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Discretization in space

A grid consists of a finite set of points in space and/or time. It provides a
way to obtain a discrete sampling of continuous quantities.

1D grid:
xi = a + (i − 1)h, i = 1, 2, . . . ,N. (1)

In some applications it is convenient to spec-
ify N instead. In this case

h =
b − a

N − 1
. (2)

Here a and b are the end points of the sim-
ulation interval.



Finite differences

Recall how we can approximate the first derivative of a function.

Forward difference:

f ′(x) =
f (x + h)− f (x)

h
, h→ 0. (3)

We can also use the backward difference:

f ′(x) =
f (x)− f (x − h)

h
, h→ 0. (4)

The central difference gives a more accurate approximation:

f ′(x) =
f (x + h)− f (x − h)

2h
, h→ 0. (5)



Multipoint expressions for finite differences

Yet, we can do a better job if we use function values at more points.

Example: 5 points centered around x

f (x−2h) = f (x)−f ′(x)2h+
1

2
f ′′(x)(2h)2− 1

6
f ′′′(x)(2h)3+

1

24
f ′′′′(x)(2h)4

f (x−h) = f (x)−f ′(x)h+
1

2
f ′′(x)h2− 1

6
f ′′′(x)h3+

1

24
f ′′′′(x)h4,

f (x) = f (x),

f (x+h) = f (x)+f ′(x)h+
1

2
f ′′(x)h2+

1

6
f ′′′(x)h3+

1

24
f ′′′′(x)h4,

f (x+2h) = f (x)+f ′(x)2h+
1

2
f ′′(x)(2h)2+

1

6
f ′′′(x)(2h)3+

1

24
f ′′′′(x)(2h)4.



Multipoint expressions for finite differences

That gives us a system of 5 linear equations for the derivatives of f :


f (x − 2h)
f (x − h)
f (x)

f (x + h)
f (x + 2h)


︸ ︷︷ ︸

b

=


1 − 2 2 − 4/3 2/3
1 − 1 1/2 − 1/6 1/24
1 0 0 0 0
1 1 1/2 1/6 1/24
1 2 2 4/3 2/3


︸ ︷︷ ︸

A


f (x)
f ′(x)h
f ′′(x)h2

f ′′′(x)h3

f ′′′′(x)h4


︸ ︷︷ ︸

y

(6)
or

b = Ay. (7)



Multipoint expressions for finite differences

By solving the system of linear equations we get:

f (x) = f (x),

f ′(x)h =
1

12
f (x−2h)− 2

3
f (x−h)+

2

3
f (x+h)− 1

12
f (x+2h),

f ′′(x)h2 = − 1

12
f (x−2h)+

4

3
f (x−h)− 5

2
f (x)+

4

3
f (x+h)− 1

12
f (x+2h),

f ′′′(x)h3 = −1

2
f (x−2h)+f (x−h)−f (x+h)+

1

2
f (x+2h),

f ′′′′(x)h4 = f (x−2h)−4f (x−h)+6f (x)−4f (x+h)+f (x+2h),

(8)



Multipoint expressions for finite differences

In matrix form it looks as follows:


0 0 1 0 0

1/12 −2/3 0 2/3 −1/12
−1/12 4/3 −5/2 4/3 −1/12
−1/2 1 0 −1 1/2

1 −4 6 −4 1


︸ ︷︷ ︸

A−1


f (x − 2h)
f (x − h)
f (x)

f (x + h)
f (x + 2h)


︸ ︷︷ ︸

b

=


f (x)
f ′(x)h
f ′′(x)h2

f ′′′(x)h3

f ′′′′(x)h4


︸ ︷︷ ︸

y

(9)
or

A−1b = y. (10)



Multipoint expressions for finite differences

We can generalize this approach to higher orders:

f (x + nh) =
∞∑
i=0

1

i !
f (i)(x)(nh)i , n = −m, . . . ,m, (11)

where we truncate the series at m-th order



Multipoint expressions for finite differences

Using the notation

yj = f (j−1)(x)hj−1, bk = f (x+(k−m−1)h), j , k = 1, . . . , 2m+1, (12)

and

Akj =
(k −m − 1)j−1

(j − 1)!
(13)

By inverting A we obtain the desired derivatives:

f (j−1)(x) =
1

hj−1

2m+1∑
k=1

Cjk f (x + (k −m − 1)h), (14)

where
Cjk = (A−1)jk . (15)



Solving differential equations on a grid

Finite difference formulae allow to represent differential operators on a grid.
Thus, we can reduce a linear differential equation and the boundary/initial
conditions to a system of N linear algebraic equations (N is the number of
grid points). By solving this system of linear equations we can obtain an
approximation (given on the same grid) to the solution of the original
problem.

