(x) —F)

Time-dependence of the wave function

—in0y

H(r,t) = H(x) + MH'(r,t),  Hpn=EPpn,  ¥(r,t) = Zca(t)pn(r)e 7,

EO _g®

G AT Hypdten(t),  Hip = (Gl H'lon),  wn ==




Time-dependent perturbation theory formulae

If ¢, (tg) = G (e.g. U(r,ty) = pm(r), where ¢, is an egenfunction of H°) and AH’ is small then
at time ¢t >ty
cn(t) = O 4 el 4+ X2c@)
where .
A0 =6, () =L [H] ()t dt,

i

2 t/ ’ o, "
0%2) (t) _ (%) S At I Hvlmk(t/)Hllcm(t”) eiwnit piwkmt dt",
k to to
Fermi’s golden rule
Transition rate: Iy = 2%|H},|* g(Ey), Transition probability: Pis(t) = 2%|HY,|? g(Ey)
Stationary quantum scattering

Wave function at r — oo : ¢(r,60,¢) =~ A [e“fz + £(6,9) eikr]’ I ,/f;lnE

2 T

Differential cross section: 9 = |f(6, ¢) Total cross section: oy = [ 22dS)

Partial wave analysis

For a spherically symmetric potentials ¢ (r, ) = A {eikz +k ioj i (20 4+ 1)ay hl(l)(k’l")Pl(COS 0)
=0

(o) = lij()(?l + 1)a; P(cosf) = %l§(2l + 1)e® sin 6; Py(cos 6)

Otor = 4 l§(2l + 1)|a|* = % loo (20 4 1) sin? §,
=0 =0

Relation between partial wave amplitudes and phase shifts: a; = %e”l sin ¢y

Rayleigh formula for a plane wave expansion: e** = § (20 + 1)y (kr)P(cos 0)
=0

Lippmann-Schwinger equation
() = o(r) + 38 [ Gr,r)V (r)y(x')dr’,
where ¢(r) is the free-particle solution (incident plane wave)

ik\r—r/\ . .
and G(r,r') = _ﬁe|r7r/| is the Green’s function

Born approximation

f(0,¢) = =2 [ V()dr', q=kK —k, ¢=2ksin%, k=ki, k =kz

27h?

For spherically symmetric potentials f(6) = —%T"; OOTV(’/’) sin(gr)dr
0
Legendre polynomials
!
R@) =1, Pi(x) =2, Ble) = 32— 1, Pya) = 30° — 3o, .oy Bile) = o (£) (22— 1

1
Orthogonality: [ P/(x)Py(x)dx = 55~
1

Spherical Bessel, Neumann, and Hankel functions

) i ; s . I .
Jolw) = e Gi(e) = o Gie) = (o) (3)

i l
no(x) = _Co;gc7 nl(ZE) = —C;% — %’ - nl<l’> — —<—:L')l (%%) cozsx

W' () = ji(x) £ in(x) | | |

he)(w) = i, hi@) = (g - d) e M) = (<E - ) e,

(e =i, W) = (F-1) e )= (H-2+i)e
(20)!

L 24 —l=1
For v < 1: jj(z) — (2l+1)!xl, = =g

For > 1: h{" — L(=i)lei,  pP = L)l




Dirac delta function

LT ety

d(—z) = d(x)

Fourier transform conventions

[ J@)s(x —w)de = f(x0) o) =
fk) = & T f@etde fla) =

1 oz ikx

Useful integrals

2k _ (2k)!
fx e dx = \/_k|22k+15k+1/2

(Re8>0,k=0,1,2,..)

)

f g2kl o — %Bk! (ReB8>0,k=0,1,2,..)
fxewd:z;— : (Rey>0,k=0,1,2,..

0

lo e P ity = \/gefE (Refs > 0)

gsin%xdx = 7T(2§,:kl!)” (k=0,1,2,...)

[sin®*! pde = % (k=0,1,2,...)

0

Useful trigonometric identities

sin(a £+ ) = sinacos  + cos asin 3
t[cos(a — B) — cos(a + B)]
s[sin(a + B) + sin(a — 8]

sinasin =

sina cos f =

cos(av £+ ) = cosawcos f F sinasin
cos a cos 3 = 1[cos(oz — B) + cos(a + 5)]
L[sin(a + B) — sin(a — )]

cosasin ff =