Note: This is actually not a terribly efficient approach to solve linear
differential equations in 1D. However, it can be easily generalized to the
case of 2D and 3D partial differential equations, where it works beautifully.

Let us now see how it works...



Classical harmonic oscillator

Let us solve the ODE that describes the motion of a classical harmonic
oscillator with the angular frequency equal to unity

q′′(t) + q(t) = 0, (16)

with the following initial conditions

q(0) = 1, q′(0) = 0

For simplicity, let us use three-point approximations for the derivatives:

q′(t) =
q(t+h)− q(t−h)

2h
, (17)

q′′(t) =
q(t+h)− 2q(t) + q(t−h)

h2
. (18)



Classical harmonic oscillator

Let us start our grid index in such a way that q(0) ≡ q0 = 1, then

q′(0) =
q1 − q-1

2h
= 0 ⇒ q-1 = q1 (19)

Our discretized ODE will have the following look (if we safely extend the
index to -1; in principle the index can follow the argument to −∞)

−2 1 0 0 0 . . .
1 −2 1 0 0 . . .
0 1 −2 1 0 . . .
0 0 1 −2 1 . . .
0 0 0 1 −2 . . .
...

...
...

...
...

. . .





q-1
q0
q1
q2
q3
...


+ h2



q-1
q0
q1
q2
q3
...


=



0
0
0
0
0
...





Classical harmonic oscillator

The second line gives (after replacing q-1 with q1):

−2q0 + 2q1 + h2q0 = 0

or 2q1 = (2− h2)q0 or 2q1 = (2− h2).

Therefore we can modify the third line/equation accordingly and leave only
the equations with index starting with 1 (below red line)

−2 1 0 0 0 . . .
1 −2 1 0 0 . . .
0 1 −2 1 0 . . .
0 0 1 −2 1 . . .
0 0 0 1 −2 . . .
...

...
...

...
...

. . .





q-1
q0
q1
q2
q3
...


+ h2



q-1
q0
q1
q2
q3
...


=



0
0
0
0
0
...





Classical harmonic oscillator

As a result we end up with the following system of linear equations

2 0 0 0 0 . . .
1 −2 + h2 1 0 0 . . .
0 1 −2 + h2 1 0 . . .
0 0 1 −2 + h2 1 . . .
0 0 0 1 −2 + h2 . . .
...

...
...

...
...

. . .





q1
q2
q3
q4
q5
...


=



2− h2

0
0
0
0
...


Which we can safely truncate at some point n (this will determine the
length of the time interval on which we want to integrate the ODE)



The Schrödinger equation in 1D

With the discretization of differential operators we can also solve eigenvalue
problems. For example we solve the Schrödinger equation:

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (20)

Here ~, and m are physical constants, V (x) is the potential, and E is an
energy eigenvalue.



Solving the Schrödinger equation in 1D using three-point
differences

ψ′′(x) =
ψ(x − h)− 2ψ(x) + ψ(x + h)

h2
. (21)

Define

ψi ≡ ψ(i) ≡ ψ(xi ) = ψ(a + ih), Vi = V (i) = V (xi ). (22)

The Schrödinger equation can be written as

− ~2

2m

ψi−1 − 2ψi + ψi+1

h2
+ Viψi = Eψi , i = 0, . . . ,N − 1. (23)

There are two exterior points, x-1 and xN . For bound states

ψ-1 = ψN = 0. (24)



Solving the Schrödinger equation in 1D using three-point
differences

Equation (23) can be rewritten as an eigenvalue problem:

Hc = Ec, (25)

where

Hij =


~2
2m

2
h2

+ Vi , i = j

− ~2
2m

1
h2
, i = j ± 1

0, otherwise

(26)

and

c =


ψ0

ψ1
...

ψN−1

 . (27)


